=VID&N

Identity and Access Management

DirX Directory

LDAP Proxy

Version 9.1, Edition June 2025

All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.

Table of Contents

Copyright
Preface
DirX Directory Documentation Set
Notation Conventions
1. Introduction
1.1. Configuration Elements
1.1.1. LDAP Configuration Subentry
1.1.2. Proxy Mode Attribute
1.1.3. DLP Server Configuration File
1.2. Features and Limitations
2. Configuration
2.1. LDAP Proxy Mode Attribute
2.1.1. Abbreviation
2.1.2. LDAP Name(s)
2.1.3. Syntax (DAP)
2.1.4. Syntax (LDAP)
2.1.5. Example (DAP)
2.1.6. Example (LDAP)
2.2. DLP Server Configuration File

2.2.1. DLP Server Configuration File Syntax

2.2.2. Locating JSON Syntax Errors
2.3. DLP Server Configuration Objects
2.3.1. The LdapProxy Object
2.3.2. The LdapServer Object
2.3.3. The Attributelist Object
2.3.4. The Defaults Object
2.3.5. The ProxyRule Object
3. Proxy Rules
3.1. User-routing Rules
3.1.1. Syntax Description

3.1.2. How User-routing Rules are Processed

3.2. Operation-routing Rules
3.2.1. Syntax Description

3.2.2. How Operation-routing Rules are Processed

3.3. Rewriting Rules
3.3.1. Syntax Description
3.3.1.1. The object Key
3.31.2. The ruleType key
3.31.3. The name Key

O O O W VW VW VW W O 0w o oo o unt l M NN - =

N NN RKNNNDNNNONDNDNN o = o =
N NN NS o PPN OOO 0 hA~ANMN = O

3.3.1.4. The condition Key
3.3.1.4.1. Condition Rule Syntax
3.3.1.4.2. Condition Token Syntax
3.3.1.4.3. Using the opr.req.type Token
3.3.1.4.4. Condition Token Names and Assignments
3.3.1.5. The actions Key
3.3.1.5.1. General Actions
3.3.1.5.2. Protocol-Specific Actions
3.3.2. How the Rule Processing Sequence Affects Result Rewriting Rules
3.3.21. Handling Attribute Name Aliases in Rewriting Rules
3.3.3. Using Virtual Names in Rewriting Actions on Search Results
3.4. Character Set Requirements in Rule Conditions and Actions
3.5. Handling Special Characters in Rule Conditions and Actions
4, Operation
4.1. LDAP Server Process Startup for DLP
4.1.1. Connect Timeout
4.2. Offline Handling and Server Retry
4.3. Round-Robin Selection and Failover
4.4, Character Set Handling
4.5. General Operation Forwarding Example
5. Monitoring and Analysis
5.1. Analyzing Errors in Rewriting Rule Definitions
51.1. Finding Syntax Errors
5.1.2. Detecting Logical Errors
52. DLP Server Logging
5.21. Logging Example
5.3. DLP Server Audit
53.1. DLP Server Audit Record Layout
5.3.2. Bind, Search, Add Example
53.2.1. The DLP Server Bind Record
53.2.2. The Search Record
53.2.3. The Add Record
5.4. LDAP Extended Operations for DLP Servers
5.4.1. ldap_proxy_server_disable
5.4.1.1. Synopsis
5.4.1.2. Purpose
5.4.1.3. Parameters
5.4.1.4. Description
5.415. Example
5.4.1.6. See Also
5.4.2. |dap_proxy_server_enable
5.4.2.1. Synopsis

27
28
29
29
30
38
39
39
56
56
57
58
58
60
60
60
62
63
63
64
66
66
66
69
69
70
75
75
78
79
84
85
87
87
87
88
88
88
88
89
89
89

54.272. Purpose 89

5423, Parameters 89
5.4.2.4. Description 89
5425 Example 90
5.4.2.6. See Also 90
5.4.3. |dap_proxy_status 90
5.4.3.1. Synopsis 90
54.32. Purpose 90
5.4.3.3. Description 90
5.43.4. Example 92
5.4.35. See Also 97
5.4.4. |dap_proxy_update 97
5.4.41. Synopsis 97
54.4.2. Purpose 97
5.4.4.3. Description 97
5.4.4.4 Example 98
5.4.45. See Also 99

6. Examples and Considerations 100
6.1. Operation-Routing Rules: Examples 100
6.1.1. Example 1: All Target LDAP Servers Up and Running 100
6.1.2. Example 2: Target Server Failure, no Failover Servers Defined 101
6.1.3. Example 3: Target Server Failure, Failover=1, Multiple Targets 102
6.2. Rewriting Rules: Examples and Considerations 103
6.2.1. Examples of Rewriting Conditions and Actions 103
6.2.1.1. Example 1: Enforce SSL/TLS 103
6.2.1.2. Example 2: Deny Requests from Local Host 104
6.2.1.3. Example 3: Reject binds from a User 104
6.2.1.4. Example 4: Reject Anonymous Users 104
6.2.1.5. Example 5: Replace a Base Object String in a Request 104
6.2.1.6. Example 6: Remove a Base Object String 104
6.2.1.7. Example 7: Add/Remove Requested Attributes (Two Actions) 104
6.2.1.8. Example 8: Add/Remove Requested Attributes (One Action) 105
6.2.1.9. Example 9: Change a Filter Attribute Name 105
6.2.1.10. Example 10: Change a String in One Attribute Filter Value 105
6.2.1.11. Example 11: Change a String in All Attribute Filter Values 105
6.2.1.12. Example 12: Deny Anonymous User Subtree Searches 105
6.2.113. Example 13: Deny Unlimited Searches 105
6.2.1.14. Example 14: Set a Size Limit for Anonymous User Searches 105
6.2.1.15. Example 15: Change a String in all Entry DNs of a Search Result 106
6.2.1.16. Example 16: Hide an Attribute from Returned Search Result Entries 106
6.2.1.17. Example 17: Remove an Attribute from a Request List 106

6.2.1.18. Example 18: Change an Attribute Value in Returned Search Results 106

6.2.1.19. Example 19: Escape a Special Character
6.2.1.20. Example 20: Deny Renaming or Moving Entries
6.2.1.21. Example 21: Prevent Attribute Value Creation for New Entries
6.2.1.22. Example 22: Prevent an Attribute Modification
6.2.2. Considerations for Rewriting Rules

Legal Remarks

Vi

106
107
107
107
107
1o

Preface

This document provides information on how to configure and operate DirX Directory (DirX)
as an LDAP Proxy.

DirX Directory Documentation Set

DirX Directory provides a powerful set of documentation that helps you configure your
directory server and its applications.

The DirX Directory document set consists of the following manuals:

- DirX Directory Introduction. Use this book to obtain a description of the concepts of DirX
Directory.

- DirX Directory Administration Guide. Use this book to understand the basic DirX
Directory administration tasks and how to perform them with the DirX Directory
administration tools.

- DirX Directory Administration Reference. Use this book to obtain reference information
about DirX Directory administration tools and their cormmand syntax, configuration
files, environment variables and file locations of the DirX Directory installation.

- DirX Directory Syntaxes and Attributes. Use this book to obtain reference information
about DirX Directory syntaxes and attributes.

- DirX Directory LDAP Extended Operations. Use this book to obtain reference
information about DirX Directory LDAP Extended Operations.

- DirX Directory External Authentication. Use this book to obtain reference information
about external authentication.

- DirX Directory Supervisor. Use this book to obtain reference information about the DirX
Directory supervisor.

- DirX Directory Plugins for Nagios. Use this book to obtain reference information about
DirX Directory plugins for Nagios.

