=VID&N

Identity and Access Management

DirX Directory

Containerization
Version 9.1, Edition June 2025

All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.

Table of Contents

Copyright
Preface
DirX Directory Documentation Set
Notation Conventions
1. Overview
2. Container Image
2.1. Base Image
2.2. Content
2.3.Tagging
2.4. Initialization Scripts
2.5. Environment Configuration
2.6. Networking
2.7. Database Files
3. Example Kubernetes Project
3.]. Restrictions
3.1.1. Distribution and Runtime
3.1.2. Artifacts
3.2. Prerequisites
3.2.1. System Requirements
3.2.2. Container Runtime
3.2.3. Local Cluster
3.3. Architecture
3.4. Configuration
3.4.1. init_scripts_config_map.yaml
3.4.2. stateful_set.yaml
3.4.3. service.yaml
3.4.4.* pvcyaml
3.4.5. *config_map.yaml
3.4.6. secretyaml
3.5. Using the Example Kubernetes Project
3.5.1. Loading the Container Image
3.5.2. Starting the Example Project
3.5.3. Tunneling the Ports
3.5.4. Customizing the Initialization
3.5.5. Executing Tools and Clients
3.5.6. Deleting a Directory Instance
3.5.7. Setting up Shadowing

3.5.7.1. Create Master and Shadow Kubernetes Projects

3.5.7.2. Set Master and Shadow DSA |Identifiers

O O 0O NI I N N N NN Ngoo0oo0o o oo uoun P> AN o=

AN NN oo N==000O0S0 0O

3.5.7.3. Adjust Duplicate LoadBalancer Resources
3.5.7.4. Start Master and Shadow Instances
3.5.7.5. Create the Shadowing Agreement
3.5.8. Setting up Crash Handling
3.6. Troubleshooting
Legal Remarks

14
14
14
15
15
17

Preface

This document provides information about the packages available for creating
containerized deployments of DirX Directory. It consists of the following chapters:
- Chapter 1 briefly describes each package and how it is intended to be used
- Chapter 2 describes the DirX Directory container image package

- Chapter 3 describes the example DirX Directory Kubernetes project package, including
its structure and example workflows

ch1_overview.pdf
ch2_containerImage.pdf
ch3_kubernetes.pdf

DirX Directory Documentation Set

DirX Directory provides a powerful set of documentation that helps you configure your
directory server and its applications.

The DirX Directory document set consists of the following manuals:

- DirX Directory Introduction. Use this book to obtain a description of the concepts of DirX
Directory.

- DirX Directory Administration Guide. Use this book to understand the basic DirX
Directory administration tasks and how to perform them with the DirX Directory
administration tools.

- DirX Directory Administration Reference. Use this book to obtain reference information
about DirX Directory administration tools and their cormmand syntax, configuration
files, environment variables and file locations of the DirX Directory installation.

- DirX Directory Syntaxes and Attributes. Use this book to obtain reference information
about DirX Directory syntaxes and attributes.

- DirX Directory LDAP Extended Operations. Use this book to obtain reference
information about DirX Directory LDAP Extended Operations.

- DirX Directory External Authentication. Use this book to obtain reference information
about external authentication.

- DirX Directory Supervisor. Use this book to obtain reference information about the DirX
Directory supervisor.

- DirX Directory Plugins for Nagios. Use this book to obtain reference information about
DirX Directory plugins for Nagios.

- DirX Directory Disc Dimensioning Guide. Use this book to understand how to calculate
and organize necessary disc space for initial database configuration and enhancing
existing configurations.

- DirX Directory Guide for CSP Administrators. Use this book to obtain information about
installing, configuring and managing DirX Directory in the context of a Certificate
Provisioning Service operating in accordance with regulations like the German
“Signaturgesetz”.

