=VID&N

Identity and Access Management

DirX Audit

Customization Guide
Version 7.2, Edition June 2025

All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.

Table of Contents

Copyright
Preface
DirX Audit Documentation Set
Notation Conventions
1. Customizing the DirX Audit Manager User Interface
1.1. Setting Up Single Sign On
1.2. Customizing the Table Page Navigator
1.3. Configuring Privileged Groups
1.4. Customizing Audit Analysis
1.5. Customizing the History View
1.6. Customizing the History Timeline
1.7. Customizing Reports
1.8. Customizing the User Interface Layout
1.9. Localizing Dashboard Component Titles
1.10. Configuring Database Connection Caching
1.11. Enabling HTTP Compression
1.12. Configuring the Default View Displayed
2. Customizing Reports
2.1. Configuring a Report Definition File
2.1.1. Setting Report Definition Elements
2.1.2. Extending DirX Audit Manager Report Context
2.2. Configuring a SQL Query with Placeholders
2.3. Setting up TIBCO Jaspersoft Studio
2.3.1. Installing TIBCO Jaspersoft Studio
2.3.2. Setting up the TIBCO Jaspersoft Studio Classpath
2.4. Creating a New Report
2.4.]. Creating the Top-Level Page
2.4.1.1. Creating the Report File
2.4.1.2. Setting the Classpath
2.4.1.3. Setting the Data Adapter
2.4.1.4. Defining Report Parameters
2.4.1.5. Selecting the Field List
2.4.2. Creating a Subreport
2.4.2.1. Creating the Subreport Element
2.4.2.2. Creating the Subreport TIBCO JasperReports File
2.5. Modifying a Report
2.5.1. Changing the Report Title
2.5.2. Changing the Color of the Column Headers
2.6. Adding JasperReports Templates to Audit Analysis

O 3 0o 0o uu N M AN o =

O 0 0 R~NKNIANNONSNNNNOSOSOOODODIRNITNINRDOND = =20 0

2.7. Designing Reports for CSV Format
2.8. Solving Problems
2.8.1. Handling Report Design Errors
2.8.2. Handling Problems with Report Definition Changes
2.8.3. Handling Report Execution Errors
3. Working with View Type APIs
3.1. Raw API
3.1.1. Identification - Extension Subreport
3.1.2. Where From - Extension Subreport
3.1.3. Who - Extension Subreport
3.1.4. What Subreport
3.1.4.1. What - Extension Subreport
3.1.4.2. What - Detail Subreport
3.2. Audit Event API
4. Collecting Audit Messages from Third-party Applications
4.1. About the Audit Message Data Flow
4.2. Setting up the Third-party Application
4.3. Configuring the Generic Collector for Third-party Messages
4.4 Implementing a Digest Producer
4.5 Implementing a Tag Producer
4.6. Deploying Digest and Tag Producers
5. Customizing Digest and Tag Producers
5.1. About Persistence Service Unit Data Flow
5.2. Configuring Producers
5.2.1. Configuring the Digest Dimension Generator
5.2.2. Configuring a Digest Producer
5.2.3. Adding a Digest Producer
5.2.4. Configuring a Tag Producer
5.2.5. Adding a Tag Producer
6. Customizing Fact and Dimension Tables
6.1. About Fact and Dimension Tables
6.1.1. Fact and Dimension Tables for Audit Messages
6.1.2. Fact and Dimension Tables for History Entries
6.1.3. Fact View for Imported Memberships
6.2. Configuring Fact Tables
6.2.1. Fact Tables on Audit Events
6.2.2. Fact Tables on History Entries
6.3. Configuring Facts
6.4. Configuring Dimensions
6.5. Adding a Fact Table
6.6. Adding a Fact
6.7. Adding a Dimension

26
26
26
27
27
28
28
29
29
30
30

3
32
32
34
34
35
36
36
37
38
29
39
40
4]
43
43
44
45
47
47
47
49
50
50

51
53
54
55
56
56
56

6.8. Configuring Tenant-specific Fact Tables
7. Customizing History Synchronization
Legal Remarks

57
58
60

Preface

This manual provides information how to customize DirX Audit. It consists of the following
chapters:

- Chapter 1 describes how to customize the DirX Audit user interface.

- Chapter 2 describes how to set up and customize reports.

- Chapter 3 describes the view type APIs used with report template definitions.

- Chapter 4 describes how to collect audit messages from third-party applications.

- Chapter 5 describes how to configure digest (event) and tag (dimension) producers.

- Chapter 6 describes how to configure and add fact tables, facts and dimensions.

- Chapter 7 describes how to customize history synchronization.

DirX Audit Documentation Set

DirX Audit provides a powerful set of documentation that helps you configure your audit
server and its applications.

The DirX Audit document set consists of the following manuals:
- DirX Audit Introduction. Use this book to obtain a description of DirX Audit architecture
and components.

- DirX Audit Tutorial. Use this book to get familiar quickly with your DirX Audit installation.

- DirX Audit Administration Guide. Use this book to understand the basic tasks of DirX
Audit connectivity administration.

- DirX Audit Manager Classic Guide. Use this book to obtain a description of the DirX
Audit Manager Classic user interface provided with DirX Audit.

- DirX Audit Manager Guide. Use this book to obtain a description of the DirX Audit
Manager user interface provided with DirX Audit.

- DirX Audit Command Line Interface Guide. Use this book to obtain a description of the
command line interface provided with DirX Audit.

- DirX Audit Customization Guide. Use this book to customize your DirX Audit
environment.

- DirX Audit History Synchronization Guide. Use this book to obtain information about the
DirX Audit History synchronization jobs.

- DirX Audit Best Practices. Use this book to obtain guidelines and tips for avoiding
common mistakes and improving the experience of a DirX Audit installation.

- DirX Audit Installation Guide. Use this book to install DirX Audit.
- DirX Audit Migration Guide. Use this book to migrate DirX Audit from previous versions.

- DirX Audit Release Notes. Use this book to understand the features and limitations of
the current release.

- DirX Audit History of Changes. Use this book to understand the features of previous
releases.

introduction:prf_auditintro.pdf
tutorial:prf_audittutorial.pdf
administration-guide:prf_auditadmin.pdf
user-interface-guides:audit-manager-classic-guide/prf_auditgui-classic.pdf
user-interface-guides:audit-manager-guide/prf_auditgui.pdf
user-interface-guides:command-line-interface-guide/prf_auditcli.pdf
customization-guide:prf_auditcustom.pdf
history-synchronization-guide:prf_audithistsynch.pdf
best-practices:prf_auditBestPractices.pdf
installation-guide:prf_auditinstallation.pdf
migration-guide:prf_auditmig.pdf
release-notes:release-notes.pdf
release-notes:history-of-changes.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

install_path

The exact name of the root of the directory where DirX Audit programs and files are
installed. The default installation directory is user/D_home_directory/DirX Audit on UNIX
systems and C:\Program Files\Atos\DirX Audit on Windows systems. During installation
the installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

install_media
The exact path where the DirX Audit installation media is located.

1. Customizing the DirX Audit Manager
User Interface

This chapter describes how to customize DirX Audit Manager's user interface. It describes
how to:

- Set up single sign on

- Customize the table page navigator

- Configure privileged groups

- Customize Audit analysis

- Customize the History view

- Customize the History timeline

- Customize reports

- Customize the user interface layout

- Localize Dashboard component titles

- Configure database connection caching

- Enable (and disable) HTTP compression

- Configure the default view displayed

1.1. Setting Up Single Sign On

You can use HTTP header injection to integrate DirX Audit Manager with an external
authentication system such as DirX Access. The external system can pass the username
and tenant identification to the DirX Audit Manager application in the request headers, by
default DXT_USER (user header) and DXT_TENANT (tenant header). If the DirX Audit
Manager detects a valid username and tenant identification combination in the HTTP
request by comparing it with an appropriate LDAP source, it bypasses the HTML form
authentication.

Application Server

Enrich request/response

DirX Audit Manager

— — ———— — ——

DirX Access Server

Figure 1. DirX Audit Manager Integration with DirX Access as SSO Provider

This functionality is disabled by default because it introduces a significant security risk.
Before enabling SSO, you must ensure that the DirX Audit Manager container is accessible
only from a portal that forwards the HTTP request containing the username and tenant
identification injected into the request headers.

To enable SSO, run the Core Configuration Wizard and go to the “Authentication” step. You
can also modify the request header names for username and tenant identification there.
Continue with the SSO settings in the Tenant Configuration Wizard in the “Authentication
Configuration” step.

It is also necessary to open DirX Audit Manager without specifying the tenant parameter in
the URL because the user and tenant information will be provided in the header; for
example: https://localhost:8443/AuditManager/.

If you decide to use SSO, you must ensure that only one value for each HTTP header will be
sent, otherwise there may be issues with HTTP headers concatenation and SSO may not
work correctly.

1.2. Customizing the Table Page Navigator

To customize the table page navigator settings, edit the file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

You can change the values of the following keys in this file;

- Table.maxPages - the maximum number of next and previous pages to which a user
can jump by clicking on the link. The default value is 5.

- Table.fastStep - the number of pages to switch to when fast scrolling is used. The
default value is 5.

https://localhost:8443/AuditManager/

1.3. Configuring Privileged Groups

DirX Audit Manager supports the following internal roles: Auditor, Audit administrator, VIP
auditor and Restricted auditor. The LDAP groups to be mapped to each internal role are
set up during DirX Audit configuration in the “Authentication Configuration” step.

Users with the Auditor role can only modify their private area of the predefined Dashboard
components and Audit analysis filters.

Users with the Audit administrator role can modify all public areas of the dashboard
components and Audit analysis filters in addition to their private area.

Users with the Restricted auditor role have no access to Dashboards, Audit analysis or
History View; they can access only a selected subset of reports via the Reports tab.

The VIP auditor role is intended for later access control customization. It can be used
together with the authorization features based on the File PEP or DirX Access PEP and
authorization policies.

The internal roles are mapped to configured LDAP groups during the authentication
procedure. For more information, see the section “Managing Application Roles” in the
Authorization chapter of the DirX Audit Administration Guide.

1.4. Customizing Audit Analysis
To customize Audit analysis settings, edit the file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

You can change the values of the following keys in this file:

- Events.suggestionList.max - the limit setting for the maximum number of displayed
suggestions, which applies to suggestions fields except the Source, Type, and advanced
search fields. The default value is 50.

- Events.populateSuggestionLists.maxCount.TYPE - if the total number of event types
exceeds the configured value, the autocomplete component is used in the user
interface instead of the selection box component. The default value is 30.

- Events.populateSuggestionLists.maxCount.SOURCE - if the total number of event
sources exceeds the configured value, the autocomplete component is used in the user
interface instead of the selection box component. The default value is 30.

- Events.populateSuggestionLists.maxCount.OPERATION - if the total number of event
operations exceeds the configured value, the autocomplete component is used in the
user interface instead of the selection box component. The default value is 100.

- Events.populateSuggestionLists.maxCount. WHAT_TYPE - if the total number of event
what types exceeds the configured value, the autocomplete component is used in the
user interface instead of the selection box component. The default value is 100.

- Events.detail.attributeChanges.expanded - whether (true) or not (false) to enable the
expanded overview of attribute changes included in the Event details popup. The
default value is true.

- Events.detail.attributeChanges.expanded.maxRecords - the maximum number of
records that control whether or not the overview of attribute changes included in the
Event details popup is displayed and expanded by default. When the number of
attribute changes in the event detail is higher than the maxRecords variable, the
overview is hidden by default. The default value is 20.

- Events.detail.show.legacy.attributes - whether (true) or not (false) to show legacy fields
in the event detail view. Affected fields are "Sensitivity" and "Lifecycle" in "ldentification"
and "What" sections. The default value is false.