- DirX Directory Disc Dimensioning Guide. Use this book to understand how to calculate
and organize necessary disc space for initial database configuration and enhancing
existing configurations.

- DirX Directory Guide for CSP Administrators. Use this book to obtain information about
installing, configuring and managing DirX Directory in the context of a Certificate
Provisioning Service operating in accordance with regulations like the German
“Signaturgesetz”.

- DirX Directory Release Notes. Use this book to install DirX Directory and to understand
the features and limitations of the current release.

introduction:prf_intro.pdf
admin-guide:prf_adguide.pdf
admin-reference:prf_adref.pdf
syntaxes-and-attributes:prf_syntax-attributes.pdf
ldap-extended-ops:prf_ldapExtOps.pdf
ext-auth:prf_extAuth.pdf
supervisor:prf_supervisor.pdf
nagios-plugins:prf_nagios.pdf
disc-dim-guide:prf_discDimGuide.pdf
csp-admin:prf_cspAdmin.pdf
release-notes:release-notes.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

install_path

The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userlD_home_directory*/DirX Identity* on UNIX
systems and C:\Program Files\DirX\ldentity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

1. Introduction

The DirX Directory LDAP server can run in one of two modes:
- As a plain LDAP frontend to a DSA. In this mode, the LDAP server forwards incoming
requests to the DSA via DAP.

- As a pure LDAPV3 proxy frontend to another LDAP server. In this mode, the LDAP server
forwards incoming requests to another LDAP server, which can be a DirX Directory
LDAP server or another type of LDAPV3 server (for example, Active Directory).

When configured to run in proxy mode, a DirX Directory LDAP server can be configured to:

- Redirect incoming LDAPV3 operations to other LDAP servers based on user name or
operation type. This feature allows the routing of specific users, groups of users or
special operations to specific servers only; for example, all searches for base object Y can
be routed to LDAP server Z.

- Modify the content of incoming LDAPV3 client requests and outgoing LDAPV3 results
before sending them on for further processing. This feature allows for adding, replacing
or removing unwanted or incompatible data from LDAP requests and results — for
example, to hide certain data from LDAP clients — or to provide a transparent naming
schema between legacy clients and the DIT.

Running the DirX Directory LDAP server in proxy mode has the following advantages:

- It creates a central access point for LDAP clients
- It hides the actual processing server knowledge

- It hides server outages (the feature implies automatic request forwarding to other
available servers in the event of network problems or server outages)

- It transparently provides load balancing to the caller
- It provides an additional access control layer to the directory service

The following figure illustrates a typical DirX Directory LDAP proxy (DLP) server
configuration within a homogeneous DirX Directory environment:

[DsA1 |
A
o~ 1
O <— >
| DSA] .
; < [= DirX Server 1
£ : ([DsA2 |
. P x
L < LDAP LDAP -
; DirX Directory
: < Proxy DirX Server 2
— - |
= (DsA3 |
LDAP Clients ;1\
Configuration (
- Target Server = i
- Rules
DirX Server 3

As shown in the figure:

- Configuration information for the DLP server backend consists of the available target
servers and rules for backend server operation. Routing rules specify how client
requests are selected and forwarded to the configured target servers while rewriting
rules specify how client requests or results are selected for modification and what the
modifications to be made to that data shall be.

- The DLP server’'s contact DSA is the local DSA. Note that although the DLP server's
contact DSA could be DSAI, DSA2 or DSA3, we do not recommend setting it up this way.

1.1. Configuration Elements

Configuration elements for the DLP server include:

- The LDAP configuration subentry
- The proxy mode attribute of the LDAP configuration subentry

- The DLP server configuration file

1.1.1. LDAP Configuration Subentry

Both the LDAP server and the DLP server require the presence of an LDAP configuration
subentry in the DSA to configure the settings related to frontend handling, like ports,
allowed and denied IP addresses and the like.This information is shared between both
modes of operation.See the “DirX Directory Attributes” chapter in the DirX Directory

Syntaxes and Attributes reference document for a complete description of attributes
defined for the LDAP configuration subentry.

1.1.2. Proxy Mode Attribute

Operation as a plain LDAP server or a DLP server is controlled by the IdapProxyMode
attribute in the LDAP configuration subentry. The DirX Directory LDAP server process
(dirxldapv3) automatically reads the value of the IdapProxyMode attribute at startup to
determine whether to run in server mode or proxy mode. See the “Configuration” chapter
in this guide for more information about the IdapProxyMode attribute.

1.1.3. DLP Server Configuration File

When the LDAP server is running in proxy mode - in other words, as a DLP server - the
backend to which the client requests are forwarded is another LDAP server instead of a
DSA. Therefore, settings in the LDAP configuration subentry that affect the backend for
plain LDAP server operation - for example, DAP pool size, unbind delay time, and so on -
can still be configured but will not be relevant for the DLP server.

The backend for DLP server operation is configured in the DLP server configuration file,
which is a separate JavaScript Object Notation (JSON)-formatted file that defines:

- The LDAP server to be enabled as a DLP server

- The LDAP servers to which the DLP server can forward incoming requests

- The rules for routing these requests to these target servers

- The LDAP servers to be used as fallback target servers when there is no routing rule
match on a request; the DLP server selects from this default set of target servers, called
LB-servers.

- The rules for rewriting incoming requests before they are forwarded to a target server
and for rewriting outgoing results before they are returned to the client

See the “Configuration” chapter for more information about the DLP server configuration
file and how to specify the DLP server, target systems, LB-servers and rules.

1.2. Features and Limitations
The DLP server has the following features:

- Once the DLP server selects a target server, it forwards all subsequent operations on the
same LDAP client connection to this same target server.All results from the target
server will be received by the DLP server and returned to the LDAP client unchanged
unless result rewriting rules are in effect and have been applied.

- The DLP server supports anonymous and simple authenticated LDAP users
via plain and SSL/TLS.

- The DLP server can act as a TLS gateway for non-TLS clients; that is, it can receive
requests from plain clients (without SSL/TLS) and then forward these requests over a
secure connection to the target servers.

- The DLP server supports operation forwarding via plain and SSL connections to LDAP
target servers.

- The DLP server forwards all types of LDAP operations except for LDAP extended
operations, which are always executed locally either against the DLP server or the local
DSA.Only the RFC3062 extended operation will be forwarded.

- If LDAP extended operations are to be executed against a target server, the operation
must be sent directly to it.

- The DLP server requires a local DSA to host the DLP server’'s LDAP configuration
subentry and the schema information used in client requests.

- The DLP server supports logging and auditing through the DirX Directory LDAP audit
interfaces and tools (dirxauddecode). See the logging and auditing chapters in this
guide for examples of output returned by these interfaces for DLP server mode.

- The DLP server supports a DirX Directory Manager interface and DirX Directory LDAP
extended operations to query server status and initiate dynamic updates to its
configuration without interrupting service. It supports DirX Directory LDAP extended
operations to disable and enable the target LDAP servers configured to be available to
the DLP server. See the Extended Operations chapter in this guide for reference
descriptions of these operations.

The DLP server has the following limitations:

- The DLP server only accepts LDAPV3 requests. LDAPV2 is not supported.

- The DLP server can only forward LDAPV3 traffic. It cannot forward any other type of
traffic.

- The DLP server does not support client-based authentication (SASL EXTERNAL)

- Because the DLP server establishes the same number of backend connections as
frontend connections, be careful not to exceed the descriptor limits (usually a
maximum of 4,000 LDAP frontend connections).

- Unlike the DSA backend, which has backend sharing capabilities, each LDAP client will
always occupy two descriptors in the DLP server backend.