- DirX Directory Release Notes. Use this book to install DirX Directory and to understand
the features and limitations of the current release.

introduction:prf_intro.pdf
admin-guide:prf_adguide.pdf
admin-reference:prf_adref.pdf
syntaxes-and-attributes:prf_syntax-attributes.pdf
ldap-extended-ops:prf_ldapExtOps.pdf
ext-auth:prf_extAuth.pdf
supervisor:prf_supervisor.pdf
nagios-plugins:prf_nagios.pdf
disc-dim-guide:prf_discDimGuide.pdf
csp-admin:prf_cspAdmin.pdf
release-notes:release-notes.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

install_path

The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userlD_home_directory*/DirX Identity* on UNIX
systems and C:\Program Files\DirX\ldentity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

1. Overview

DirX provides two packages for DirX Directory containerization:

- An example container image of a full, standalone DirX Directory installation. This
package can be deployed “as is” or used as a building block for creating shadowing and
other configurations in a containerized environment.

- An example Kubernetes project that demonstrates the use and capabilities of the DirX
Directory container image. This package can be used as a reference or development
base when containerizing a custom DirX Directory installation.

This document assumes familiarity with DirX Directory, Kubernetes, and Docker terms,
concepts, and tools and provides only the specifics for using the packages with each
product. Using the packages described here requires at least a basic understanding of
these products.

The documents listed below provide additional details about the concepts and procedures
referenced in this document. We recommend that you become familiar with the
information in these documents before proceeding with the tasks described in this
document:

For DirX Directory:
DirX Directory Administration Reference:

- Environment Variables
- IP Port Numbers
- dbaminit command

- dirxconfig command
DirX Directory Administration Guide
- Setting up the DSA
For Kubernetes:
See the documentation available at https://kubernetes.io/docs/home
For Docker:

See the documentation available at https:;//docs.docker.com

https://kubernetes.io/docs/home
https://docs.docker.com

2. Container Image

The DirX Directory container image is downloadable from the DirX support portal. This
chapter describes the specifics of the DirX Directory container image.

2.1. Base Image

The DirX Directory container image is based on the latest opensuse/leap image hosted on
hub.docker.com. As OpenSUSE is not a supported Linux platform, the delivered image is
only intended to be used as an example in a test environment. For productive use, you
must build your own docker image from one of the supported platforms as follows:

1. Get a DXD Linux installer from the Support Portal
(e.g., dirx91.9.7.382.1701.x86_Ix-64.tar.gz).

2. Extract the installer to a temporary folder.
3. Open the Dockerfile in the root of the extracted installer.

4. Change the base image name in the first line according to the selected platform (e.g.,
from
FROM opensuse/leap:15.6 AS base to
FROM registry.suse.com/suse/slel15:15.6 AS base).

5. If the chosen platform uses a package manager other than zypper, update the RUN
zypper—non-interactive in gdb tar rsync line accordingly.

6. Build the docker image using the modified Dockerfile according to the corresponding
docker documentation: https://docs.docker.com/build. (e.g., docker image build -t
dxd:9.7.138)

2.2. Content

The DirX Directory container image contains a full, standalone DirX Directory installation
with all the server and client binaries. As in a standard Linux installation, the servers are

automatically started by the dirxdsas process, which serves as the container entry point.
The container image uses the UID 5000 and GUID 5000 to run the DirX Directory service.

2.3. Tagging

The DirX Directory container image is delivered with a single container image tag that
contains the full version number; for example, dxd:9.7.317. By default, no other tag is
provided. Additional tags can be created in the target system’s image registry as necessary.

2.4. Initialization Scripts

By default, the DirX Directory container image does not contain an initialization script, but
it does allow for the use of custom initialization scripts like other container images. These
scripts can be used for database initialization or for executing any necessary initialization
steps.

https://docs.docker.com/build

Any executable scripts mounted into the /home/dirx/entrypoint-init.d/ folder are executed
using the bash shell.The scripts are executed before the database is started, so any tools
requiring exclusive access to the database (like dbamboot or dirxload) can be used, but
scripts must not rely on any of the DirX Directory services to be running. For details on DirX
Directory commands, see the chapter “DirX Commands” in the DirX Directory
Administration Reference.