- Configuration.cache.suggestions.initialDelay - Suggestions for fields Source, Type,
Operation and What Type are cached and synchronized with the database state at
intervals. This key sets the initial suggestions load delay in seconds after the application
starts. The default value is 10.

- Configuration.cache.suggestions.delay - Suggestions for fields Source, Type,
Operation and What Type are cached and synchronized with the database state at
intervals. This key sets the interval in seconds at which the suggestions are periodically
refreshed. The default value is 1800.

1.5. Customizing the History View

To customize History view settings, edit the file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

You can change the values of the following keys in this file;
- History.entry.tab.PREVIEW - the number of rows to display on the page for the

Overview tab. The default value is 20.

- History.entry.tab.ATTRIBUTES - the number of rows to display on the page for the
Attributes tab. The default value is 20.

- History.entry.tab.ROLES - the number of rows to display on the page for the Roles tab.
The default value is 20.

- History.entry.tab.PERMISSIONS - the number of rows to display on the page for the
Permissions tab. The default value is 20.

- History.entry.tab.GROUPS - the number of rows to display on the page for the Groups
tab. The default value is 20.

- History.entry.tab. ACCOUNTS - the number of rows to display on the page for the
Accounts tab. The default value is 20.

- History.entry.tab.USERS - the number of rows to display on the page for the Users tab.
The default value is 20.

- History.entry.tab.RISKS - the number of rows to display on the page for the Risks tab.
The default value is 20.

- History.entry.tab.ASSIGNMENT_CAUSE - the number of rows to display on the page for
the Assignment cause tab. The default value is 10.

- History.entry.tab.CC_ENTRIES - the number of rows to display on the page for the
Certification campaign entries tab. The default value is 20.

- History.entry.attributes.maxAttrNameCount - the maximum number of attribute
values shown for multivalue attributes in the history Attributes view.
The default value is 100.

To customize History view tenant-specific settings, edit the file:
install_path/conf/tenants/tenant_identifier/configuration.cfg

Edit the section [manager.history] or create it if it does not exist. You can add or change
the values of the following configuration keys in this file. (If these keys do not exist, you can
create them.):

- search.attribute_name.provider_type - the provider to be used to provide attribute
names according to the selected entry type. Possible values are:

o CONFIGURATION - attribute lists are loaded from the configuration file
o DATABASE - attribute lists are loaded from the database (default setting)

- search.attribute_name.list.default - the value to be used as the list of attribute names
when there is no defined value for a defined history entry type. The default value is cn.

- search.attribute_name.list.EntryType - the attribute names for the specified history
entry type. Replace the EntryType with the desired entry type name. The entry type
name must be equal to the value you can see in the history view search form in the
Type selection box and is case sensitive; for example, search.attribute_name.list.User.

- search.attribute_name.preset.default - the preset attribute name that is used when
there is no definition for the history entry type. The default value is cn.

- search.attribute_name.preset.EntryType - the preset attribute name for the specified
history entry type. Replace EntryType with the desired entry type name. The entry type
name must be equal to the value you can see in the history view search form in the
Type selection box and is case sensitive; for example, search.attribute_name.preset.User.

For example, when you want to provide cn, uid, dxruid, sn, and customAttribute as a list of
attribute names for the User entry type and preset the customAttribute attribute name as
the value in the Attribute selection box, the snippet of configuration in
install_path/conf/tenants/tenant_identifier/configuration.cfg file should look like this:

[manager.history]
search.attribute_name.provider_type = CONFIGURATION

search.attribute_name.list.User = cn, uid, dxruid, sn,

customAttribute

search.attribute_name.preset.User = customAttribute

1.6. Customizing the History Timeline

To customize History timeline settings, edit the file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

You can change the values of the following keys in this file;

- History.entry.timeline.from - the beginning of the timeline scope. The default value is
90 days before now, $before($now();90d).

- History.entry.timeline.to - the end of the timeline scope. The default value is now,
$now().

You can also use the time functions $now(), $before() and $after().

To customize History time point settings when accessing the History page via links from
Events detail, edit the file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

You can change the values of the following keys in this file:

- Events.history.entry.timepoints - the time points definition in the history timeline. Use
the hash tag character (#) for the time point separation. The default value contains a list
of three dates: seven days before the event was triggered, the day when the event was
triggered and now:

[$before($date(@__WHEN);7d)#$date(@_WHEN)#$now()].

- Events.history.entry.timeline.from - the beginning of the timeline scope when jumping
to the History view from Audit analysis. The default value is seven days before the event
was triggered: $before($date(@__WHEN);7d).

- Events.history.entry.timeline.to - the end of the timeline scope when jumping to the
History view from Audit analysis. The default value is the day when the event was
triggered: $date(@_WHEN).

In the definition, you can use time functions $now(), $before(), $after(). The @_WHEN
function allows you to adopt the when date from the audit event.

1.7. Customizing Reports

To customize report configuration settings, edit the file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

You can change the values of the following keys in this file;

- Reports.preview.rowlimit - the number of results to which a report preview is limited.
The default value is 20.

- Reports.default.rowlimit - the number of results set as the default report result limit for
all new reports (this value can be manually edited for each report).
The default value is 100.

- Reports.tooltip.default.picklist.rowlimit - the number of report parameters to be
displayed in the report tooltip that is visible for each report in the report set. The default
value is 10.

- Reports.attribute.name.cache.delay - the refresh period for the reports attribute name
cache. Identifying attribute names in report definitions can be cached. A value of -1
turns off the cache. A value of 0 loads cache data only once, when the DirX Audit
Manager application starts. A positive value defines the refresh period in minutes. The
default value is 720 minutes (12 hours).

1.8. Customizing the User Interface Layout

You can change the interface layout by using images or cascading style sheets (CSS).

New or modified images and CSS files must be stored in predefined directories that are
analogous to the paths in the default installation.

The following table shows the default installation and customization paths:

Default Folder Customization Folder

Images install_path/web/audit- install_path/conf/custom/tenant/D/manager/theme
manager-web- /img
version.war/img

CssS install_path/web/audit- install_path/conf/custom/tenant/iD/manager/theme

manager-web- /css
version.war/css

10

For example, when you want to change the company logo that is displayed in the left
upper corner, follow these steps:

- Find the image in the default installation path. In this case, it is the company-logo-
125.png image file which represents the company logo and is stored in the default
installation directory install_path/web/audit-manager-web-version.war/img/dxt-
design/.

- Create or check the existence of the customization folder where the modified image
must be stored. In this example, it is install_path/conf/custom/
tenant/D/manager/theme/img/dxt-design/.

- Replace the placeholder tenant/D with the appropriate tenant identifier string.

The file name must be preserved.

1.9. Localizing Dashboard Component Titles

All existing Dashboard component titles are localized using keys starting with the
dashboard.component.def prefix from the install_path/conf/i18n/messages.properties
localization bundle file. When you want to localize a new or custom component title, you
need to add a new localization key and an appropriate value (localized title) to the
localization bundle file and use the key as the component title. Note that when you add a
new key to the localization bundle file, you must restart the Apache Tomcat service (DirX
Audit Manager container) for the modification to take effect.

1.10. Configuring Database Connection Caching

Audit database connections are cached when the Apache Tomcat service (DirX Audit
Manager container) starts in order to speed up user logins and the initialization of user data
and the interface. You can configure an initial delay for loading the database connection
configuration and the time interval after which the connection settings are periodically
rechecked.

Edit the file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

You can change the values of the following keys in this file:

- Configuration.cache.initialDelay - the time (in seconds) of the delay for loading the
database connection settings. The default value is 10.

- Configuration.cache.delay - the time interval (in seconds) after which the database
connection settings are rechecked. The default value is 1800.

n

1.11. Enabling HTTP Compression

DirX Audit Manager supports built-in HTTP compression. When compression is enabled,
each HTTP response is compressed before it is sent to the client and is automatically
decompressed on the client side. HTTP compression can be useful when you want to
improve transfer speed and bandwidth. To enable and disable HTTP compression, edit the
file:

install_path/web/audit-manager-web-version.war/WEB-
INF/classes/configuration.properties

and use the following key:

- Application.use_response_compression - whether (true) or not (false) HTTP
compression is enabled. The default value is false.

1.12. Configuring the Default View Displayed

The Dashboard view is the default view displayed after a user logs in. When a user is not
authorized to view a defined tab, the first permitted tab is selected for display. This feature
can be configured using the Core Configuration Wizard in the "Manager Application" step.
For details, see the section "Manager Application" in "Using the Configuration Wizard for
the Core Configuration" in the DirX Audit Installation Guide.

12

2. Customizing Reports

DirX Audit reporting is based on TIBCO JasperReports Library, which is an open source
reporting engine. JasperReports defines a report with an XML file (suffix: .jrxml). Its format is
XML-based and can be edited with any XML editor. We recommend that you use TIBCO
Jaspersoft Studio to create and maintain your JasperReports definitions. It is a free, open
source, Eclipse-based report designer and allows you to design complex JasperReports
definitions easily and quickly.

The report design usually contains a SQL query to set the scope of database records to be
reported. However, DirX Audit can optionally provide the input records via its API. See the
chapter “Working with View Type APIs".

A report configuration comprises the following items:

- Report definition - an XML-formatted file that contains meta data for the report. DirX
Audit evaluates it when you set up a schedule for the report and configure its scope and
when the report is produced either in DirX Audit Manager or scheduled by DirX Audit
Server. The report definition refers to a SQL query and Report output format.

- SQL query - a file that contains a SQL query. DirX Audit executes this query and passes
the resulting database records to JasperReports when the report is generated. The SQL
guery can contain placeholders, which are variables that must be set in DirX Audit
Manager when the report is configured and scheduled. See the chapter “Using the
Reports View” in the DirX Audit User Interface Guide for details.

- Report output format - a *.jrxml file typically created using TIBCO Jaspersoft Studio.
These files must be stored in the following locations in the DirX Audit installation folder:

- The report definition and SQL query files must be stored in the folder
install_path/conf/report-definitions/reportName. The file names are reportName.xml
for the report definition and reportName.sql for the SQL query.

- The report output format must be stored in install_path/conf/reports/reportName

[reportName.jrxml.

Make sure these files are stored in these locations on every host where either DirX Audit
Manager or DirX Audit Server is installed.

This chapter describes how to:

- Configure a report definition file

- Configure a SQL query with placeholders

- Set up TIBCO Jaspersoft Studio

- Create a new report and change an existing report

- Add TIBCO JasperReports templates to DirX Audit Manager’'s Audit analysis

- Solve problems with reports

13

For more information, see:

- The TIBCO Jaspersoft Studio homepage:
https://community.jaspersoft.com/project/jaspersoft-studio

- The TIBCO JasperReports homepage:
http://sourceforge.net/projects/jasperreports

2.1. Configuring a Report Definition File

A report definition is stored in an XML file according to the XML namespace
http://definition.report.persistence.xml.audit.dirx.atos.net. To configure a report definition,
you need to:

- Set up report definition XML elements

- Extend DirX Audit Manager's application context, if you have created customized
versions of Java Beans for PickListControl controls defined in the report definition.

2.1.1. Setting Report Definition Elements
You need to set the following XML elements:
id - the unique identifier for the report.

name and description - the name and description of the report to be displayed by DirX
Audit Manager when selecting and configuring a report. DirX Audit Manager expects a
variable in both fields and replaces them with the property found in the corresponding
properties files messages_language.properties in the folder install_path/conf/i18/. If you
want to override default properties or add your own ones, we recommend creating your
own properties files and putting them into the same folder with the report definitions:
install_path/conf/report-definition/reportName/reportName.properties for English
(default), reportName_de.properties for German and reportName_fr.properties for French.

query - the name of the file that contains the SQL query. The file must be in the same folder
as the report definition file.

dataType - the type of event on which to report. Set the value DXT_DATA if the report is on
audit events and DXT_HISTORY if the report is on history entries.

outputType - the type of report output. Currently, only LIST is supported to indicate that
the report outputs a list of records.

reportTemplates, reportTemplate - an identifier (reportName) of a report output format;
that is, a name reference to the *.jrxml file.

tags - the list of <tag> sub-elements that characterize the report and help an auditor when
selecting an appropriate report in DirX Audit Manager. Note that these tags can be
variables for message properties and be localized into supported languages.