- Although the DLP server can establish up to 4,000 client connections on Linux
platforms, we recommend limiting the number of possible client connections (since
having huge arrays of sockets to multiplex can slow down server responsivity) and
configuring multiple DLP servers instead.

The DLP server's routing mechanism has the following considerations:

- The possible target servers for a user should share the same knowledge in their DIT; that
is, in terms of replication, they should be “full shadows” of each other. Mixing target
servers with different knowledge should be avoided.

- Since DLP server forwarding can be based on the user’'s DN, the DLP server requires
knowledge of the naming attributes of the DN. As a result, all attributes that may
appear in a user's DN - including those of any non-DirX Directory target servers present
in the configuration - should be defined in the DLP server's local schema.

2. Configuration

Setting up a DirX Directory LDAP server for operation as a DLP server requires two
configuration tasks:

- Configuring the IdapProxyMode attribute in the LDAP server configuration subentry

- Setting up the DLP server configuration file

2.1. LDAP Proxy Mode Attribute

The IdapProxyMode attribute is an optional single-valued attribute that controls whether
the LDAP server runs as:

- A normal LDAP server
- A DLP server without support for SSL/TLS backends
- A DLP server with support for SSL/TLS backends

If the IdapProxyMode attribute is not present in the LDAP configuration subentry, the LDAP
server runs as a plain LDAP server.

Specify one of the following integer values:

- O0-Run as anormal LDAP server.

- 1-Run as a DLP server that does not support SSL/TLS backends. In this mode, the
SSL/TLS functionality for the DLP server backend is not initialized which saves time and
memory and does not require the configuration of SSL/TLS key material.

- 2-Run as a DLP server that supports SSL/TLS backends. This mode requires the
presence of valid SSL/TLS key material; in particular, the necessary trusted CA
certificates must be provided in order to set up SSL/TLS connection to LDAPS backend
servers. If your configuration currently uses plain connections but you expect to
upgrade to using SSL/TLS in the near future, we recommend setting this mode and
providing the required SSL/TLS key material.

The default value is O.

You cannot change from mode 1to mode 2 during DLP server runtime, but you are allowed
to change from mode 2 to mode 1 (downgrade) during DLP server runtime. To change the
mode from 1to 2, you must restart the LDAP server process. A value of O always switches to
plain LDAP server mode.

Note that proxy modes 1and 2 have no effect on the LDAP frontend’s SSL/TLS connectivity;
that is, even if mode 1is set, LDAP clients can still connect to the DLP server via SSL/TLS.
The setting only prohibits the use of SSL/TLS when forwarding the request to the target
servers.

2.1.1. Abbreviation

LPROM

2.1.2. LDAP Name(s)

IdapProxyMode

2.1.3. Syntax (DAP)

Integer

2.1.4. Syntax (LDAP)

Integer (LDAP Style)

2.1.5. Example (DAP)

LPROM=]

2.1.6. Example (LDAP)

ldapProxyMode=2

2.2. DLP Server Configuration File

To run the LDAP server as a DLP server, its backend configuration must be defined in a
JavaScript Object Notation (JSON)-formatted configuration file named Idap_proxy.json
which is located by default at install_path/ldap/conf.This file defines:

- The LDAP server process to be enabled as a DLP server

- The target systems to be used by the DLP server

- The defaults to be applied to operations handled by the DLP server

- The operation-forwarding and rewriting rules to be applied when running as a DLP

server

The next sections describe configuration file syntax and how to debug problems with JSON
syntax.

2.2.1. DLP Server Configuration File Syntax

The DLP server configuration file is a text file that you can edit with any common text
editor. It consists of object definitions arranged in a single array. The array starts with an
opening square bracket ([) and ends with a closing square bracket (]). Array elements
(called objects) are separated by commas (,). Each object starts with an open curly brace (\{)
and ends with a closing curly brace (}).

Thus, the fundamental layout of the configuration file looks like this:

[{LO1},{_ 02.}...{On}]

Where O]..0n are JISON objects.The array can have any number of objects in an arbitrary
order.Each object can have its own different syntax.

Each single object consists of a list of key-value pairs separated by colons ().

All keys are strings, while the values can be integers, simple strings or arrays of strings like:

i
“keyl” “valuel”, // string
“key2” : [“eleml”, "elem2”], // array of 2 strings
“key3” : 4711, // integer
“key4” “valued” // another string
$

Objects can also have values, such as:

i
“key5” : “valueb”,
“key6” : 123,
“key7" : { // sub-object as value
“optionl” : 0,
“option2” : "“foobar”
5
3

Within an object, the order of key-value pairs is arbitrary. Each key-value pair is separated
by a comma (,).

You can use C/C++-style comments in the file; that is, if the two characters “//" are found, the
JSON parser will ignore the rest of the current line. The same is valid if the two characters
“/" are found; in this case, the parser will ignore everything until it finds the two chars */”
(such comments can span multiple lines.)

2.2.2. Locating JSON Syntax Errors

If the DLP server configuration file does not contain valid JSON syntax, the LDAP server will
not start. When JSON syntax errors are detected, the JSON parser will report them with
messages like:

FATAL! JSON parsing error.
Illegal Proxy-Config file!! (must start as an array of objects)

FATAL: Cannot read PROXY configuration (ldap_proxy.json)!

10

LDAP Server exit (ExitCode: 19 Reason: FATAL: Cannot process PROXY configuration! Server
stopped.)

Unfortunately, the parser does not provide more details about the location of the error.
Thus, it requires some manual effort to locate the problem.

The first step should be to look at the JSON file and make sure that all required commas (,)
are present. Most of the errors are due to missing commas. Remember that all objects
must be separated by commas, all components within an object must be separated by
commas and all server arrays must be separated by commas.

Another cause of errors is missing trailing quotation marks for strings; for example, “LDAP2.

Take care, too, that you do not specify integers (for example, 4711) as strings (for example,
“4711").

You can also set the environment variable
DIRX_JSON_DEBUG=1

and then restart the DLP server.This action writes the JSON parsing process to stderr so
that you can view the parser’s progress and identify the possible error location where
parsing aborts.

If these steps don't work, you can use an online JSON checker like
http://json.parser.online.fr/

The checker tries to analyze the syntax and show where the problem may exist.Be sure to
remove any comments before using the checker, as JSON usually does not allow C/C++
comments.

2.3. DLP Server Configuration Objects

The DLP server configuration file supports the following object types for defining the
information necessary for DLP server backend operation:

- LdapProxy — defines which LDAP server process runs as a DLP server

- LdapServer — defines a target server

- Attributelist — defines a list of attributes

- Defaults — defines explicit defaults to be applied to all operations handled by the DLP
server

- ProxyRule - defines operation forwarding and LDAP request/result rewriting rules

LdapProxy and LdapServer are mandatory objects.The ProxyRule objects are

optional. When specified, they allow the DLP server to redirect LDAP client requests from
particular users or with particular operation types to particular LDAP servers and to rewrite
incoming client requests and outgoing server results.The Defaults object is also optional; if
it is not used, the DLP server uses its internal defaults.Note that no matter what the DLP

n

http://json.parser.online.fr/

server configuration file contains, it must be specified as an array of 1to n objects as
required by JSON syntax.

Each object must define two keys:

- The object key — the value of this key is a string and defines the object’s type and its

components.

- The name key — the value of this key is a unique string that gives the object a symbolic

name.

Additional key-value pairs may be mandatory depending on the object.