2.5. Environment Configuration

The safest and recommended way to set environment variables in a DirX Directory
installation is to set them in the DIRX_INST_PATH/conf/dirxenv.ini configuration file. This is
also the recommended way to set the environment for the DirX Directory container image.
To work on the dirxenv.ini file, mount it to the /home/dirx/conf/dirxenv.ini path. For details
on DirX Directory environment variables, see the chapter “Environment Variables” in the
DirX Directory Administration Reference.

2.6. Networking

The DirX Directory container image uses the DirX Directory ports defined in the “IP Port
Numbers” chapter of the DirX Directory Administration Reference. These ports can be
exposed to the external network on demand.

2.7. Database Files

The DirX Directory container image only supports using a file-based DBAM database.
Database files can be automatically created by implementing the logic in an initialization
script, or they can be initialized by running a DirX Directory container image in which the
database files can be created.

In addition to the database and translog files, the following files must also be persisted:

- .DIRX_SyncFile - this file is the synchronization interface between different DirX
Directory tools and servers.

- .DBAM_Profile - this file stores the DBAM profiles used on the system.

As these files are read and modified by the servers and tools, they must be persisted using a
volume with read and write permissions like the database files. By default, these files are
stored in the $DIRX_INST_PATH/server/conf folder. However, in a containerized
environment, configuration files and folders are usually mounted with read-only
permissions. To solve this problem, you can use the DIRX_SYNC_FILE_PATH and
DIRX_DBAM_PROFILE_PATH environment variables to configure the paths for these files
so that they are stored in read-write locations, either with the DBAM database and translog
files or on a separate read-write volume. See the environment configuration in the example
DirX Directory Kubernetes project for an example.

3. Example Kubernetes Project

An example Kubernetes project that demonstrates the use and capabilities of the DirX
Directory container image can be downloaded from the DirX support portal. The next
sections describe the example project and how to use it.

3.1. Restrictions

This section describes restrictions that apply to the example DirX Directory Kubernetes
project.

3.1.1. Distribution and Runtime

The example DirX Directory Kubernetes project is tested and supported only with the
minikube Kubernetes distributions using the Docker Container runtime. Therefore,
documentation is only provided for this scenario.

3.1.2. Artifacts

The example DirX Directory Kubernetes project is tested and supported only as is. Any
Kubernetes configuration changes other than the procedures described in this document
are outside the scope of DirX Directory support.

3.2. Prerequisites

Deploying and running the example DirX Directory Kubernetes project has the following
prerequisites.

3.2.1. System Requirements

The host machine requires at least 8 GB RAM and 40 GB free disk space to deploy the DirX
Directory Kubernetes example project.

3.2.2. Container Runtime

To run the example DirX Directory Kubernetes project, the Docker Container runtime must
be installed and running on the host machine. Before any of the scenarios described below
are executed, the following command must be able to run without errors on the host
system:

docker container run --rm hello-world

Installation can be performed based on the distribution’s official documentation or the
Docker Engine documentation. See https://docs.docker.com for details.

3.2.3. Local Cluster

To run the example DirX Directory Kubernetes project, the host system must have a

https://docs.docker.com

configured minikube environment as described in the minikube installation instructions
(see https://minikube.sigs.k8s.io/docs) and the minikube instance must be running. Use the
following command to check it:

minikube status

The default-storageclass and storage-provisioner addons must be enabled. The status of
the addons can be verified by executing the following command:

minikube addons list

3.3. Architecture

The example DirX Directory Kubernetes project runs the DirX Directory service in a stateful
set Kubernetes resource connected with the necessary resources to provide network
connection and persistence. The simplified architectural diagram of the example project is
shown below.

https://minikube.sigs.k8s.io/docs

' Service with LDAP
S . port definition

Service with HTTP
port definition

Service with
DAP/DSP/DISP
port definition

Other DSA(S)

' Service with
s RPC port definition

Figure 1. Example DirX Directory Kubernetes Project Architecture

3.4. Configuration

The root of the example DirX Directory Kubernetes project contains a set of folders that are
similar to a normal DirX Directory installation: client, conf, dsa, http, Idap, progsvr, tools
and several other configuration files.