14

https://community.jaspersoft.com/project/jaspersoft-studio
http://sourceforge.net/projects/jasperreports
http://definition.report.persistence.xml.audit.dirx.atos.net

controls - the list of <control> sub-elements that you need for each placeholder in your SQL
scope definition. A control represents a placeholder ${placeholder} in the SQL query string
that you refer to in the element query. Each placeholder is a variable that must be replaced
when the report is produced. When the report is configured in DirX Audit Manager, the
auditor can select value(s) for these variables. If a placeholder is flagged as optional, no
value needs to be provided. DirX Audit Manager uses the control elements to generate the
HTML view for configuration of the report scope. The variables and sub-elements of
<control> are:

- label - the string or key to a message properties file. DirX Audit Manager displays it as
the head of the control. It should help the auditor to understand what to select.

- controlType - the name of a user interface component. These components include:
BooleanControl - a checkbox.
DateControl - a calendar.

HiddenControl - a control that is not displayed. This component can be used to pass
(nationalized) values into the report output.

IntegerControl - an input box.

PickListControl - a powerful control that helps the auditor to search and select from
values found in the database; for example, to search and select a list of users by entering
their last names.

SelectControl - a combo box.
StringControl - an input box.
TimePointControl - a combo box for defining a time point with a pre-defined option.

TimeRangeControl - a combo box for defining a time range (from - to) with a pre-
defined option.

. controlName - the name of a Java Bean that the control uses to obtain attribute names,
attribute values and search results. The control must be configured with this name in
the Spring report context file install_path/web/audit-manager-web-version.war/WEB-
INF/classes/reportContext.xml. See the section "Extending DirX Audit Manager Report
Context" for more information on the bean interface.

- params with sub-elements param or paramList - parameters specific for the control:

The param element represents a single-value parameter. It is either the name of a
placeholder used in the SQL query or passed to JasperReport as a variable. The params
element has the following XML parameters:

> name - the name of the parameter; exactly as used in the SQL query or in the
JasperReports output file.

- passToReport - a Boolean value. If true, it is passed to the JasperReports output file.

15

- passAsValue - a Boolean value.
o passToReportAsValue - a Boolean value.
o type - the Java full class name that represents the type of the attribute.

o use - whether or not the parameter must be populated. The value required (default)
tells DirX Audit Manager that a value for the parameter is required. If the value is
optional, no value needs to be provided. If it refers to a placeholder in the SQL query,
the corresponding section is dropped which requires specific formatting, and no
constraints are applied regarding this placeholder.

o initialValue - the initial value if displayed first time in DirX Audit Manager. Note: this
is not a default value.

o initialDisplayValue - the initial display value, if displayed for the first time in DirX
Audit Manager and initialValue is not user-friendly enough.

The paramList element represents a multi-value parameter. It contains the same XML
attributes and sub-elements as param with the exception of initialvValue and
initialDisplayValue: here they are sub-elements that can occur several times rather than
XML attributes.

Parameters supported by the controls include:

BooleanControl - supports only one parameter of type java.lang.Boolean.

- DateControl - supports only one parameter of type java.util.Date.

- HiddenControl - supports 1..n parameters, either param or paramList. They need to

have an initial value; otherwise the parameter makes no sense.

- IntegerControl - supports only one parameter of type java.lang.Integer.

- PickListControl - supports only one parameter of type java.lang.String. It requires the

controlName attribute for the Java Bean that obtains the attributes.

- SelectControl - supports only one parameter of type java.lang.String. It requires the

16

controlName attribute for the Java Bean that obtains the attributes or one paramList
element to provide the initial values from which to select.

- StringControl - supports only one parameter of type java.lang.String.

- TimePointControl - requires the following parameters:

o Type java.lang.String that holds a constant for WhenType. Possible values are:
END_OF_PREVIOUS_DAY, END_OF_PREVIOUS_WEEK, END_OF_PREVIOUS_MONTH,
END_OF_PREVIOUS_YEAR, CUSTOM_TIME_POINT.

o Type java.util.Date with the Date value for the specification of the time point.

- TimeRangeControl - requires the following parameters:

o Type java.lang.String that holds a constant for WhenType. Possible values are:
LAST_HOUR, LAST_24HOURS, LAST_WEEK, LAST_7DAYS, LAST_30DAYS,
LAST_MONTH, LAST_3MONTHS, LAST_YEAR, TODAY, YESTERDAY, PREVIOUS_DAY,
PREVIOUS_WEEK, WEEK_TO_DATE, PREVIOUS_MONTH, MONTH_TO_DATE,
PREVIOUS_YEAR, YEAR_TO_DATE, CUSTOM_TIME and ANYTIME. They correspond to
the values in the DirX Audit Manager Audit analysis tab: last hour / 24 hours, last

week, last 7 days, last 30 days, last month, last 3 months, last year, today, yesterday,
previous day, previous week, week to date, previous month, month to date, previous
year, year to date, custom time (you set fixed start and end date and time) and all
(any time). See the section "Filtering Audit Events" in the chapter "Using the Audit
analysis" of the DirX Audit User Interface Guide for details.

o Type java.util.Date with the from value for the start of the time interval.

o Type java.util.Date with the to value for the end of the time interval.

2.1.2. Extending DirX Audit Manager Report Context

When you configure your own Java Bean for a PickListControl, you need to extend DirX
Audit Manager's report context.

The DirX Audit Manager's report context is in the file:
install_path/web/audit-manager-web-version.war/WEB-INF/classes/reportContext.xml

You need to define a bean that reflects your PickListControl and you need to register it at

the reportConfigurationHolder bean. The registration name must be identical to the name
used in the report definition in the controlName XML attribute. See the description of this

attribute in the section "Setting Report Definition Elements" for details.

For example, suppose the controlName is "SelectUserUidsComponentService". We need to
register it at the reportConfigurationHolder in the following way:

<bean id="reportConfigurationHolder" ..>

<constructor-arg name="componentMap">

<map>

<entry key="SelectUserUidsComponentService"
value-ref="selectUserUidsComponentService" />
</map>
</constructor-arg>
</bean>

In the XML attribute value-ref, enter the (case-sensitive) name of your new
PickListControlBean; for example, selectUserUidsComponentService in the snippet above.

The best way to define the PickListControl bean is to copy one of the existing bean
definitions and then change the values. You need to change the bean name in the XML
attribute id and the following constructor argument values:

- dbType - the database type. Use DXT_DATA for a report on audit events and
DXT_HISTORY for reports on history entries.

17

- attributeNamesSqlFile - the name of the file that contains the SQL query for finding
attribute names. A file with this name must be placed in the folder
install_path/conf/sgl/report_search_queries/.

- attributeValuesSqlFile - the name of the file that contains the SQL query for finding
attribute values for the above found attribute names. A file with this name must be
placed in the folder install_path/conf/sql/report_search_queries/.

- searchResultSqlFile - the name of the file that contains the SQL query for finding
records that match an attribute name and value selected from the result set of the
above queries. A file with this name must be placed in the folder
install_path/conf/sgl/report_search_queries/.

Here is an example for the bean registered in the previous example:

<bean id="selectUserWhoUidsComponentService"
factory-bean="reportComponentServiceFactory"
factory-method="createComponentService">
<constructor-arg name="dbType" value="DXT_DATA" />
<constructor-arg name="attributeNamesSqlFile"
value="data_user_who_uid_attribute_names.sql" />
<constructor-arg name="attributeValuesSqlFile"
value="data_user_who_uid_attribute_values.sql" />
<constructor-arg name="searchResultSqlFile"
value="data_user_who_uid_search_result.sql" />

</bean>

The control searches in the database on audit events.

The query for attribute names is intended to find all attribute names that were used as an
identifying attribute for the "who" of an audit message. Typical examples of these names
are: AltName, First Name, Last name, employeeNumber, Organization.

The query for attribute values is intended to find all values for a given attribute name
obtained from the query above. It contains two placeholders: the first is replaced with the
attribute name. For example, the auditor could select Last Name from the list above. The
second placeholder is replaced with the sub-string the auditor entered. For example, the
auditor wants to find all users whose last name starts with a, then the placeholders would
become a%.

The query in searchResultSqlFile is intended to find — in this example — all users that match
the attribute name (for example, Last Name) and the attribute value sub-string (for
example, a). It returns the UID of these entries — here, users —along with other attributes
that help the auditor to identify them. For users, these identifying attributes are often
AltName and Organizational Unit. The placeholders for the attribute name and value sub-
string are ${KEY} and ${VALUE_LIKE}. Note the ${..} notation here: these are not JIDBC
placeholders as in the query above, but placeholders as used in the Apache FreeMarker
template engine. This gives you the option to use a placeholder several times in the query.

18

2.2. Configuring a SQL Query with Placeholders

In the query element of a report definition, you refer to a file that holds a SQL query. The file
must be located in the same folder as the report definition. DirX Audit executes the SQL
guery when it generates the report. It passes the query result to JasperReports.

The file contains a normal SQL query that must be recognized by the database you have
deployed. Typically, you'll use some variables or placeholders that are replaced at runtime.
The most common are the start and end of the time range in which you are interested.
They should not be fixed, but cover, for example, the previous month. Other use cases can
include:

- An option for whether or not to include only orphaned or disabled accounts.
- Alist of users whose data should be reported.
- A list of privileges whose users should be reported.

- Alist of target systems whose accounts or groups should be reported.

These placeholders can be mandatory or optional. An auditor might provide exactly one
value, multiple values or none.

These placeholders must be configured in the report definition as param or paramList sub-
elements of control elements.

Use these placeholders in the SQL query to set a value of the form ${placeholder} instead of
a real value. For example, use the placeholders ${WHEN_FROM} and ${WHEN_TO} for the
beginning and end of a time range or ${UIDS} for a list of unique identifiers.

Pay attention to optional parameters. In most cases, it is not sufficient just to enter the
placeholder name. If no values are given, they can render the query incorrectly or produce
an unexpected result. The typical solution in these cases is to drop certain sections of the
guery that contain the optional parameter.

DirX Audit supports these use cases by leveraging the Apache FreeMarker open source
template engine. See http://freemarker.org/docs/index.html for the Apache FreeMarker
user guide. The conditional if statement is particularly useful for excluding sections
depending on a parameter value. Here is a sample snippet for a parameter that represents
lists of users occurring as a "what" in an audit event:

<#1if UIDS?? >
and what_user.WHAT_UID in ${UIDS?
<JH#LE>

The condition for the WHAT_UID column is only included into the SQL query when the
UIDS placeholder is not empty.

Check the queries delivered with the product for additional samples.

19

http://freemarker.org/docs/index.html

2.3. Setting up TIBCO Jaspersoft Studio

This section provides information on how to install and set up TIBCO Jaspersoft Studio in
the DirX Audit environment.

2.3.1. Installing TIBCO Jaspersoft Studio

To install TIBCO Jaspersoft Studio:

- Download Jaspersoft Studio from https://sourceforge.net/projects/jasperstudio/files/

- Run the downloaded file to install TIBCO Jaspersoft Studio

You can now run TIBCO Jaspersoft Studio from the installation location.