2.3.1. The LdapProxy Object

The LdapProxy object is a mandatory object in the DLP server configuration file and
specifies the LDAP server to be enabled as a DLP server at process startup. Here is an
example:

"object” : "LdapProxy",
"“name” : "ldapConfiguration”,
"LBservers” : ["LDAP1", "LDAP2", "LDAP3"]

In the object definition:

- The object key is mandatory and must be the string LdapProxy.

- The name key is mandatory and must be the LDAP configuration subentry name of the

LDAP server to be configured as a DLP server. By default, this name is
IdapConfiguration.

- The LBservers key is mandatory and defines the target servers (1-n) to which the DLP

server can forward requests from users that do not match any of the user-routing or
operation-routing rules defined in the DLP server configuration file. Its value is an array
of symbolic LDAP server names that must match the names of LdapServer objects
defined in the same configuration file. Note that the value must be specified as an array
even if only one LDAP server is listed or an error occurs and the LDAP server will not
start. If a user is controlled by a user- or operation-routing rule, DLP server ignores the
LBservers value(s). The method the DLP server uses to select from a list of LB-servers for
forwarding depends on the settings of loadbalance and failover keys in the Defaults
object definition. See the description of the Defaults object definition in this guide for
details.

2.3.2. The LdapServer Object

The LdapServer object defines a target LDAP server to which the DLP server can forward
incoming client requests. Here is an example:

12

"object” : "LdapServer", // this is a target server
“name” : "LDAP3”, // symbolic name
"protocol"” : "ldap", // use plain connection
"host" : "192.168.10.7", // target host or IP
"port"” ;389 // target port

In the object definition:

- The object key is mandatory and must be the string LdapServer.

- The name key is mandatory and can have any string value as long as the value is
unique. The name is used in other objects in the configuration file (for example, in
LdapProxy objects) to refer to a specific target server.

- The protocol key is mandatory and defines how the request is forwarded to the target
server. The value Idap results in unencrypted plain socket mode. The value Idaps results
in an SSL connection to the target server. When ldaps is used, the DLP server must run
in ProxyMode=2 and suitable TLS key material must be provided.

- The host key is mandatory and defines the IP or DNS name of the target LDAP server.

- The port key is mandatory and defines the port of the target LDAP server.

If the target server is to be addressed via SSL/TLS, the ssl key must also be defined. Here is
an example:

{ // Defines an SSL LDAP server
"object” : "LdapServer",
"name" : "LDAP2",
"protocol"” : "ldaps", // use SSL/TLS
"host" : "192.168.10.8",
"port” : 636, // secure port
"ssl" D3
"trusted_ca_file" : "C:/Program
Files/DirX/Directory/conf/testCA.pem",
"ssl_protocol” : "TLSv12",
"ssl_cipher” : "HIGH"
§
5

The value of the ssl key is a sub-object (enclosed in curly braces (\{ }) with the following
mandatory components:

13

- ssl_protocol — defines which SSL/TLS protocol to use. Possible values are TLSvV10, TLSVII,
TLSV12 or TLSV13. The value is case sensitive. Make sure that the target server supports
and allows the selected protocol.

- ssl_cipher - a string that defines the cipher list. The DLP server uses OpenSSL to contact
target servers via SSL/TLS. The recommmended value for TLS versions < TLSv12 is HIGH,
which typically excludes unsafe ciphers from being selected. If TLSV13 is chosen special
ciphers must be selected. See the OpenSSL documentation for information on possible
cipher values.

- trusted_ca_files — defines the full qualified PEM file name that contains the chains of
trusted public CA certificates used to verify the received server certificates from the
target servers during the SSL handshake.

The DLP server currently supports only server-based SSL/TLS authentication against the
backend, which means that the client verifies the server's certificate but not vice versa.
Client-based SSL/TLS authentication against the backend is not supported. Thus, target
servers that require client-based authentication should not be configured as target servers.

2.3.3. The AttributeList Object

You can use the Attributelist object to define a list of attributes for the showonly action of
the search.res.attributes token of a rewriting rule in operations handled by the DLP server.
Here is an example:

5 // Defines Attributelists
{
"object” : "Attributelist”,
"name"” : "ATTRLIST1",
"attributes” : ["sn", "surName", "cn", "commonName", "tn",

"telephoneNumber”, "title", "dxidummy"]

"object"” : "Attributelist",
"name” : "ATTRLIST2",
"attributes" : [
“tn",
"telephoneNumber”,
"title",
"dxidummy ",

"description

In the object definition:

14

- The object key is mandatory and must be the string AttributeList.

- The name key is mandatory and must be a unique string within multiple Attributelist
definitions.

- The attributes key is a list of LDAP attribute names separated by a comma (,) and
enclosed in square brackets []. If an attribute has multiple LDAP names, for example,
telephoneNumber and tn, all LDAP names must be specified to ensure the visibility in
the result. OIDs cannot be specified instead of the LDAP name.

Attribute lists are only supported for the showonly action.

Keep in mind that the order of multiple actions is important that is the output of an action
is the input of the subsequent action.

2.3.4. The Defaults Object

You can use the Defaults object to define explicit defaults to be applied to all operations
handled by the DLP server. If used, the Defaults object must be the first object defined in
the DLP server configuration file.

All of the values in the Defaults object are integers. Here is an example:

1
"object"” : "Defaults"”,
"LdapProxy" : §
"1lb_failover" : 1,
"1b_balance" 1
$
"TLSLogging"” 10,
"Tracing" 10,
"ConnectTimeout" : 5,
"OfflineRetryTime" : 30
"JSONCodeSet" 1
"NotifyRewrite" 1
"NullParamStr" : "NULL"
"DiscloseTarget"” 1
3

In the Defaults object definition, the object key value is mandatory and must be Defaults.
Although the other keys are optional, we recommend specifying all of them in the object
definition. These keys include:

- LdapProxy.lb_failover, which determines whether or not the DLP server contacts the
next server from the LBServer list defined in the LdapProxy object using a round-robin
scheme. By default (LdapProxy.lb_failover is set to 1), if more than one LB-server is
configured and an I/O error occurs to a selected target server, the DLP server fails over

15

16

to the next server. If this one also fails, it fails over to the next, and so on until all servers
have been tried. To change this behavior, set the property LdapProxy.lb_failover to O.
Now the operation returns an error if the selected target server raises an I/O error.

- The LdapProxy.lb_balance, which determines whether or not the DLP server applies a

round-robin scheme to select the primary server from the LBserver list specified in the
LdapProxy object definition. By default (LdapProxy.lb_balance set to of 1), if more than
one LB-server is configured, each user that has no other governing rule is forwarded to
one of the LB-servers using round-robin selection. For example, suppose C1, C2, C3, C4
are LDAP client users that are not controlled by other rules (the numbers indicate the
time sequence in which the users perform their binds) and LBservers lists LDAPT,
LDAP2, and LDAP 3 servers. DLP server forwarding will be C1to LDAP1, C2 to LDAP2, C3
to LDAP3, C4 to LDAPI. To change this default behavior, set the LdapProxy.lb_balance
property to 0. Now the DLP server forwards every user request that has no governing
rule to the same primary server (the first server in the LBserver list, which is LDAPT in
this case).

- TLSLogging, which controls whether (1) or not (0) the DLP server generates a readable

log file install_path*/|dap/log/proxyssl*pid*txt* where pid is the PID of the DLP server
process. (The default value is 0.) Note that enabling TLSLogging will slow down
performance significantly and is only intended for error analysis.

- Tracing, which controls whether (1, 2 or 3) or not (0) tracing information is sent to stderr

and the verbosity of tracing information sent (1, 2 or 3). The higher the value, the more
verbose the tracing information generated. (The default value is 0.) Enabling Tracing
will slow down performance noticeably.