The content of these folders corresponds to a normal DirX Directory installation and
contains several types of configuration files. The next sections describe these files in more
detail.

3.4.1. init_scripts_config_map.yaml

As in Kubernetes, the example DirX Directory Kubernetes project has a resource called an
init container. The database initialization is implemented using this resource instead of the
entrypoint-init.d scripts. The init_scripts_config_map.yaml configuration file contains the

initialization scripts to be executed before the DirX Directory container starts up. It handles
initializing a database file and loading the o=My-Company example database. You can
customize the initialize_db.sh script to set the DBAM profile to your requirements.

3.4.2. stateful_set.yaml

This configuration file contains the definition of the main stateful set resource. It defines the
init container, the container, the container ports used and the mounted volumes. As the
stateful set contains the definition of the container in use, the DirX Directory container
image version to be used can be specified here. For this, the image property can be set in
both the container and the init container definition.

3.4.3. service.yaml

The service.yaml configuration files define the service resources that are used to expose
ports. There are multiple service.yaml files, one for each DirX Directory server. You can
modify the exposed port numbers in these files.

3.4.4. *_pvc.yaml

These configuration files define the persistent volume claims that are used to persist the
files used by the DirX Directory service. These files include the database files, log files, audit
files, etc. You can adjust the size of the persistent volume claims by setting the storage
parameter.

3.4.5. *config_map.yaml

Config maps are used to store the configuration files used by the DirX Directory service.
There are several files with this naming structure, containing all configuration files used in a
normal DirX Directory installation. You can modify these configuration files according to
your requirements.

3.4.6. secret.yaml

Kubernetes secrets are used to store sensitive or binary data. In the example DirX Directory
Kubernetes project, they are used to store, for example, client certificates, user certificates,
the license files, etc. These secrets can be updated according to your requirements.

The .pwd files must be handled specially in secret.yaml configuration files. The DirX
Directory services encrypt the .pwd files automatically. However, in Kubernetes, secrets are
read-only resources and should not be modified once they are attached to a container. As a
result, if the password file is set in the secret.yaml file without encryption, password file
encryption will fail and the server will not be able to start. To solve this issue, the example
DirX Directory Kubernetes project delivers an executable called dirxencryptpwd that can
be used to encrypt the password. All .pwd files must contain the encrypted password.

3.5. Using the Example Kubernetes Project

This section describes example workflows you can use to experiment with the example

10

DirX Directory Kubernetes project.

3.5.1. Loading the Container Image

The first step of executing a containerized application is to get and load the container
image. Download the DirX Directory container image from the DirX support portal and
then load it to the local registry using the command:

minikube image load dxd-9.7.138.tar.gz

This command adds the dxd:9.7.138 container image to the local registry inside the
minikube environment. DirX Directory delivers the container image with only a single label
containing the full version.

However, as the DirX Directory container image and the DirX Directory Kubernetes
example project configuration files are delivered separately, the example project cannot
refer to a specific DirX Directory version. So, in both the container and the init container, the
image "dxd" is referred to with the default "latest" tag.

To use a specific image version, you can specify the tag in the image property of the
containers and initContainers section of the stateful set.yaml configuration file.
Alternatively, you can tag the image with the specific version tag to the default tag, as
shown in the following command:

minikube image tag dxd:9.7.138 dxd

3.5.2. Starting the Example Project

The provided Kubernetes configuration files and the container image make it easy to run
the DirX Directory service in the Kubernetes environment with the default My-Company
configuration. To start the project:

- Get and load the DirX Directory container image as described in the section “Loading
the Container Image”.