2.3.2. Setting up the TIBCO Jaspersoft Studio Classpath

TIBCO Jaspersoft Studio no longer requires a large, unique classpath for the entire
application like iReport does. Each report is intended to be a part of a project. Each project
has a classpath where jar libraries are added. To set up the TIBCO Jaspersoft Studio
classpath for the selected project:

- Start TIBCO Jaspersoft Studio.

- Right-click on the project you selected.

- Select Properties » Java Build Path - Libraries.

- Click Add external JARs... . A file dialog opens.

- Add the files:

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-
INF/lib/DirXjdiscoverAPI-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
common-config-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
common-reports-support-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
db-api-config-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
db-apiquery-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
db-api-raw-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
db-schema-version.jar

20

https://sourceforge.net/projects/jasperstudio/files/

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
dbv3-event-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
dxi-digest-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
history-api-version.jar

install_path/Deployment/Manager/audit-manager-web-/version.war/WEB-
INF/lib/dxt-pep-api-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-INF/lib/dxt-
utils-lib-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-
INF/lib/log4j-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-
INF/lib/slf4j-api-version.jar

install_path/Deployment/Manager/audit-manager-web-version.war/WEB-
INF/lib/slf4j-log4j12-version.jar

- Click Apply.

2.4. Creating a New Report
Creating a new report consists of the following tasks:

- Creating the top-level page of the report

- Creating a sub report

The following sections describe these tasks.

2.4.1. Creating the Top-Level Page

Creating the top-level page consists of the following tasks:

- Creating the report file

- Setting the classpath

- Selecting the field list
2.4.1.1. Creating the Report File

To create the report file:

- Start TIBCO Jaspersoft Studio.

- Select File » New - Jasper Report.

21

The Report Wizard starts. It will guide you through the following steps:

1. Report Templates
2. Report File
3. Data Source
4. Finish
1. Select a template; for example, BlankA4. Click Next.

2. Enter MyTableReport as the report name. You can select a parent folder where the
report will be created. Click Next. (Alternatively, once you finish with your changes and
save the report, you can just copy your report to the folder of your choice))

3. In the Data Adapter drop-down list, select One Empty Record - Empty Rows. You must
specify the data source later. Click Next.

4. Click Finish. If no errors occur, the new report is created.

2.4.1.2. Setting the Classpath

To set up the classpath, follow the instructions in "Setting up the TIBCO Jaspersoft Studio
Classpath" if you have not already done so.

2.4.1.3. Setting the Data Adapter

To set the data adapter:

- Switch to the Repository Explorer.
- Right-click Data Adapters and choose Create Data Adapter.
- The Data Adapter Wizard opens.

- Choose Database JIDBC Connection and follow the wizard to specify your database
connectivity. Pay special attention to defining the database connectivity when your
audit events and history entries are stored in different databases.

2.4.1.4. Defining Report Parameters

To define report parameters:

- In Outline, right-click Parameters and then select Create Parameter.
- Provide Name, Class and additional properties of the new parameter.
- Repeat the procedure for additional report parameters.

2.4.1.5. Selecting the Field List

To select the field list:

- In Outline, right-click the name of your report and then select Dataset and Query ...
- Click the Query tab.
- Select the data adapter you have defined in “Setting the Data Adapter”.

22

- Select sql in Language.

- Place your SQL query in the Texts. The query should correspond to your SQL query file
as defined in “Setting Report Definition Elements” and “Configuring a SQL Query with
Placeholders”.

The query cannot contain any Apache FreeMarker elements and placeholders must be
transferred to JasperReports parameters set in “Defining Report Parameters”. This
means that ${placeholder} must be replaced with $P{placeholder} in the query. The
guery can be simplified. In the TIBCO Jaspersoft Studio, it serves only to support
designing the report output format. The query will not be applied during the report
execution in DirX Audit Manager and DirX Audit Server.

- Click Read Fields to automatically read a list of report fields from the SQL query. Review
the automatically generated data type for each field.

- Now the list of fields is available in the Outline view under the Fields node. You can drag
these fields to the report layout area and then set up your report as required. See the
TIBCO Jaspersoft Studio and TIBCO JasperReports documentation for more
information.

Don't forget to save your report definition from time to time. You can also see what your
current report looks like by clicking the Preview tab.

2.4.2. Creating a Subreport

Top-level pages can contain subreports, which should be used for parts that may occur
multiple times per audit message, especially the Extension, What and What Details
sections in audit events. To create subreports:

- Create the subreport element in the current page.

- Create the subreport definition as a separate TIBCO JasperReports file (JRXML).

2.4.2.1. Creating the Subreport Element

You need to create a subreport element in your table layout for each subreport. For each of
these subreport elements, you need to assign the corresponding TIBCO Jaspersoft Studio
file that contains the subreport definition. This section shows how to create a What section
in a top-level report and then display the field What — Name.

First, we will create the subreport element in our top-level page:
- Start TIBCO Jaspersoft Studio. Click File > Open File ... and then select the JasperReport

to which you want to add subreport.

- Select the subreport item in the Palette tab and then drag it to the report pane. A
wizard opens.

- Select Just create the subreport element and then click Finish. The new subreport
element is visible.

- Adjust the size and position of the subreport element.

- Select the element to open its properties and then select the Subreport tab.

23

- In Expression, enter the string $P{SUBREPORT_DIR} + "WhatReport.jasper".
The "WhatReport.jasper" expression specifies the external TIBCO JasperReports file with
the definition of the subreport.

- Edit Data Source Expression.
- In Connection Expression, enter the string $P{DXT_SUBREPORT_CONNECTION}.
- Add a parameter reference to the subreport:

o Click Edit Parameters.

o In the Subreport Parameters dialog, click Add. The Parameter Configuration Dialog
is opened.

o Fill in the Parameter Name to the new parameter name WHEN_FROM.

o Click the edit button of the Parameter Expression. A new Expression Editor dialog
opens.

o Enter $P(WHEN_FROM) to create an expression for the parameter, and then click
Finish.

o Click OK to close the Parameter Configuration Dialog.

If you want to create additional subreport elements, copy an existing subreport and then
simply change the Expression field in the Subreport tab of the element’s Properties view.
This action changes the file name for the TIBCO JasperReports file.

2.4.2.2. Creating the Subreport TIBCO JasperReports File

Now we will create a TIBCO JasperReports definition file (a IRXML file) for the subreport.
Name it WhatReport.jrxmil.

Follow the steps in "Creating the Top-Level Page". Now you can place the fields from the
sub-level within this page (in this case, the What level). To create, for example, the What -
Name field, simply create a field with the expression $F{Name}.

2.5. Modifying a Report

Use TIBCO Jaspersoft Studio to modify a report definition:

- Select File » Open from the menu bar.
- Navigate to the file you want to change.

- Select the file and then click Open.

Now let us make some typical changes.

24

2.5.1. Changing the Report Title
To change the report title:

- Select the text field and change it, for example, to $R{report.title.myreportcopy}.

. Create a new file install_path/conf/reports/reportName/reportName.properties (or
reportName_de.properties for reports in German, reportName_fr.properties for reports
in French) to store new keys and labels. Create a new line containing:
report.title.myreportcopy = My Report Copy, where My Report Copy can be easily
replaced by any string.

2.5.2. Changing the Color of the Column Headers

All data fields have style properties. You simply change the property value to change the
field.

- In the Design view, click on a field that you want to change.

- In the Properties tab, select Appearance.

- In the Color section, you can set Forecolor and Backcolor by clicking on the square that
shows the color.

- Select your color and then click OK. The color of the field changes.

You can now change the top-level page or sub-reports using TIBCO Jaspersoft Studio
features. See the TIBCO Jaspersoft Studio documentation for more information.

Note: if you create a new field and/or your color does not change, it's because the
Transparent flag is set. To clear the Transparent flag:
- In the Properties tab, select Appearance.

- In the Color section, uncheck Transparent.

2.6. Adding JasperReports Templates to Audit
Analysis

You can add your own TIBCO JasperReports templates to DirX Audit Manager's Audit
analysis. To add a JasperReport template to the Audit analysis:

- Navigate to install_path/conf/reports/. Create a new folder that starts with
EventMonitor; for example, EventMonitorTest.

- In TIBCO Jaspersoft Studio, create a new report with the same name as the folder you
created in the previous step. For example, EventMonitorTest.jrxml.

- Customize your report. The Audit analysis reports are based on Java Bean, not a SQL
guery. See EventMonitorAll, EventMonitorPlain and EventMonitorStd reports and their
definitions. For more details on the Java Bean API, see “Working with View Type APIs".

- Make sure that the name in the Outline view is same as the name of the report.

- Save the report to your TIBCO Jaspersoft Studio workspace.

25

- Navigate to your workspace. Right-click on your report (in this case,
EventMonitorTest.jrxml) and then click Copy.

- Navigate to your new folder - for example, install_path/conf/reports/EventMonitorTest
- and then paste your report file here.

- Make sure that the name of your report is the same as the name of the folder in which it

is located.

If you cannot see your new template in DirX Audit Manager / Audit analysis / Report /
Template list, restart the DirX Audit Manager service.

2.7. Designing Reports for CSV Format
To modify an existing report template for CSV format:

- Copy the report template file and extend its name with the _csv suffix.

- Remove Title, Page Header, Page Footer, Last Page Footer, Summary, No Data and
Background bands.

- Modify the Report Page properties (Page Height, Page Width, Page Orientation,
Bottom margin, Left Margin, Page Width, Right Margin). Height, width and margins
can be set to 0. Page orientation is recommended to be Landscape.

- Set the report property net.sf.jasperreports.print.keep.full.text to true in the jrxml file:
<property name="net.sf jasperreports.print.keep.full.text" value="true"/>

- Edit the Detail band and optionally also the Group Header and/or the Group Footer
bands.

- Set the Text Adjust (textAdjust) property for all text fields to CutText.

- Check the Print Repeated Values (isPrintRepeatedValues) property for all text fields.

See Designing Reports for CSV Export, https://community.jaspersoft.com/wiki/designing-
reports-csv-export, for more details, including how to set a different delimiter; for example,
a semicolon.

2.8. Solving Problems

This section provides tips and tricks to ease report creation, test and execution, including
information on how to handle:

- Report design errors
- Problems with report definition changes

- Report execution errors

2.8.1. Handling Report Design Errors

After designing the report, run the compiler and check the output for errors. Double-click
an error message in the Report State window to open the definition with the error
condition. Correct the error and run the compiler again.

26

https://community.jaspersoft.com/wiki/designing-reports-csv-export
https://community.jaspersoft.com/wiki/designing-reports-csv-export

If compilation is successful without errors, you can save the record and test it.

2.8.2. Handling Problems with Report Definition Changes

If the DirX Audit Manager does not recognize changes you have made to the report
definition, try this procedure:

- Navigate to the folder where your report definitions are stored.

- Delete all *jasper files.

- Run your report in DirX Audit Manager again. This action forces recompilation of the
JRXML files.

2.8.3. Handling Report Execution Errors

When you test your reports, you may encounter the error message "Transaction has failed,
please try again." If you receive this error, check the Apache Tomcat Application Server log
file(s) for error messages:

- Navigate to the folder tomcat_install_path/logs.

- Check the file dirxaudit-manager.log for error messages and try to solve the problem.
A typical error is:
java.lang.NoClassDefFoundError: org/jfree/util/classname

JasperReports has many features and this message indicates that a Java library is not
available.

- Check the website http://www.findjar.com/ and search for the library classname.
If found, download it and store it under the following path:
tomcat_install_path/lib

Warning: If the library already exists, rename it with an extension that is not jar. This
action allows you to reset the library if something goes wrong.

- Restart the Apache Tomcat Application Server and run your report again.