- ConnectTimeout, which defines the number of seconds the DLP server waits for a TCP

connect to succeed before it tries another server (if available and failover is allowed) or
the operation fails. The default value is 5 seconds. Be careful not to supply a value that's
too low, as it may lead to frequent timeouts when network performance is poor or the
contacted target server is under high load. For a description of how this setting affects
DLP server operation, see the section "Connect Timeout".

- OfflineRetryTimeout, which defines the number of seconds for which the DLP server

disables a failed target server for further selection. The default value is 60 seconds. For a
description of how this setting affects DLP server operation, see the section "Offline
Handling and Server Retry".

- JSONCodeSet, which specifies the code set in which the DLP server configuration file is

encoded (the configuration file is a JISON file, as described in the “Configuration”
chapter). A value of O indicates to the DLP server that the configuration file is encoded
in Latin-1 and needs to be converted to UTF-8 format for LDAP, which only supports the
UTF-8 code set. A value of Tindicates that the configuration file is encoded in UTF-8 and
needs no conversion. The default value is 1 (UTF-8). For a description of how this setting
affects DLP server operation, see the “Operations” chapter.

- NotifyRewrite, which controls whether (1) or not (0) notification of request/result

rewriting is included in the LDAP response error message. When set to 1, the client
receives a string like Proxy-Modified=yes, which indicates that the DLP server has
modified the request or the result. Set this key to 0 to hide information from clients
about DLP server changes to requests and results.

- NullParamStr, which defines a placeholder string for an empty rewrite action

parameter in a DLP server rewriting rule. The default placeholder string is NULL. For a
description of how this setting applies to DLP server rewriting rules, see the section
“Protocol-Specific Actions” in the chapter “Proxy Rules”.

- DiscloseTarget, which controls whether (1) or not (0) the DLP server identifies the target
server that processed the LDAP request in the LDAP response message. For example,
when set to 1, the following output is returned for the following dirxcp command:

dirxcp> bind -prot ldapv3 -user cn=richter,ou=sales,o=pqr -auth
simple -address localhost:8080 -pass abcl23
§$LDAP-Result: Bind succeeded. (Proxy-Target:LDAP2)}?

Note that TLSLogging and Tracing produce a lot of output and slow down performance
drastically. They are intended to be used only for error analysis and not for normal
operation.

2.3.5. The ProxyRule Object

The ProxyRule object is an optional object in the DLP server configuration file that specifies
a rule to be applied to an LDAP operation. A ProxyRule object can specify:

- Rules for operation forwarding based on the user's DN or on the operation type

- Rules for rewriting an LDAP client request or the result returned by the target LDAP
server.

Here are examples of ProxyRule object definitions for each of these rules:

i
// user-routing rule: redirect user ‘richter’ to LDAP1
"object” : "ProxyRule",
"ruleType” : "UserRouting",
“name” : "USERROUTINGL",
"condition" : "(user=cn=richter,ou=sales,o=pqr)",
"actions” : ["forwardto(LDAP1)" 17,
"loadbalance" : 1,
"failover"

5o

{
// operation-routing rule: redirect ADDs to LDAP2
"object"” : "ProxyRule",
"ruleType" : "OprRouting",
"name” : "OPRROUTING2",
"condition” : "opr.req.type=add",

17

"actions” : ["singleforwardto(LDAP2)" 7,
"failover" : 0,

"keepconn" : 1

// request rewriting rule: change o=my-company to o=pqr for
search bases

"object"” . "ProxyRule",

"ruleType" : "ReqRewrite",

“name” . "ReqRewritel"”,

"“condition” : ‘opr.req.type=search",

"actions” : ["search.req.baseObject.replace(o=my-
company,o=pqr,NULL)"]
5
i

// result rewriting rule: remove sn=Digger from any search result

// add description=blabla to all result entries

"object” : "ProxyRule",

"ruleType" : "ResRewrite",

"name"” . "Test 04",

"condition" : ‘"opr.req.type=search"”,

"actions” : ["search.res.attributes.del(sn,Digger,NULL)",

"search.res.attributes.add(description,blabla,NULL)"

1
5

In the object definition:

18

- The object key is mandatory and must be the string ProxyRule.

- The ruleType key is mandatory and must be one of the following strings:

- UserRouting - defines a rule for operation forwarding based on the user's DN

- OprRouting - defines a rule for operation forwarding based on the operation type
- RegRewrite - defines a rule for modifying the data in an incoming client request

- ResRewrite — defines a rule for modifying the data in an outgoing result of a client

request

- The name key is mandatory and can have any string value as long as the value is

unique.

- The condition key is mandatory and specifies the selection criteria that an LDAP

operation must satisfy in order for the actions specified in the actions key to be

executed on the operation. Condition values are specified in LDAP filter string format;
the value depends on the value of the ruleType key:

- UserRouting, OprRouting - the condition value selects for forwarding the LDAP
operation to a target server

- ReqRewrite, ResRewrite - the condition value selects for modifying a component of the
LDAP operation

Rule conditions follow the syntax of LDAP strings and are evaluated just like LDAP filters
(including nested filters with and/or/not). The only difference is that the assignments in the
filter are well-defined keywords (for example, wcuser or opr.req.type) instead of attribute
types. See the chapter “Proxy Rules” for details on how to specify rule conditions for each
rule type.

- The actions key is mandatory and defines the operations to be performed on the LDAP
operation if it matches the rule condition selection criteria. An action is defined as a
JSON array; the value depends on the ruleType value:

- UserRouting, OprRouting — the action is a forwarding operation to a selected set of
LDAP servers or a general action, such as denying the request. See the descriptions of
the user- and operation-routing rules in the chapter “Proxy Rules” for details on how to
specify a forwarding action.

- RegRewrite, ResRewrite — the action is a rewriting operation for a specific component
of an LDAP operation — for example, to change the base object of an incoming search
request - or a general action, such as denying the request. Multiple actions can be
defined for an individual rule and are executed in the order in which they are defined.
See the description of the rewriting rules in the chapter “Proxy Rules” for details on how
to specify rewriting actions.

A ProxyRule object definition can contain additional keys depending on the value of the
ruleType key. See the descriptions of the different rule types in the chapter “Proxy Rules”
for details.

The configuration file can contain any number of ProxyRule object definitions. More than
one rule may be applied to an operation if it matches multiple rule conditions. Rules are
evaluated and executed in the order in which they appear in the configuration file. See the
chapter “Proxy Rules” for examples of this process.

The DLP server allows Latin-1 characters like the German umlaut to be used in proxy rule
conditions and actions and converts them to UTF-8 format before passing them to LDAP,
which only supports the UTF-8 encoding. The value of the JISONCodeSet key in the
Defaults object definition indicates to the DLP server whether or not it should make this
conversion. Consequently, the ProxyRule object definitions in a DLP server configuration
file must all be in the same character set.

Rule conditions and actions may need to use characters that LDAP, JSON or the proxy rule
action syntax define as special characters. These characters require special handling in the
proxy rule definition. See the section “Handling Special Characters in Rule Conditions and
Actions” in the chapter “Proxy Rules” for a description of these special characters and how
to specify them in proxy rule definitions.

19

3. Proxy Rules

A DLP server proxy rule consists primarily of a condition and a set of actions to be executed
by the DLP server if the data in the running operation match the condition. Proxy rule types
include:

- User-routing rules, where the target server selection is made according to an explicit
user DN, a regular expression for a user's DN and/or a node DN below which a user
resides. User-routing rules can be defined, for example, to redirect groups of users to a
specific target server or servers. Note that if the DN represents a group, the DNs inside
the group are not dereferenced; that is, users inside a group are not implicitly used if
the DN describes a group.