- Extract the Kubernetes configuration files and then modify the parameters defined in
the configuration section to your requirements; for example, DirX Directory version, port
numbers, storage space, and so on. When preparing the configuration files, it's
recommended to create a new namespace using the command:

minikube kubectl—create ns namespace

- Apply the configuration files with the command:
minikube kubectl—apply -n namespace -Rf configuration_path

where configuration_path is the folder to which you have extracted the provided
Kubernetes configuration yaml files.

n

- Check the status of the DirX Directory pod by running the command:

minikube kubectl—get pods -n namespace

Here is an example startup command sequence for a DirX Directory service dxd-
standalone:

minikube kubectl -- create ns dxd-standalone
minikube kubectl -- apply -n dxd-standalone -Rf kubernetes
minikube kubectl -- get pods -n dxd-standalone

Please note that starting up a pod takes time, so the last command may be repeated
several times until the pod comes up, showing a Running status.

3.5.3. Tunneling the Ports

The example Kubernetes project uses LoadBalancer Kubernetes resources to expose its
ports. By default, these ports are only available inside the minikube environment. To expose
these ports to a specified bind address, use the command:

minikube tunnel --bind-address=target_IP

where target_|P is the IP address of the network interface to which the exposed ports
should be bound. For example, to make the LDAP ports available outside minikube on the
host’s loopback interface, use the command:

minikube tunnel --bind-address=127.0.0.1

3.5.4. Customizing the Initialization

You can customize the example Kubernetes project by adjusting the delivered yaml
configuration files and then applying the changes with the “apply” command described in
the "Starting the Example Project" section.

Please note that the Kubernetes example project is tested and supported only as is.
Kubernetes configuration changes other than the changes and procedures described in
this document are outside the scope of DirX Directory support.

3.5.5. Executing Tools and Clients

The DirX Directory container image contains a full Linux installation. All tools and clients are
included. You can use these tools by using kubectl's exec functionality. For example, you
can open an interactive shell into the DirX Directory pod with the command:

minikube kubectl—exec -it -n namespace dxd-0—bash

In the interactive shell, you can manage the DirX Directory service as a normal Linux

12

installation.

3.5.6. Deleting a Directory Instance

DirX Directory instances, if running in a separate namespace, can be deleted with the
command:

minikube kubectl—delete ns namespace

Please note that this command will not clean up the persistent volumes. You should
remove them manually.

3.5.7. Setting up Shadowing

This section describes how to implement a simple supplier-consumer scenario using the
example Kubernetes project.

3.5.7.1. Create Master and Shadow Kubernetes Projects

As this shadowing scenario needs two DirX Directory instances with different
configurations, the first step is to copy the example Kubernetes project files into two
different folders called dxd-master and dxd-shadow. These folders will contain the
necessary configuration for the supplier and the consumer respectively. To perform this
task, run the following commands:

cp -R kubernetes dxd-master

cp -R kubernetes dxd-shadow

3.5.7.2. Set Master and Shadow DSA Identifiers

Next, set the DIRX_HOST_NAME, DIRX_DSA_NAME and DIRX_OWN_PSAP environment
variables. Open the dxd-master/conf/config_map.yaml file and append the following rows
to dirxenv.ini:

set DIRX_DSA_NAME=CN=DirX-k8s-master

set DIRX _HOST NAME=dxd-service.dxd-master.svc.cluster.local

set
DIRX_OWN_PSAP=TS=DSA1,NA="'TCP/IP_IDM!internet=1.2.3.4+port=1234",6DNS=
' (HOST=dxd-service.dxd-master.svc.cluster.local, PLAINPORT=21200) " "

Now open the dxd-shadow/conf/config_map.yaml file and append the following rows to
dirxenv.ini:

set DIRX_DSA NAME=CN=DirX-k8s-shadow
set DIRX _HOST _NAME=dxd-service.dxd-shadow.svc.cluster. local

13

set
DIRX_OWN_PSAP=TS=DSA2,NA="'TCP/IP_IDM!internet=1.2.3.4+port=1234",6DNS=
' (HOST=dxd-service.dxd-shadow.svc.cluster.local, PLAINPORT=21200) ""

3.5.7.3. Adjust Duplicate LoadBalancer Resources

As both dxd-master and dxd-shadow are copied from the same source, they contain the
same definitions for the LoadBalancer service resources. If multiple LoadBalancer
resources are started with the same port, it will result in port collisions when the traffic is
tunneled to an IP address. So as the next step, you should delete or modify these resources.
If you would like to access only one of the nodes from an external IP, you can delete the
dsa/service.yaml, Idap/service.yaml, progsvr/service.yaml and http/service.yaml files from
one of the copied folders. If you would like to access both, you can modify the port numbers
in these files to avoid port collision.