27

http://www.findjar.com/

3. Working with View Type APIs

This chapter describes the Application Programming Interfaces (APIs) that are used for
report template definitions. It describes:

- Raw API
- Audit Event API

3.1. Raw API

ReportConfig.xml /API:
- Event

Record data type:

- com.siemens.dxt.persistence.api.UniversalRecord

Field:

- rawData : com.siemens.dxt.persistence.api.Event

Subreports:

- ldentification - Extension

- Where From - Extension

- Who - Extension

- What

Column
Column Group

Identification - When
Identification - Operation
Identification - UID
|dentification - Cause
|dentification - Outcome
Identification - Sensitivity
Identification - Type
ldentification - Source
Identification - Category

Identification - Extension

Where From - Application

28

Text Field Expression
Data Source Expression

$F{rawData}.getWhen()
$F{rawData}.getOperation()
$F{rawData}.getUid()
$F{rawData}.getCause()
$F{rawData}.getOutcome().toString()
$F{rawData}.getSensitivity()
$F{rawData}.getType()
$F{rawData}.getSource()
$F{rawData}.getCategory()

new
JRBeanCollectionDataSource($F{rawData}.getExtension())

$F{rawData}.getWhereFrom().getApplication()

Column
Column Group

Where From - Address
Where From - Type

Where From - Extension

Who - Name

Who - UID

Who - DN

Who - From Address
Who - From Type
Who - Role

Who - Path

Who - Extension

What

Text Field Expression
Data Source Expression

$F{rawData}.getWhereFrom().getAddress|)
$F{rawData}.getWhereFrom().getType()

new
JRBeanCollectionDataSource($F{rawData}.getWhereFrom().g
etExtensions())

$F{rawData}.getWho().getName()
$F{rawData}.getWho().getUid()
$F{rawData}.getWho().getDn()
$F{rawData}.getWho().getFromAddress()
$F{rawData}.getWho().getFromType()
$F{rawData}.getWho().getRole()
$F{rawData}.getWho().getPath()

new
JRBeanCollectionDataSource($F{rawData}.getWho().getExten
sions())

new JRBeanCollectionDataSource($F{rawData}.getWhat())

3.1.1. Identification - Extension Subreport

Record data type:

- com.siemens.dxt.persistence.api.EventExtension

Fields:

- type : java.lang.String

- value : java.lang.String

Subreports:

Column

Identification - Extension - Type

Identification - Extension - Value

Text Field Expression
$F{type}
$F{value}

3.1.2. Where From - Extension Subreport

Record data type:

- com.siemens.dxt.persistence.api.WhereFromExtension

29

Fields:

- type :java.lang.String

- value : java.lang.String

Subreports:

Column Text Field Expression
Where From - Extension - Type $F{type}

Where From - Extension - Value $F{value}

3.1.3. Who - Extension Subreport
Record data type:

- com.siemens.dxt.persistence.api.WhoExtension
Fields:

- type :java.lang.String

- value : java.lang.String

Subreports:

Column Text Field Expression
Who - Extension - Type $F{type}

Who - Extension - Value $F{value}

3.1.4. What Subreport

Record data type:
- com.siemens.dxt.persistence.api.What
Fields:

- name :java.lang.String

- dn:java.lang.String

- uid : java.lang.String

- sensitivity : java.lang.String
- lifecycle : java.lang.String

- query :java.lang.String

30

- type : java.lang.String
- path :java.lang.String

Subreports:

- What - Extension

- What - Detalil

Column
Column Group

What - Name
What - DN

What - UID

What - Sensitivity
What - Lifecycle
What - Query
What - Type
What - Path
What - Extension
What - Detalil

Text Field Expression
Data Source Expression

$F{name}
$F{dn)
$F{uid)
$F{sensitivity}
$F{lifecycle}
$F{query}
$F{type}
$F{path}

new JRBeanCollectionDataSource($F{extension})

new JRBeanCollectionDataSource($F{detail})

3.1.4.1. What - Extension Subreport

Record data type:

- com.siemens.dxt.persistence.api.WhatExtension

Fields:

- type :java.lang.String

- value : java.lang.String

Subreports:

Column
What - Extension - Type

What - Extension - Value

Text Field Expression

$F{type}
$F{value}

31

3.1.4.2. What - Detail Subreport
Record data type:

- com.siemens.dxt.persistence.api.WhatDetail
Fields:

- operation : java.lang.String

- type :java.lang.String

- value : java.lang.String

Subreports:

Column Text Field Expression
What - Operation - Type $F{operation}

What - Extension - Type $F{type}

What - Extension - Value $F{value}

3.2. Audit Event API

The Audit Event API is used for reports in Audit analysis. The API references the related
audit message and so it can contain all fields listed in the Raw APl and reports can also
contain subreports. The list below is not complete, but only illustrative.

ReportConfig.xml / API:

Record data type:
- com.siemens.dxt.persistencev3.event.api.record.ldentification
Fields:

- operation : java.lang.String
- type :java.lang.String
- detail : java.lang.String

- auditMessage : com.siemens.dxt.persistence. AuditMessage

32

Subreports:

Column
When
Source
Application
Address
Who

Type
Operation
What Type
What Details

Text Field Expression
$F{auditMessage}.getldentificationWhen()
$F{auditMessage}.getldentificationSource()
$F{auditMessage}.getWhereFromApplication()
$F{auditMessage}.getWhereFromAddress|()
$F{auditMessage}.getWhoName()
$F{auditMessage}.getidentificationType()
$F{operation}

$F{type}

$F{detail}

33

4. Collecting Audit Messages from Third-
party Applications

This chapter describes how to collect audit messages from a third-party application. To
achieve this task:

- The third-party application needs to provide its audit messages in the DirX Audit format
and send them to a message queue (recommended) or store them in files.

- A generic collector must be configured to read the messages from the queue or from
the files.

- You need to implement and configure a digest producer (also called a digest generator)
that extracts the digest of the message.

- You need to provide and configure a tag producer (also called a tag generator or a
dimension generator) that calculates the desired tags for the audit message and
associated events.

- If you provide additional tags, you might want to configure and populate dimension
and fact tables to show your aggregated data in charts.

4.1. About the Audit Message Data Flow

The following figure illustrates the audit message data flow and its important components:

34

Third-party app DirX Audit Message Broker

dxt
Auditing Component Quets

DirX Audit Server A

JMS Collector

RGN i |

I
' Digest Producer > | Record Persistence
V R

JPA Entity Manager S Tag Producer

Error Handling Unit

Data DB

Database Server

Figure 2. DirX Audit Message Data Flow

As shown in the figure, the application sends the audit messages to a queue (dxt Queue in
the figure). The generic IMS collector picks up the messages from the queue and then
passes them to the Persistence Service Unit. The Persistence Service Unit first transforms
the message from XML structure into the corresponding in-memory object. Next, it
forwards the object to the digest producer and to the tag producer. Finally, it stores the
whole data structure containing the object representing the audit message, digests and
tags into the corresponding database tables.

If an error occurs, the message is passed to the Error Handling Unit, which stores it along
with error information in the configured /errors folder.

4.2. Setting up the Third-party Application

The application must produce audit messages according to the XML namespace
"urn:com:siemens:.dxt:persistence:schemadb:2.0". You can find it in the schema file
AuditMessages.xsd in the folder install_path/conf/xsd.

The application can put multiple messages into one XML document; the root element to
use is always <auditMessages>. Individual messages are then contained sequentially in the
sub-elements named <auditMessage>. The application can send this XML document to the
configured JMS queue or write it to files in the configured input folder for the file collector.

35

For sample messages, see the files in the folder Additions/Data/SampleData/Access on the
installation media.

For examples on how to write a IMS producer for Apache ActiveMQ, see the JIMS
specification (for example, https://jcp.org/aboutlava/communityprocess/final/jsr914/
index.html) and the Apache ActiveMQ documentation; for example,
http://activema.apache.org/hello-world.html.

In order to easily distinguish its messages from those of DirX Identity and DirX Access, the
application should fill the attribute source of the <identification> element with an
appropriate name.

4.3. Configuring the Generic Collector for Third-
party Messages

DirX Audit provides two generic collectors: one for reading messages from a IMS message
gueue and one for reading messages from files. The message queue should be selected for
a production environment; the file collector is mainly intended for testing purposes or
initial load.

Both collectors expect the messages in the DirX Audit XML format (see "Setting up the
Third-party Application" for details).

For information on how to configure these collectors, see the section "Configuring Generic
Collectors" in the chapter "Configuring DirX Audit Collectors" of the DirX Audit
Administration Guide.

4.4. Implementing a Digest Producer

A digest producer - also called a digest generator - is responsible for generating one or
more digests for an audit message. A digest producer is specific to the audit message
provider.

A digest producer is a Java class and must implement the interface
com.siemens.dxt.persistence.digest.api.DigestProducer with its only method
getDigests(AuditMessage auditMessage). The method accepts one audit message in its
Java (not XML) representation and returns a set of audit events, the digests.

A digest consists of the properties operation, type and detail. It is intended to give a
summary of the audit message that can be understood by auditors that are not experts in
the audited product. In addition to Add Object, Update Object or Delete Object, the
operation can also be more high-level; for example, Login, Set Password or Accept and
Reject. The type usually denotes the type of the affected object; this can be something like
User, Account and Role, but can also denote relationships like User to Role or Account to
Group. The detail of a digest depends on the operation and type; it typically contains the
human-readable names of the affected objects; for example, the user’'s pseudonym, the
login name of an account along with the target system display name (if available) or the
name of a workflow and an approval activity.

36

https://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
http://activemq.apache.org/hello-world.html

Thread safety is not an issue for the digest producer because it is a Spring bean (see
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.ntml#spring-
core) and is instantiated by the Spring dependency injection framework for each message.
This design permits configuring the Java class name along with any custom class
properties in external XML configuration files.

To configure the digest producer, see the section "Configuring a Digest Producer" in the
chapter "Customizing Digest and Tag Producers" in this guide.

To deploy the digest producer, see the section "Deploying Digest and Tag Producers" in this
guide.

For a sample of a digest producer Java class, see the digester for Apache Tomcat in the
folder Additions/Data/SampleJava on the installation media.

4.5. Implementing a Tag Producer

A tag producer - also called a tag generator or dimension generator - generates tags for an
audit message and audit event. A tag consists of a key (type) - value pair.

The tags are evaluated for filling fact tables and are used as dimension values in charts.
They can also be used to filter events in DirX Audit Manager's Audit analysis. Tag keys and
values can be any string that seems appropriate for the event. For example, typical tag keys
for DirX Identity are:

- APPLICATION (Target system) - to associate an audit event with a target system. The
values are the display names of the target systems.

- WHO_OU (Who - Organizational unit) - to associate an audit message with the
organizational unit of the active participant.

A tag key APPLICATION can be used, for example, in charts on password changes to slice
the number of password changes per target system and drill through to the password
change events for a selected target system. For the configuration of fact and dimension
tables, see the chapter "Customizing Fact and Dimension Tables" in this guide.

A tag producer is a Java class that implements the interfaces
com.siemens.dxt.persistence.dim.DigestDimensionProducer for audit event dimensions
and com.siemens.dxt.persistence.dim.MessageDimensionProducer for audit message
dimensions. For each of these interfaces, it must implement one method that accepts
either the audit message or the audit event with the digest and returns a set of key - value
pairs, the tags. Like the digest producer, a tag producer is a Spring bean instantiated for
each message and event.

To configure a dimension generator, see the section "Adding a Tag Producer" in the
chapter "Customizing Digest and Tag Producers" in this guide.

For a sample of a tag producer Java class, see the one for Apache Tomcat in the folder
Additions/Data/SampleJava on the installation media.

37

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#spring-core
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#spring-core

To deploy a tag producer, see the section "Deploying Digest and Tag Producers" in this
guide.

4.6. Deploying Digest and Tag Producers

All of the digest and tag producers - along with a lot of other libraries - are deployed as
separate jar files in DirX Audit Server deployment folders. Custom producers, especially
those for a third-party collector, must be added to the correct server deploy folder.