- Operation-routing rules, where the target server selection is made according to the type
of operation to be forwarded. Operation-routing rules can be defined, for example, to
direct all modification operations to a master server while searches are directed to a
shadow server, or to direct all searches with a particular base object to a dedicated
server while all other operations are forwarded to another target server.

- Request-and result-rewriting rules, where modifications to an operation’s data are
made according to the actions defined in the rule if the running operation matches the
condition defined in the rule. Rewriting rules can be defined, for example, to update
attributes like organization names associated with communication between legacy
clients and a directory service or to remove sensitive information returned in search
results before returning them to clients.

The ProxyRule DLP server configuration object defines a proxy rule. Multiple proxy rules
can be defined; the DLP server evaluates and executes proxy rules in the order in which
they appear in the DLP server configuration file.

This chapter provides detailed syntax and operational information for each proxy rule type
and also provides information about special character handling that applies to all proxy rule
types. The section “The ProxyRule Object" in the “Configuration” chapter provides syntax
and operational information that is common to all proxy rule types.

3.1. User-routing Rules

The UserRouting proxy rule type defines an operation-forwarding rule for one explicitly-
specified user, for users whose DN match a regular expression (wildcard) or for users below
a given node in the DIT.If the DN of the bound user matches the configured condition in
this rule, the rule is applied.The next sections describe how to specify user-routing rules and
how the DLP server processes them.

3.1.1. Syntax Description

User-routing rules are specified as ProxyRule objects in the DLP server configuration
file.Here is an example of a user-routing rule:

20

"object"” : "ProxyRule",

"ruleType" : "UserRouting",
"name” : "USERROUTING1",
"condition” : "(|(user=cn=richter,ou=sales,o=my-

company) (wcuser="cn=D. *o=my-company) (subuser=ou=sales,o=my-
company))",

"actions" . ["forwardto(LDAP2,LDAP1)" 7,
"loadbalance" : 0,
"failover" 1

In the object definition:

- The object key is mandatory and must be the string ProxyRule.
- The ruleType key is mandatory and must be UserRouting.

- The name key is mandatory and can have any string value as long as the value is
unique.

- The condition key is a mandatory LDAP filter string in the format token assertion value
that describes the criteria that the user DN in the incoming bind operation must satisfy
in order for the DLP server to perform the forwarding action defined in the rule.

For user-routing rules, token is one of the following user classes:

- user —the rule is to be applied to one explicitly specified user. If the DN of the bound
user matches the configured DN in this rule, the rule is applied. The value must be a
syntactically legal LDAP DN. The rule will be selected according to this DN when this
user invokes an LDAP bind operation. You can specify the string anonymous for the
user DN to define a rule that applies to anonymous users that do not perform a bind
operation or bind as an anonymous user. As authentication via method EXTERNAL SASL
is not supported, users identified by their X.509 certificate cannot be used.

- subuser - the rule is to be applied to the users below a given node in the DIT. The
subuser rule works like the user rule except that instead of defining a single user, all
users below the specified node are affected. However, if a user in the specified subtree
has an explicit user rule assigned, this specific rule overrides the subuser rule because a
user rule takes precedence over a subuser rule.

- wcuser — defines a rule for users whose DN match a regular expression (wildcard). This
rule works exactly like the user rule except that the user's DN is matched against a
regular expression given in the wcuser value. The regular expression follows the
Linux/Perl regular expression syntax and is performed case-insensitive.

Although assertion can be any valid LDAP assertion (see the section “Rewriting Rules -
“The Condition Key” » “Condition Rule Syntax” for the list of supported and unsupported
assertions), the power of using the wildcard user (wcuser) condition, where you can assign
almost any kind of abbreviation for a DN, means that the equal assertion is the most
meaningful assertion to use in user-routing rules.

21

In the example wcuser=Acn=D.*o=my-company above, users like
cn=Digger, ou=development, o=my-company
cn=Digger,ou=sales,o=my-company

cn=Digger, ou=support2,ou=supportl,o=my-company

match the rule.

- The actions key is mandatory. For user-routing rules, the forwardto action is the only
action supported (besides the general action denyreq) and defines a JSON array of
LDAP target servers enclosed in square brackets []. The target servers are indicated by
their names and must match the name of an LDAPserver object definition in the same
configuration file. At least one name must be present in the array (an empty array is not
allowed). The first server given in the list is considered to be the default primary server.
Be sure to avoid leading and trailing blanks in LDAP server names as they will be
interpreted as part of the name.

User-routing rules can also specify the denyreq general action. For more information on
what this action does, see “Rewriting Rules” » “Syntax Description” » “The actions Key” »
“General Actions”.

- The loadbalance key is optional and defines how the DLP server handles the servers
listed in the forwardto action during primary server selection (the first server to be
contacted from the list). The DLP server does not perform load balancing by default: the
first server from the list is always the primary server. To change the default behavior,
specify the loadbalance key and set it to 1. Now, for every new bind from the user, the
DLP server selects the next server from the list using a round-robin scheme.

- The failover key is optional and defines how the DLP server handles the servers listed in
the forwardto action when an error occurs while sending a request to the target server.
By default, there is a failover to the next server if an error occurs with the selected target
server. To change the default behavior, specify the failover key and set it to 0. Now the
operation will fail if the primary server fails.

The default behavior for loadbalance and failover differs between user,
subuser and wcuser rule conditions. The reason for this difference is the
general assumption that multi-user rules (subuser and wcuser) will
generate too much traffic for a single target server and thus load balancing
is the desired behavior. In contrast, the traffic from a single user is not so
relevant to the total server load.

If failover is active and all configured servers fail, the entire operation fails.
The section “How User-routing rules are Processed” provides more information about how
the DLP server selects user-routing rules and target servers given load-balancing and

failover settings.

Each LDAP client has its own backend LDAP connection; no backend sharing takes place
even if credential match or backend sharing has been configured in the LDAP

22

configuration subentry. Once established, the backend connection to the selected target
remains open until the client performs an unbind operation, drops the connection to the
DLP server, the target server closes the connection (for example, because of client-idle-
timeout) or a network error occurs. Due to the one-to-one relationship between frontend
client connections and backend server connections, the possible number of parallel client
connection depends on the number of available socket descriptors.

3.1.2. How User-routing Rules are Processed

A target server from a user-routing rule is selected by one the following events:

- A client performs a bind operation. It doesn’'t matter whether the bind operation is the
first operation on a LDAP connection or if it occurs at later time on the existing
connection.

Whenever the DLP server detects a bind, it searches for a user-routing rule for the user
defined by the incoming bind operation. If the DLP server finds a rule, it sets the target
server according to the rule. If a target server has already been selected (for example,
because a bind occurred earlier on this connection) the DLP server drops the existing
connection and uses the target server from the last bind operation for all subsequent
operations; that is, a total target shift is performed. If the new target server(s) cannot be
connected, the existing connection remains intact and all further operations will go to
the old target (shift on success).

- The first operation on a newly created LDAP connection is not a bind. In this case, the
DLP server assumes an anonymous user, searches for a user-routing rule for
anonymous and sets the target server accordingly. If no rule is found, the DLP server
uses the LB-servers as a fallback.

The DLP server evaluates user-routing rules in the order in which they are specified in the
DLP server configuration file; that is, it evaluate the first user-routing rule if finds, then the
second and so on.

If a condition matches the user, the DLP server stops searching and assigns the servers
from the corresponding user-routing rule to the user as new target servers for LDAP
requests. The servers from a matching user-routing rule are called the “relevant servers” for
the current user. Note that servers that have been previously detected to fail or are marked
as offline are automatically excluded from the relevant servers.