3.5.7.4. Start Master and Shadow Instances

When the configuration is finished, start the dxd-master instance with the following
commands:

minikube kubectl -- create ns dxd-master
minikube kubectl -- apply -n dxd-master -Rf dxd-master/
minikube kubectl -- get pods -n dxd-master

Then start the dxd-shadow instance:

minikube kubectl -- create ns dxd-shadow
minikube kubectl -- apply -n dxd-shadow -Rf dxd-shadow/
minikube kubectl -- get pods -n dxd-shadow

3.5.7.5. Create the Shadowing Agreement

After these commmands are executed, there are two separate standalone DirX Directory
services running. Both are loaded with the o=My-Company example database. The next
step is to create the shadowing agreement between the two standalone DSAs using the
following commmands:

minikube kubectl -- exec -1t -n dxd-master dxd-@ bash
dirxadm -c "defbind; sob create -consumer §/CN=DirX-k8s-shadow?} \
-agreementid 15 \
-consumerpsap
§TS=DSA2,NA="TCP/IP_IDM!internet=1.2.3.4+port=1234",DNS="'(HOST=dxd-
service.dxd-shadow.svc.cluster.local,PLAINPORT=21200) "'} \

14

-supplier {/CN=DirX-k8s-master? \

-supplierpsap
§TS=DSAL1,NA="TCP/IP_IDM!internet=1.2.3.4+port=1234"',6DNS="(HOST=dxd-
service.dxd-master.svc.cluster.local,PLAINPORT=21200) "'} \

-consumerkind CENTRALADMIN \

-status cooperative \

-agreement {SS={AREA=§{CP={/0=My-Company},\

RA={DEF=TRUE}?,\

ATT={DEF=TRUE??%,\

UM=§SI=§0C=TRUE??%,CHANGEO=FALSE?} \
-pol §CONS={REPLS=TRUE}%"

3.5.8. Setting up Crash Handling

By default, the DirX Directory watchdog (dirxdsas) handles all server crashes. However, the
minikube environment does not allow ptrace calls by default, so the watchdog procedure
is not allowed to generate core dumps.

To activate automatic core dump collection, install the systemd-coredump package and
then disable the watchdog's core dump handling by setting
DIRX_WDOG_CRASH_HANDLER=0 in dirxenv.ini. These settings enable systemd to collect
the core dumps.

3.6. Troubleshooting

All files (including log, audit, Idif, and others) in the DirX Directory container image are
written as they are in a normal Linux installation, so files required for troubleshooting are
written as files. In the example Kubernetes project, all paths used to store these files are
mapped to a persistent volume claim provided by minikube's hostpath-provisioner so that
files needed for troubleshooting are persisted. The provisioner creates the persistent
volumes in the
/var/lib/docker/volumes/minikube/_data/hostpath-provisioner/namespace folder. The log
files of the currently running instance can be found in the separate folders. However, the
logs of previous instances are copied to a special log folder called dxd-log-persistence-pvc.
The log persistence folder is automatically cleaned up by deleting the log of all pods written
more than 30 days ago.

15

DirX Product Suite

The DirX product suite provides the basis for fully integrated identity and access
management; it includes the following products, which can be ordered separately.

DirX Identity

DirX Identity provides a comprehensive,
process-driven, customizable, cloud-
enabled, scalable, and highly available
identity management solution for
businesses and organizations. It provides
overarching, risk-based identity and access
governance functionality seamlessly
integrated with automated provisioning.
Functionality includes lifecycle
management for users and roles, cross-
platform and rule-based real-time
provisioning, web-based self-service
functions for users, delegated
administration, request workflows, access
certification, password management,
metadirectory as well as auditing and
reporting functionality.