Place the valid Java jar file with Java producer classes into one of the following folders
depending on whether it is tenant-specific or shared for all tenants:

- The common server deployment folder, if they are shared by all configured tenants:
install_path/server_container/core/BOOT-INF/lib/

- The tenant-specific deployment folder:
install_path/server_container/tenants/tenantid/deploy/

Next:

- Restart DirX Audit Server.

38

5. Customizing Digest and Tag Producers

This chapter describes how to customize the DirX Audit digest producers (also called digest
generators) and tag producers (also called dimension generators or tag generators).

DirX Audit supports the generation of digests and tags for the imported audit messages. A
digest producer calculates a list of audit events for each audit message. At least one audit
event should be produced for an audit message. A tag producer calculates a list of tags
both for an audit message and its associated audit events. These lists can be empty.

Digest and tag producers are product-specific: They work on the same format - the audit
message - but depend on the content. An additional digest producer and tag producer
must be configured for each audit producer (DirX Identity, DirX Access, third party).

By default, the configuration is stored in the following file:
install_path/conf/event-dim-configuration/dgtDimConfig.xml
The next sections describe:

- The data flow in the DirX Audit Persistence Service Unit
- How to configure the digest dimension generator

- How to configure a digest producer

- How to add a digest producer

- How to configure a tag producer

- How to add a tag producer

5.1. About Persistence Service Unit Data Flow

Digests and tags are normally generated in the DirX Audit Server during import of audit
messages. Digest and tag producers are part of the DirX Audit Persistence Service Unit and
are called after the transformation of the original format to the DirX Audit internal standard
audit message. The following figure shows the important components in the Persistence
Service Unit:

39

Audit Message

DirX Audit Server v

JMS Collector

Digest Producer T Record Persistence
V L
\

JPA Entity Manager e Tag Producer

mEd Error Handling Unit
I

lerrors
Folder

Data DB

Database Server

Figure 3. DirX Audit Persistence Service Unit Components

The Persistence Service Unit passes the transformed audit message to the Record
Persistence component. First, it stores the audit message in the database (table:
DAT_AUDITMESSAGES). Next, it calls the digest producer and next calls the tag producer
for each message and stores each digest as an audit event (table: DAT_AUDITEVENTS) and
the tags into the tag tables (TAG*) of the database.

The Persistence Service Unit instantiates the digest and tag producers and leverages the
Dependency Injection framework Spring (see http://www.springsource.org) for their flexible
configuration as Spring beans.

5.2. Configuring Producers

Digest producers generate an audit event which is the digest or summary for an audit
message. More than one event can be produced for an audit message. Tag producers
generate a list of tags either for an audit event or for an audit message.

All of these producers are configured using Spring Bean configuration. The file is named
dgtDimConfig.xml and located in the folder install_path/conf/event-dim-configuration/.

40

http://www.springsource.org

The structure of the file is as shown in the following snippet:

<beans>

<bean id="DigestDimensionGenerator" ../>

<bean id="DxiDigestProducer" .. />

<bean id="DxiDigestDimensionProducer" .. />

<bean id="DxiEventDimensionProducer" .. />

<bean id="DxiStandardDimensions" .. />

<bean id="OuDimensionProducer" .. />

<bean id="AssignmentModeDimProducer" .. />

<bean id="AccessDigestProducer" .. />

<bean id="DxaEventDimensionProducer" .. />

<bean id="DxaStandardDimensions"” .. />

<bean id="TomcatDigestProducer" .. />

<bean id="TomcatEventDimensionProducer" .. />

<bean id="TomcatStandardDimensions" .. />
</beans>

The next sections describe these beans and their configurators.

5.2.1. Configuring the Digest Dimension Generator

The Persistence Service unit within the DirX Audit Server uses the Spring framework to
instantiate the DigestDimensionGenerator, which is the bean that produces the digests
and tags for all imported audit messages and events. It contains three maps with the bean
references to digest, event dimension and digest dimension - tag - producers. These maps
are indexed by the name of the product in lowercase that produces the audit message. The
referenced generators are configured as separate <bean> elements. Here is the list of bean
properties that hold these maps:

- digestProducers - a map with all digest (event) producers indexed by the audit
producer name as contained in the audit message.

- digestDimensionProducers - a map with all tag producers for an audit event indexed by
the audit producer name as contained in the audit message.

- eventDimensionProducers - a map with all tag producers for an audit message indexed
by the audit producer name as contained in the audit message.

41

Here is the snippet with the default configuration for the bean DigestDimensionGenerator:

<bean id="DigestDimensionGenerator"
class="com.DigestDimensionGeneratorImpl”
scope="prototype">
<property name="digestProducers">
<map>
<entry key="dirx identity">
<ref bean="DxiDigestProducer" />
</entry>
<entry key="dirx access">
<ref bean="AccessDigestProducer" />
</entry>
<entry key="tomcat">
<ref bean="TomcatDigestProducer" />
</entry>
</map>
</property>
<property name="digestDimensionProducers"”>
<map>
<entry key="dirx identity">
<ref bean="Dxi1DigestDimensionProducer" />
</entry>
</map>
</property>
<property name="eventDimensionProducers">
<map>
<entry key="dirx identity">
<ref bean="DxiEventDimensionProducer" />
</entry>
<entry key="dirx access">
<ref bean="DxaEventDimensionProducer" />
</entry>
<entry key="tomcat">
<ref bean="TomcatEventDimensionProducer” />
</entry>
</map>
</property>

</bean>

42

5.2.2. Configuring a Digest Producer

You need to configure a digest (event) producer bean for each supported source product.
For DirX Identity, this is the bean with the name DxiDigestProducer. For DirX Access, it is
the bean AccessDigestProducer. You can simply stay with the default configuration that is
shown in the next snippet for the DirX Identity digest producer:

<bean id="DxiDigestProducer"
class="com.DxiDigestProducerImpl"”
scope="prototype">

</bean>

The configuration of the digest producer for DirX Access is similar.

5.2.3. Adding a Digest Producer

To support a third-party audit producer, you need to add a digest producer into the
configuration.

First, you implement the producer as a Java bean and then deploy it; see the section

"Implementing a Digest Producer" in the chapter "Collecting Audit Messages from Third-
party Applications" in this guide.

Next, add this bean to the <digestProducers> map of the digest dimension generator, for
example:

<bean id="DigestDimensionGenerator"> ..
<property name="digestProducers">
<map>

<entry key="yourThirdPartyApp">
<ref bean="YourDigestProducer" />
</entry>
</map>
</property>
</bean>

The map contains a reference to the bean that configures your digest producer. The key
value must match (case insensitive) the name that your application puts into the attribute
source of the <identification> element of the audit message.

43

Finally, add the new bean into the configuration file with the ID you used in the map
reference:

<bean id="YourDigestProducer"
class="fully_qualified_name_of_YourDigestProducerImpl"
scope="prototype">

</bean>

Note that you can add any property definitions into the bean; see the Spring framework
definition for more details.

5.2.4. Configuring a Tag Producer

The message and event tag (dimension) producers for DirX Identity are composed of a list
of producer beans that is easily extensible. The following snippet shows the configuration of
the tag producer for DirX Identity audit messages:

<bean 1d="DxiEventDimensionProducer"”
class="com.DxiEventDimensionProducer"
scope="prototype">
<property name="producers">
<list>
<ref bean="DxiStandardDimensions" />
<ref bean="OuDimensionProducer"” />
</list>
</property>

</bean>

By default, it supports a standard tag producer (hamed DxiStandardDimensions) and
another producer that generates tags for organizational units associated with the active
participant (who) or the object (what) of the message. The tags are named WHO_OU and
WHAT_OU respectively. This producer looks for the identifying attribute of the active
participant or the object that describes the organizational unit. As this attribute name
depends on the configuration of the corresponding audit policy in DirX Identity, the
property for the attribute name identifierType is configurable and must be adapted to the
project settings:

44

<bean id="OuDimensionProducer"”
class="com.OuDimensionProducer"
scope="prototype">
<property name="identifierType"
value="0Organizational Unit"/>

</bean>

For example, suppose you change the label in the DirX Identity audit policy to OU. As a
result, you need to adapt the value in the bean configuration as follows:

<property name="identifierType"
value="0U"/>

5.2.5. Adding a Tag Producer

If you want to add a tag producer for generating additional tags or tags for a third-party
application, you need to:

- Implement the producer as a Java class and deploy it; see the section "Implementing a
Tag Producer" in the chapter "Collecting Audit Messages from Third-party Applications
in this guide.

- Configure a bean for your producer.

- Enter a reference to your bean into the appropriate tag producer.

First, configure the bean for your tag producer:

<bean id="YourTagProducer"
class="fully_qualified_name_of_YourTagProducerImpl"”
scope="prototype">

</bean>
Use <property> child elements to configure any properties of your class; see the previous
sections in this chapter for examples.

Next, add your tag producer bean to the appropriate product tag producer. For DirX
Identity, this is either the DxiEventDimensionProducer for tags applicable to audit
messages or DxiDigestDimensionProducer for tags applicable to digests ~ audit events.

45

The following example shows the insertion into the digest tag producer (see the element in
italics):

<bean 1d="DxiDigestDimensionProducer”
class="com.DxiDigestDimensionProducer"”
scope="prototype">
<property name="producers">
<list>
<ref bean="DxiStandardDimensions"/>
<ref bean="AssignmentModeDimProducer"/>
<ref bean="YourTagProducer"/>
</list>
</property>

</bean>

If you want to add the tag producer for a third-party application, you need to add a
reference to your bean into the map digestDimensionProducers or
eventDimensionProducers of the DigestDimensionGenerator bean (see the section
"Configuring the Digest Dimension Generator"). Here is an example for the
eventDimensionProducers map:

<bean id="DigestDimensionGenerator"> ..
<property name="digestDimensionProducers"”>

<map>

<entry key="yourThirdPartyApp">
<ref bean="YourTagProducer" />
</entry>
</map>
</property>
</bean>

46

6. Customizing Fact and Dimension
Tables

This chapter describes how to configure the OLAP tables with facts and dimensions that
are the source for the Dashboard components in DirX Audit Manager.

The default configuration of these tables is located in the following folder:
install_path/conf/fact-configuration
It is evaluated by all components that create or update facts and dimensions, including:

- The fact population job in the DirX Audit Server. It is responsible for regularly filling the
tables. See the DirX Audit Administration Guide for a description of its schedule.

- The command line tool db_fact_population. It is intended to calculate the facts and
dimensions for previously collected or for re-imported audit messages. See the DirX
Audit User Interface Guide for a more detailed description.

Note that both components create the fact and dimension tables according to the
configuration when necessary. But they don't delete existing columns from tables when
they are removed from the configuration.

6.1. About Fact and Dimension Tables

The OLAP cubes are essentially fact tables with columns for facts and columns for
dimensions.

The table names for facts and dimensions should follow these rules:

- Fact table names start with FCT_
- Dimension table names start with DIM_

The next sections describe fact and dimension tables for audit messages and history
entries.

6.1.1. Fact and Dimension Tables for Audit Messages
A typical fact table for audit messages has the following items:

- Three fact columns. Most often these are FCT_TOTAL, FCT_SUCCEEDED and
FCT_FAILED for the count of all, succeeded and failed events associated with the table.
A calculated FCT_FAILED_RELATIVE can provide the relative number of failed events.
For audit messages dealing with approvals, the facts FCT_APPROVED and
FCT_REJECTED for the number of accepted and rejected approvals are used.

- The mandatory dimension DIM_DATETIME. It contains the day as timestamp with time
12am.