In a list of servers, the server that the DLP server selects first is defined by the loadbalance
option in the rule.A value of 0 specifies that the first server in the list is always selected for
the requests.A value of 1 specifies that a target server is to be selected using a simple
round-robin selection process.

Once a target server is selected and successfully contacted, all subsequent requests are
sent to the same selected server until a new bind operation is performed on the same
LDAP connection or the connection ends.If the DLP server cannot contact a target server or
an established connection to this server fails, the failover option defines whether or not the
next server from the relevant servers list is selected and the request resubmitted to this
server.If failover is set to 1and the connection to a server breaks, the next server from the
list is selected as the new target server and all subsequent requests are sent to this new

23

server (until this server also fails) This automatic reselection is transparent to the client and
continues until all relevant servers have been contacted and have failed at least once.

For example: Let's assume that the list of target servers for user X is LDAP1, LDAP2, LDAP3
and that failover=1 and loadbalancing=1 are set.

When user X binds for the first time LDAP1 is selected.If LDAP1 can be contacted
successfully, LDAPT1 is the target server for all subsequent operations.

After performing some operations, user X closes his connection (unbind).Sometime later,
user X again performs a bind and LDAP2 is selected (loadbalancing=1) but now LDAP2 is
down and cannot be reached.As failover=1 is set, the next selected target server is LDAP3,
which is up and the bind succeeds.Again, user X performs some operations against LDAP3
and finally closes the connection.A few moments later, user X binds again and because
loadbalancing=1, LDAP3 is selected (last time, LDAP2 was selected due to load-balancing
and then failed; failover occurred but the selection for load-balancing is not influenced by
failover) Thus we now have LDAP3 again as the target server for all remaining
operations.This example shows that load-balancing selection and failover selection are
independent from each other although they select from the same list.

3.2. Operation-routing Rules

The OprRouting proxy rule type defines an operation-forwarding rule for one explicitly-
specified LDAP operation.Operation-routing rules can direct single operations, based upon
the request parameters, to dedicated target servers.If the operation matches the
configured condition in the rule, the rule is applied.

3.2.1. Syntax Description

Operation-routing rules are specified as ProxyRule objects in the DLP server configuration
file.Here is an example of an operation-routing rule:

1
"object"” : "ProxyRule",
"ruleType" : "OprRouting",
“name” : "OPRROUTING2",
"condition”

"(&(opr.req.type=search)(search.req.baseObject=o0=pqr))",

"actions” : ["singleforwardto(LDAP1,LDAP3)" 7],
"failover" 1,
"keepconn" 1

In the object definition:

- The object key is mandatory and must be the string ProxyRule.

24

- The ruleType key is mandatory and must be OprRouting.

- The name key is mandatory and can have any string value as long as the value is
unique.

- The condition key is a mandatory LDAP filter string in the format token assertion value
that describes the criteria that the running operation must satisfy in order for the DLP
server to perform the action on the operation defined in the rule. See the condition
syntax description in the section “Rewriting Rules” » “Syntax Description” » “The
Condition Key"” » “Condition Rule Syntax” for details about this format as it applies to
operation-routing rules and rewriting rules.

For operation-routing rules, token can be any of the tokens described in the table
“Condition Token Names and Assignments” provided in the section “Rewriting Rules”. Note
that condition keys that specify bind operations - for example, opr.req.type=bind
opr.req.type=* - are not permitted to be used in operation-routing rules because bind
operations are handled separately by the user-routing rules and specifying them here may
lead to unwanted behavior.

- The actions key is mandatory. For operation-routing rules, the singleforwardto action is
the only action supported (besides the general action denyreq) and defines a JSON
array of LDAP target servers enclosed in square brackets []. The target servers are
indicated by their names and must match the name of a definition of an LDAPserver
object in the same configuration file. At least one name must be present in the array (an
empty array is not allowed). The first server given in the list is considered to be the
primary server. The next servers are only contacted if the previous servers are
unreachable and the failover key is set to 1. Avoid leading and trailing blanks in LDAP
server names because they will be interpreted as part of the server names.

Operation-routing rules can also specify the denyreq action. For more information on how
this action works, see “Rewriting Rules” » “Syntax Description” » “The actions Key"” »
“General Actions”.

- The failover key defines how the DLP server handles the servers listed in
singleforwardto when an error occurs while sending a request to the target server. If
failover is set to 1the request is sent to the next server if an error occurs with the
selected target server. To change this behavior, set the failover key to 0. Now the
operation will fail if the primary server fails.

- The keepconn key defines whether (1) or not (0) the connection to the selected target
server is to remain open after the operation is performed. Keeping the new connection
open may be important if the operation performed was a paged search: the cookies for
paged search are maintained by the servers only for the same connection, so closing a
new connection that was caused by an operation-routing rule will break subsequent
paged searches. Note: If keepconn is set to 1for an operation, subsequent operations for
which no other operation-routing rule is defined will use the connection that has been
kept open.

Note, too, that when keepconn=1is set and the operation governed by an operation rule
succeeds, the target server that was selected by the bind operation is overlaid with the
target from the operation-routing rule and therefore becomes obsolete. For more
information about this behavior, see the examples in the chapter "Examples and

25

Considerations".

Note that operation-routing rules are applied before any defined rewriting rules, so target
server selection is based on the original LDAP input from the client.

3.2.2. How Operation-routing Rules are Processed

When a client connects to the DLP server for the first time (mostly via the bind operation), a
user-routing procedure is performed that determines the target server for all operations of
this user.

Target server selection is governed either by an existing user-routing rule or, if no suitable
rule is found in the list of user-routing rules, by the default LB-server selection.

The result of this process is a set of 1-n target servers that are used whenever the user issues
an operation that does not match an operation-routing rule; in other words, an operation-
routing rule overrides the target server settings from the user-routing rule.

Thus, when an operation comes in from a user, the DLP server first determines whether
there is a matching operation-routing rule and if so, uses the target servers from this rule. If
there is no matching operation-routing rule, the DLP server uses the user-routing target
servers as selections for forwarding the request.

When the DLP server searches for a matching operation-routing rule, it processes the
operation-routing rules in the order in which they are defined in the DLP server
configuration file and stops searching when it finds a match. Consequently, we
recommend placing the rules with specific conditions in the configuration file before the
more general ones.

For example, suppose there are two operation-routing rules ORR#1 and ORR#2:
ORR#1 (opr.req.type=search)
ORR#2 (&(opr.req.type=search)(search.req.baseObject=o=my-company))

In this example, ORR#2 should appear before ORR#1in the DLP server configuration file,
otherwise the more specific ORR#2 will never be reached, as opr.req.type=search is true for
both rules but the search will stop after the first match.

Note that the same restrictions apply for operation-routing conditions as for ReqRewrite
rule conditions.For example, you are not allowed to OR the opr.req.type token with other
tokens, for example:

(| (opr.req.type=search)(user=cn=admin, o=my-company))

See “Rewriting Rules” » “Syntax Description” » “The condition Key” » “Using the opr.reqg.type
Token" for more information.

26

3.3. Rewriting Rules

The RegRewrite and ResRewrite rule types define rules for changing data in client
requests and server responses.

3.3.1. Syntax Description

Request and result rewriting rules are specified as ProxyRule object definitions in the DLP
server configuration file.This section describes their syntax, while the chapter “Examples
and Considerations” provides several examples of their function.

3.3.1.1. The object Key

The object key is mandatory and must be the string ProxyRule.