DirX Access

DirX Access is a comprehensive, cloud-ready,
scalable, and highly available access
management solution providing policy- and
risk-based authentication, authorization
based on XACML and federation for Web
applications and services. DirX Access
delivers single sign-on, versatile
authentication including FIDO, identity
federation based on SAML, OAuth and
OpenlD Connect, just-in-time provisioning,
entitlement management and policy
enforcement for applications and services in
the cloud or on-premises.

DirX Directory

DirX Directory provides a standards-
compliant, high-performance, highly
available, highly reliable, highly scalable, and
secure LDAP and X.500 Directory Server and
LDAP Proxy with very high linear scalability.
DirX Directory can serve as an identity store
for employees, customers, partners,
subscribers, and other 10T entities. It can also
serve as a provisioning, access management
and metadirectory repository, to provide a
single point of access to the information
within disparate and heterogeneous
directories available in an enterprise
network or cloud environment for user
management and provisioning.

o nva

DirX Audit provides auditors, security
compliance officers and audit
administrators with analytical insight and
transparency for identity and access. Based
on historical identity data and recorded
events from the identity and access
management processes, DirX Audit allows
answering the “what, when, where, who and
why" questions of user access and
entitlements. DirX Audit features historical
views and reports on identity data, a
graphical dashboard with drill-down into
individual events, an analysis view for
filtering, evaluating, correlating, and
reviewing of identity-related events and job
management for report generation.

For more information: support.dirx.solutions/about

16

https://support.dirx.solutions/about

=VIDEN

Eviden is a registered trademark © Copyright 2025, Eviden SAS - All rights reserved.

Legal remarks

On the account of certain regional limitations of sales rights and service availability,
we cannot guarantee that all products included in this document are available
through the Eviden sales organization worldwide. Availability and packaging may
vary by country and is subject to change without prior notice. Some/All of the features
and products described herein may not be available locally. The information in this
document contains general technical descriptions of specifications and options as
well as standard and optional features which do not always have to be present in
individual cases. Eviden reserves the right to modify the design, packaging,
specifications and options described herein without prior notice. Please contact your
local Eviden sales representative for the most current information. Note: Any
technical data contained in this document may vary within defined tolerances.
Original images always lose a certain amount of detail when reproduced.

	Containerization
	Copyright
	Table of Contents
	Preface
	DirX Directory Documentation Set
	Notation Conventions
	1. Overview
	2. Container Image
	2.1. Base Image
	2.2. Content
	2.3. Tagging
	2.4. Initialization Scripts
	2.5. Environment Configuration
	2.6. Networking
	2.7. Database Files

	3. Example Kubernetes Project
	3.1. Restrictions
	3.1.1. Distribution and Runtime
	3.1.2. Artifacts

	3.2. Prerequisites
	3.2.1. System Requirements
	3.2.2. Container Runtime
	3.2.3. Local Cluster

	3.3. Architecture
	3.4. Configuration
	3.4.1. init_scripts_config_map.yaml
	3.4.2. stateful_set.yaml
	3.4.3. service.yaml
	3.4.4. *_pvc.yaml
	3.4.5. *config_map.yaml
	3.4.6. secret.yaml

	3.5. Using the Example Kubernetes Project
	3.5.1. Loading the Container Image
	3.5.2. Starting the Example Project
	3.5.3. Tunneling the Ports
	3.5.4. Customizing the Initialization
	3.5.5. Executing Tools and Clients
	3.5.6. Deleting a Directory Instance
	3.5.7. Setting up Shadowing
	3.5.7.1. Create Master and Shadow Kubernetes Projects
	3.5.7.2. Set Master and Shadow DSA Identifiers
	3.5.7.3. Adjust Duplicate LoadBalancer Resources
	3.5.7.4. Start Master and Shadow Instances
	3.5.7.5. Create the Shadowing Agreement

	3.5.8. Setting up Crash Handling

	3.6. Troubleshooting

	Legal Remarks