47

- Alist of other dimension columns which are specific to the fact table. These columns
frequently include the dimensions for the operation and the Where_From_Application.
These dimension columns must follow the naming schema: table_name_ID.

The following diagram shows the columns of the fact table for audit messages related to
accounts with the dimension tables for operation and application:

FCT_ACCOUNTS

FCT_SUCCEEDED

DIM_OPERATION

DIM_OPERATION_ID

FCT_FAILED

FCT_TOTAL

DIM_OPERATION_ID & DIM_APPLICATION

~ DIM_APPLICATION_ID
VAL

DIM_APPLICATION_ID

DISPLAY_NAME

Figure 4. Fact and Dimension Tables Example
For more information, see the section "Configuring Fact Tables".

A fact column contains numbers: the count of all (or all succeeded or failed) audit messages
associated with that table and with the dimensions of that row. The dimension columns
contain a foreign key reference into the corresponding dimension table.

All of the dimension tables have the same columns:

- VAL - contains a value for that dimension. It is restricted to a maximum of 255
characters.

- DISPLAY_NAME - by default, this column contains the same value as the VAL column. It
is used when the dimension is displayed in DirX Audit Manager and can be changed to
a customer-specific value.

- table_name_ID - contains the primary key for the dimension value. It is used as the
foreign key reference from the dimension columns in the fact tables. Note that this is
the same column name as the one in the fact tables that contains the foreign key to
this dimension table.

48

Note that due to restrictions for Oracle Database in previous versions, the maximum
number of characters for a dimension table name is 23. The reason is that DirX Audit must
use a trigger for generating the primary key in the dimension tables. The trigger name has
the structure GEN_table name_ID and Oracle Database in previous versions supports
trigger names with a maximum length of 30 characters.

A sample row for the table FCT_ACCOUNTS might have the following values:

FCT_SUCCEEDED: 9

FCT_FAILED: O

FCT_TOTAL: 9

DIM_DATETIME: 2011-02-21 12:00:00.000
DIM_OPERATION_ID: 6
DIM_APPLICATION_ID: 3

The fact table contains only audit events related to accounts. The facts of this row
correspond to audit events produced on February 21, 2011, which are associated to the
operation with primary key 6 and application with primary key 3. There are 9 audit events
matching these conditions. All of them were successful, none failed. Looking for the
primary keys in the dimension tables, we might find the application (here: target system)
"Intranet Portal" in the table DIM_APPLICATION and "Add Object" in the table
DIM_OPERATION.

6.1.2. Fact and Dimension Tables for History Entries

Tables for fact and dimensions associated with history entries are much the same as those
for audit messages. The tables for facts and dimensions for history entries are saved in the
DirX Audit History Database.

The table names start with FCT_HST_ for fact tables and DIM_HST_ for dimension tables.
Fact tables on history entries have the following mandatory columns:

- The dimension columns DIM_DATETIME and DIM_MONTH. They contain the day as a
timestamp with the time 12am. The column DIM_MONTH is empty for all days except
the last day of the month or the current day.

- The only fact column FCT_HST_TOTAL. It contains the number of entries existing at the
end of the day and matching the other dimensions. For history entries dealing with
certifications, there are additional facts FCT_HST_CERTIFIED and
FCT_HST_UNCERTIFIED for the number of certified and uncertified entries. For history
entries dealing with users, there are additional facts FCT_HST_WOUT_ROLE,
FCT_HST_WOUT_PERMISSION, FCT_HST_WOUT_GROUP and
FCT_HST_WOUT_PRIVILEGE for the number of users without a role, a permission, a
group and any privilege. For history entries dealing with approvals, there is an additional
fact FCT_HST_DURATION_MI for the length of approval duration in minutes. The record
with a non-empty DIM_MONTH shows the number of entries at the end of the month.

49

The fact table might contain additional dimension columns such as
DIM_HST_ENTRY_TYPES for distinguishing the entry types User, Role, and so on, or
dimensions DIM_HST_OU for distinguishing users according their organizational unit. The
columns for such a dimension table are exactly the same as those for audit events.

The dimension DIM_HST_ENTRY_TYPES doesn't need an extra dimension table: the fact
population generator just takes the dimension values from the existing table
HST_ENTRY_TYPES.

6.1.3. Fact View for Imported Memberships
The imported membership database view is called FCT_HST_IMPORTED_MEMBERSHIPS.

- The dimension columns DIM_HST_DATETIME and DIM_HST_MONTH contain the day as
a timestamp with the time 12am. The column DIM_HST_MONTH is empty for all days
except the last day of the month or the current day.

- DIM_HST_APPLICATIONL_ID is distinguishing applications where imported group
memberships belong.

- The only fact column FCT_HST_TOTAL contains the number of entries existing at the
end of the day and matching the other dimensions.

6.2. Configuring Fact Tables

The configuration for the fact tables is defined in the file confFactTables.xml. This file is an
XML document that conforms to the XML schema with the namespace
http://factpopulation.persistence.audit.dirx.atos.net/tables. The root element
<confFactTables> contains a number of child elements <confFactTable>. Each
<confFactTable> describes one fact table and has the following child elements:

- <name> - the name of the fact table. The fact population component creates a table in
the database with exactly that name. The view="true" parameter and value indicates
that the fact table is created with a statement, not automatically.

- <onRecordType> - the element is optional. For tables on history entries only, it must
contain the value HISTORY_ENTRY.

- <description> - a string describing the content of the fact table.

- <facts> - the list of <fact> child elements for the facts. The element <fact> contains the
name of a fact and must correspond to a fact definition in the file confFacts.xml.

- <dimensions> - the list of <dimension> child elements for the dimensions. The element
<dimension> contains the name of a dimension and must correspond to a dimension
definition in the file confDimensions.xml.

- <query> - the filter conditions to identify the audit events covered in this fact table. The
component transforms this element into a SQL select statement and collects only facts
and dimensions for audit events matching these conditions. Alternatively for history
entries, there are the <statements> element instead of the <query> element.

- <statements> - references to files containing SQL statements for creating the fact table
and drilling the data.

50

http://factpopulation.persistence.audit.dirx.atos.net/tables

The sub-elements <query> and <onRecordType> are defined in the XML schema
namespace http://factpopulation.persistence.audit.dirx.atos.net/query.

The next sections describe fact tables on audit events and on history entries.

6.2.1. Fact Tables on Audit Events

Here is a sample snippet showing the structure of a fact table definition on audit events:

<t:confFactTable view="true">
<t:name>FCT_ACCOUNTS</t:name>
<t:description>Account related operations</t:description>
<t:facts>
<t:fact>FCT_SUCCEEDED</t:fact>

</t:facts>
<t:dimensions>
<t:dimension>DIM_DATE_DAY</t:dimension>

</t:dimensions>
<g:query>..</q:query>
<t:statements>
<t:create>fct_accounts_create_table.sql</t:create>
</t:statements>
</t:confFactTable>

The <query> element conforms to the XML schema
http://factpopulation.persistence.audit.dirx.atos.net/query. The important child elements
of <query> are:

- <table> - the name of a table, which is related to audit events and must be one of the
following tables:

o DAT_AUDITEVENTS - this table contains the audit events. The columns that may be
used for querying here are: OP (Operation), TYPE, DETAIL.

o DAT_AUDITMESSAGES - this table contains the audit messages as transformed from
the native audit trails. The columns most useful for fact identification are:
IDENTIFICATION_SOURCE, IDENTIFICATION _OUTCOME,
WHEREFROM_APPLICATION.

- <column> - the column name within the table defined in <table>.

- <operator> - the SQL comparison operator. Allowed values are: = (the default if not
supplied), I=, like.

- <value> - the comyparison value. Use the wildcard % (zero or more characters) for
searching with the like operator.

51

http://factpopulation.persistence.audit.dirx.atos.net/query
http://factpopulation.persistence.audit.dirx.atos.net/query

<guery> elements can be combined by the logical operators <and>, <or> and <not>. They
can even be nested as in the following sample:

<g:query>
<g:and>
<q:or>
<g:query>
<table>DAT_AUDITEVENTS</table>
<column>OP</column>
<operator>like</operator>
<value>Accept%</value>
</q:query>
<g:query>
<table>DAT_AUDITEVENTS</table>
<column>OP</column>
<operator>like</operator>
<va'lue>Reject%</value>
</q:query>
</q:or>
<q:query>
<table>DAT_AUDITEVENTS</table>
<column>TYPE</column>
<operator>like</operator>
<value>User to%</value>
</q:query>
</q:and>
</q:query>

This query searches for audit events that correspond to an approval operation: either
Accept or Reject. It is not interested in all approvals, only those for User to Privilege
assignments. See the delivered default configurations for more examples.

52

6.2.2. Fact Tables on History Entries

The following sample shows a fact table on history entries:

<t:confFactTable view="true">

<t:name>FCT_HST_USERS</t:name>

<g:onRecordType>HISTORY_ENTRY</qg:onRecordType>

<t:description>History Users with states and organizational
units</t:description>

<t:facts>
<t:fact>FCT_HST_TOTAL</t:fact>
<t:fact>FCT_HST_WOUT_ROLE</t:fact>
<t:fact>FCT_HST_WOUT_PERMISSION</t:fact>
<t:fact>FCT_HST_WOUT_GROUP</t:fact>
<t:fact>FCT_HST_WOUT_PRIVILEGE</t:fact>

</t:facts>

<t:dimensions>
<t:dimension>DIM_HST_DATETIME</t:dimension>
<t:dimension>DIM_HST_MONTH</t:dimension>
<t:dimension>DIM_HST_DXRSTATE</t:dimension>
<t:dimension>DIM_HST_OU</t:dimension>
<t:dimension>DIM_HST_O</t:dimension>
<t:dimension>DIM_HST_L</t:dimension>

</t:dimensions>

<t:statements>
<t:create>fct_hst_users_create_table.sql</t:create>
<t:drilldown>fct_hst_users_drilldown.sql</t:drilldown>

</t:statements>

</t:confFactTable>

The table FCT_HST_USERS is on users and distinguishes according the dimensions state,
organizational unit, organization and locality.

As opposed to query definitions for audit events, queries for history entries can only be
defined on history tables. The fact population tool uses the create and drilldown
statements to generate a table and to support drill through from aggregated data to
individual records. These statements are stored in separate files in install_path\conf\fact-
configuration\sql folder. The fact tables are populated with SQL scripts executed by
schedule and stored in the install_path\confi\sgl\common\factpopulation folder.

53

6.3. Configuring Facts

The configuration for the facts is defined in the file confFacts.xml. This file is an XML
document that conforms to the XML schema with the namespace
http://factpopulation.persistence.audit.dirx.atos.net/facts. The root element <confFacts>
contains a number of child elements <confFact>. Each <confFact> describes one fact and
has the following child elements:

- <name> - the name of the fact. The fact population tool creates a column with that
name in every fact table that references this fact. This name must match the <fact>
names used in fact table configurations.

- <description> - a string describing the fact.

The fact population tool transforms the following elements into a SQL select statement
and counts only audit events matching these conditions. The elements describe a query
similar to the one used in the fact table configurations.

Note that in most cases the only supported fact on history entries is FCT_HST_TOTAL. It
counts the records in the table HST_ENTRIES separated by their primary key in
HST_ENTRIES_ID.

Here is a sample definition for the fact for all successful operations:

<f:confFact>
<f:name>FCT_SUCCEEDED</f:name>
<f:description>Successful Operations</f:description>
</f:confFact>

There is also a virtual relative fact called FCT_FAILED_RELATIVE, which is a representation
of the failed entries as a relative part of total entries. This fact is computed based on the
FCT_FAILED and FCT_TOTAL facts.

<f:confFact virtual="true" relative="true">
<f:name>FCT_FAILED_RELATIVE</f:name>
<f:description>Failed Operations</f:description>
<f:display-sql>100.0*sum(FCT_FAILED)/sum(FCT_TOTAL)
</f:display-sql>
<f:additional-sql>sum(FCT_FAILED)</f:additional-sql>
</f:confFact>

54

http://factpopulation.persistence.audit.dirx.atos.net/facts

6.4. Configuring Dimensions

The configuration for the dimensions is defined in the file confDimensions.xml. This file is

an XML document that conforms to the XML schema with the namespace
http://factpopulation.persistence.audit.dirx.atos.net/dimensions. The root element
<confDimensions> contains a number of child elements <confDimension> or

<confDimensionView>. Each <confDimensionView> describes one dimension based on the

database view or table and is created with SQL DDL scripts and has the following child
elements:

- <name> - the name of the dimension. The fact population tool creates a table with this
name. Exceptions are the DATE dimensions, which do not need a table. This name must
match the <dimension> names used in fact table configurations.

- <onRecordType> - the element is optional. For tables on history entries only, it must
contain the value HISTORY_ENTRY.

- <description> - a string describing the dimension.

- <table>:the name of a table, which is related to audit messages. You can use the tables
TAG_EVENT_DIMENSIONS and TAG_MESSAGE_DIMENSIONS for dimension filtering in
addition to the tables allowed for dimension tables (DAT_AUDITEVENTS,
DAT_AUDITMESSAGES).

- <column> - the column name within the table defined in <table>.

- <createStatement> - references to files containing SQL statements for creating the
dimension table or database view.

- <query> - the filter conditions to identify the dimension. The fact population tool
transforms this element into a SQL select statement and uses the resulting list of
distinct values for grouping the facts.

The following child elements describe a query similar to the one used in the fact and fact
table configurations:

- <table> - the name of a table. In addition to the tables allowed for facts
(DAT_AUDITEVENTS, DAT_AUDITMESSAGES, TAG_EVENT_DIMENSIONS,
TAG_MESSAGE_DIMENSIONS) you can use the following tables for dimension filtering:

o TAG_EVENT_DIMENSION_TYPES - this table contains the distinct tag names for
audit events, not their values. The only column that may be used for querying is
"NAME".

o TAG_ MESSAGE _DIMENSION_TYPES - this table contains the distinct tag names for
audit messages, not their values. The only column that may be used for querying is
"NAME".

Note that for dimensions on history entries only, the tables HST* can be used. They
are listed in the section "Fact Tables on History Entries".

- <column> - the column name within the table defined in <table>.

. <operator> - the SQL comparison operator. Allowed values are: = (the default if not
supplied), 1=, like.

55

http://factpopulation.persistence.audit.dirx.atos.net/dimensions

- <value> - the comyparison value. Use the wildcard % (zero or more characters) for
searching with the like operator. If the value is not supplied, all distinct values of the
table column are considered.

Note that in the same way as fact tables, dimension tables are populated with SQL scripts
executed by scheduled jobs and stored in the
install_path\conf\sgl\common\factpopulation\DIM folder.

Note that the file also contains a couple of virtual dimensions <confDimensionVirtual>.
Please do not change them! DirX Audit Manager evaluates them for grouping the charts by
days, weeks, months and years.

6.5. Adding a Fact Table

To create a new fact table, add an element <confFactTable> into the file
confFactTables.xml. See the section “Configuring Fact Tables” for information about the
format.

When the fact table population is executed next time, the table is created. The fact
population job in the DirX Audit Server automatically updates the table according to the
configured schedule.

6.6. Adding a Fact

To create a new fact, add an element <confFact> into the file confFacts.xml. See the section
“Configuring Facts” for information about the format.

Enter the new fact as element <fact> into an existing or a new fact table. See the previous
sections for details.

Adapt your database schema accordingly.

When the fact table population is executed next time, the new column is populated too.
The fact population job in the DirX Audit Server automatically updates the table according
to the configured schedule.

6.7. Adding a Dimension

To create a new dimension, add an element <confDimensionView> into the file
confDimensions.xml. See the section "Configuring Dimensions" for a description of the
format.

Enter the new dimension as the element <dimension> into a fact table. See the previous
sections for details.

Adapt your database schema accordingly.

When the fact table population is executed next time, the new dimension table and the
new dimension column are populated too. The fact population job in the DirX Audit Server
automatically updates the table according to the configured schedule.

56

6.8. Configuring Tenant-specific Fact Tables

If you want to create a tenant-specific fact table configuration, copy the common
configuration from the folder:

install_path/conf/fact-configuration
into the tenant configuration folder in:
install_path/conf/tenants/tenant/D/fact-configuration

where tenantlD is a unique tenant identifier. Now you can customize configuration files for
the tenant by following the instructions given in the previous sections of this chapter.

Components that create or update facts and dimensions will implicitly use the tenant-
specific configuration if it's available. If it is not, the common configuration is used.

You must copy the whole folder with all of its subdirectories and files. Default and tenant-
specific configuration directories are not merged.

57

7. Customizing History Synchronization

There are four basic methods for customizing DirX Audit History Synchronization:

- Modifying, adding, and removing entry types from History Synchronization
- Customizing attribute mapping

- Excluding attributes from synchronization

- Explicitly specifying attributes for synchronization

For more information, see "Configuring and Customizing DirX Audit History
Synchronization Jobs" in the DirX Audit History Synchronization Guide.

58

DirX Product Suite

The DirX product suite provides the basis for fully integrated identity and access
management; it includes the following products, which can be ordered separately.

DirX Identity

DirX Identity provides a comprehensive,
process-driven, customizable, cloud-
enabled, scalable, and highly available
identity management solution for
businesses and organizations. It provides
overarching, risk-based identity and access
governance functionality seamlessly
integrated with automated provisioning.
Functionality includes lifecycle
management for users and roles, cross-
platform and rule-based real-time
provisioning, web-based self-service
functions for users, delegated
administration, request workflows, access
certification, password management,
metadirectory as well as auditing and
reporting functionality.

DirX Access

DirX Access is a comprehensive, cloud-ready,
scalable, and highly available access
management solution providing policy- and
risk-based authentication, authorization
based on XACML and federation for Web
applications and services. DirX Access
delivers single sign-on, versatile
authentication including FIDO, identity
federation based on SAML, OAuth and
OpenlD Connect, just-in-time provisioning,
entitlement management and policy
enforcement for applications and services in
the cloud or on-premises.

DirX Directory

DirX Directory provides a standards-
compliant, high-performance, highly
available, highly reliable, highly scalable, and
secure LDAP and X.500 Directory Server and
LDAP Proxy with very high linear scalability.
DirX Directory can serve as an identity store
for employees, customers, partners,
subscribers, and other 10T entities. It can also
serve as a provisioning, access management
and metadirectory repository, to provide a
single point of access to the information
within disparate and heterogeneous
directories available in an enterprise
network or cloud environment for user
management and provisioning.

o nva

DirX Audit provides auditors, security
compliance officers and audit
administrators with analytical insight and
transparency for identity and access. Based
on historical identity data and recorded
events from the identity and access
management processes, DirX Audit allows
answering the “what, when, where, who and
why" questions of user access and
entitlements. DirX Audit features historical
views and reports on identity data, a
graphical dashboard with drill-down into
individual events, an analysis view for
filtering, evaluating, correlating, and
reviewing of identity-related events and job
management for report generation.

For more information: support.dirx.solutions/about

59

https://support.dirx.solutions/about

=VIDEN

Eviden is a registered trademark © Copyright 2025, Eviden SAS - All rights reserved.

60

Legal remarks

On the account of certain regional limitations of sales rights and service availability,
we cannot guarantee that all products included in this document are available
through the Eviden sales organization worldwide. Availability and packaging may
vary by country and is subject to change without prior notice. Some/All of the features
and products described herein may not be available locally. The information in this
document contains general technical descriptions of specifications and options as
well as standard and optional features which do not always have to be present in
individual cases. Eviden reserves the right to modify the design, packaging,
specifications and options described herein without prior notice. Please contact your
local Eviden sales representative for the most current information. Note: Any
technical data contained in this document may vary within defined tolerances.
Original images always lose a certain amount of detail when reproduced.

	Customization Guide
	Copyright
	Table of Contents
	Preface
	DirX Audit Documentation Set
	Notation Conventions
	1. Customizing the DirX Audit Manager User Interface
	1.1. Setting Up Single Sign On
	1.2. Customizing the Table Page Navigator
	1.3. Configuring Privileged Groups
	1.4. Customizing Audit Analysis
	1.5. Customizing the History View
	1.6. Customizing the History Timeline
	1.7. Customizing Reports
	1.8. Customizing the User Interface Layout
	1.9. Localizing Dashboard Component Titles
	1.10. Configuring Database Connection Caching
	1.11. Enabling HTTP Compression
	1.12. Configuring the Default View Displayed

	2. Customizing Reports
	2.1. Configuring a Report Definition File
	2.1.1. Setting Report Definition Elements
	2.1.2. Extending DirX Audit Manager Report Context

	2.2. Configuring a SQL Query with Placeholders
	2.3. Setting up TIBCO Jaspersoft Studio
	2.3.1. Installing TIBCO Jaspersoft Studio
	2.3.2. Setting up the TIBCO Jaspersoft Studio Classpath

	2.4. Creating a New Report
	2.4.1. Creating the Top-Level Page
	2.4.1.1. Creating the Report File
	2.4.1.2. Setting the Classpath
	2.4.1.3. Setting the Data Adapter
	2.4.1.4. Defining Report Parameters
	2.4.1.5. Selecting the Field List

	2.4.2. Creating a Subreport
	2.4.2.1. Creating the Subreport Element
	2.4.2.2. Creating the Subreport TIBCO JasperReports File

	2.5. Modifying a Report
	2.5.1. Changing the Report Title
	2.5.2. Changing the Color of the Column Headers

	2.6. Adding JasperReports Templates to Audit Analysis
	2.7. Designing Reports for CSV Format
	2.8. Solving Problems
	2.8.1. Handling Report Design Errors
	2.8.2. Handling Problems with Report Definition Changes
	2.8.3. Handling Report Execution Errors

	3. Working with View Type APIs
	3.1. Raw API
	3.1.1. Identification - Extension Subreport
	3.1.2. Where From - Extension Subreport
	3.1.3. Who - Extension Subreport
	3.1.4. What Subreport
	3.1.4.1. What - Extension Subreport
	3.1.4.2. What - Detail Subreport

	3.2. Audit Event API

	4. Collecting Audit Messages from Third-party Applications
	4.1. About the Audit Message Data Flow
	4.2. Setting up the Third-party Application
	4.3. Configuring the Generic Collector for Third-party Messages
	4.4. Implementing a Digest Producer
	4.5. Implementing a Tag Producer
	4.6. Deploying Digest and Tag Producers

	5. Customizing Digest and Tag Producers
	5.1. About Persistence Service Unit Data Flow
	5.2. Configuring Producers
	5.2.1. Configuring the Digest Dimension Generator
	5.2.2. Configuring a Digest Producer
	5.2.3. Adding a Digest Producer
	5.2.4. Configuring a Tag Producer
	5.2.5. Adding a Tag Producer

	6. Customizing Fact and Dimension Tables
	6.1. About Fact and Dimension Tables
	6.1.1. Fact and Dimension Tables for Audit Messages
	6.1.2. Fact and Dimension Tables for History Entries
	6.1.3. Fact View for Imported Memberships

	6.2. Configuring Fact Tables
	6.2.1. Fact Tables on Audit Events
	6.2.2. Fact Tables on History Entries

	6.3. Configuring Facts
	6.4. Configuring Dimensions
	6.5. Adding a Fact Table
	6.6. Adding a Fact
	6.7. Adding a Dimension
	6.8. Configuring Tenant-specific Fact Tables

	7. Customizing History Synchronization
	Legal Remarks