3.3.1.2. The ruleType key

The ruleType key is mandatory; for rewriting rules, it determines when the DLP server is to
invoke the rule. Use the string RegRewrite for a rule to be invoked on LDAP requests. Use
the string ResRewrite for a rule to be invoked on LDAP results. ReqRewrite rules are
applied before the request is forwarded to an LDAP server. ResRewrite rules are applied
after the result is received from the LDAP server and before it is returned to the client.
Although it is syntactically allowed to have actions that operate on request parameters in
ResRewrite rule types, they have no effect on the result since changing the request after
the result is received does not change anything in the result for the client. Note that it is the
rule condition that determines whether or not the rule is applied; the ruleType value simply
determines when a rule is invoked.

3.3.1.3. The name Key

The name key is mandatory and can have any string value as long as the value is unique.
The name appears in DLP server audit records to indicate which rules were applied to a
specific request. We recommend using descriptive names like SetSearchSizeLimitTo500 to
make it easier for offline analysis of traffic in audit records later on.

3.3.1.4. The condition Key

The condition key is mandatory and defines whether or not a rule will be applied to the
running operation. For rewriting rules, a condition can be seen as a further refinement that
tells the DLP server how the incoming request or received result must appear in order to
be modified by one or more actions.

A simple condition can look something like this:
"(&(opr.req.type=search) (search.req.baseObject=o=my-company))"

This condition defines two sub-conditions that must both match in order to execute the
rule actions:

1. opr.req.type=search

27

2. search.reqg.baseObject=o=my-company

Because the two sub-conditions are combined with a logical and (&), both must evaluate to
true to create a match.

The next sections explain the syntax for condition rules in more detail.

3.3.1.4.1. Condition Rule Syntax

For rewriting rules and operation-routing rules, a condition rule is an LDAP assertion in the
format:

token assertion value
where:

token is a predefined string that represents an LDAP PDU operation. The predefined token
opr.req.type is a mandatory element of an operation-routing or a rewriting condition rule
and defines the operation type for which the rule is targeted; for example,
opr.req.type=search. The sections on token syntax provide more detail about how to use
opr.req.type and list the predefined tokens available for use in operation-routing and
rewriting rule conditions.

assertion is one of the LDAP assertion operators equal, present, substr (initial, final, any),
lessorequal and greaterorequal (approx and ext_match are not supported) in LDAP filter
notation syntax:

equal *=*value
present =*

initial (begins with) =*value **
final (ends with) =*value
any (contains) =value
lessorequal *<*value
greaterorequal *>=*value

Rule conditions follow LDAP filter semantics:

- You can use complex combinations of and, or and not sub-filters items within a
condition.

- You can use substring values like initial, final and any as well as present items.

- lessorequal and greaterorequal are also supported.
G Approximate and extensible filters are currently unsupported.

The DLP server recognizes all assigned values as strings and automatically converts them
to integer for comparison if necessary. For example, the DLP server automatically
recognizes a condition like:

28

search.req.sizeLimit>=1000

as an integer with a value of 1000 when comparing the request against the condition.

components mapped by the pre-defined tokens, or undefined behavior

0 You are responsible for assigning meaningful values to the LDAP PDU
may occur. For example, the condition definition

search.req.baseObject=700

is not meaningful and should be avoided.

The DLP server does not perform any syntax checking or matching rule
compliance on any assigned value. The server only compares strings.

G Consequently, a condition like search.req.baseObject=700 will be accepted
but during comparison it will be compared to the DN baseObject of the
request as a string of value 700 which definitely will never match.

3.3.1.4.2. Condition Token Syntax

The general token syntax for addressing a specific LDAP component in a rule condition is:
operation-type.{req|res}.component-name
where

operation-type specifies the LDAP operation (bind, search, modify, add, delete, modDN,
compare)

req|res specifies whether it is targeted for the request (req) or the result (res)

component-name specifies the component name as provided in the LDAP standard
RFC451fT.

Here are some examples:
search.req.baseObject addresses the requested baseObject
search.res.attributes addresses the resulting attributes

3.3.1.4.3. Using the opr.req.type Token

The opr.req.type token is a special token that defines the targeted operation type (for
example, a search). This token must be present in a rule condition to specify the operation
type for which the rule is targeted. The absence of opr.req.type is considered to be an error.

The value for the opr.req.type token represents the necessary LDAP operations and can be
one of

bind, search, modify, add, delete, modDN, compare

29

or “*" to indicate that the condition can match with any of the operation types. Note that
the values for opr.req.type are case sensitive.

Using the OR operator to OR the opr.req.type token to other tokens in a rule condition is
not allowed due to the token’s special status and function. If you want the same actions to
be performed for different operation types — for example, for add or for modify — you must
write separate rules for each operation type. For example, the following rule is not allowed:

Condition: (|(opr.req.type=add)(opr.req.type=modify))
Action: "denyreq"

The following rules are allowed:

Condition: (opr.req.type=add)
Action: "denyreq"

Condition: (opr.req.type=modify)
Action: "denyreq"

We recommend keeping rule conditions simple, not because of easier parsing, but to keep
track of the existing rules.

3.3.1.4.4. Condition Token Names and Assignments

The following table shows the token names and assignments that are supported for
rewriting and operation-routing rule conditions. Assignments can be: E (equal), SI
(substring-initial), SF (substring-final), SA (substring-any), P (present), LE (lessorequal), GE
(greaterorequal):

Token Name Supported Description
Assignments

opr.req.type E,P The operation type for which this condition is
targeted. The value must be one of bind,
search, add, modify, delete, compare or
modDN. If the value is *”, any operation type
will match. This token is mandatory for a
condition. Example: *opr.req.type=search.

user E,SI, SA, SF, P The user for which the condition is targeted.
The user-name is determined by the last
successful bind operation or is “anonymous” if
no successful authenticated bind was
performed. The value must be a legal LDAP
distinguished name of a user; for example:
cn=richter,ou=sales,o=my-company. If the
value is “”, any user will match. If the value is
“anonymous”, the unauthenticated user will
match. Example: *user=*cn=admin* (any user
that has cn=admin in its name).

30

Token Name

ip

security

bind.req.name

search.req.baseObject

Supported
Assignments

E

E, SI, SA, SF,P

E, SI, SA, SF.P

Description

The IP address for which the condition is
targeted. The IP is expected to be a valid IPv4
address; for example, 111.22.33.76. If the value is
“.", any IP address will match. You can also
specify subnet IP ranges like ip=192.33..** which
evaluates the condition to match for all IP
addresses from the B-subnet 192.33. Only IPv4

addresses are currently supported.

The security level of the operation to be
processed. Possible values are plain or tls.
Example: the condition
(&(opr.req.type=)(security=plain))* combined
with the action denyreq rejects incoming
client operations unless they are received via
the secure TLS channel.

The string value that must be present in the
bind- DN. If the value is “”, any DN will match
except anonymous users. If the value is
“anonymous”, the unauthenticated user will
match. This token is very similar to the *user
token except that this one is only allowed for
bind operations. Example:
bind.reg.name=*o=my-company* matches to
all bind requests for users with a component
o=my-company in their bind-DN name; that is,
it matches to users like cn=admin,o=my-
company or cn=richter,ou=sales,o=my-
company but not to cn=admin,o=pqr.

The baseObject that must be present in an
incoming search request to match the
condition. The baseObject must be specified as
a legal LDAP DN; for example,
search.req.baseObject=ou=sales,o=my-
company. The value can also be a substring of
a DN; for example, o=my-comp™* which
matches to a baseObject o=my-company via
an INITIAL substring match. You can also use
FINAL and CONTAINS substrings.

31

Token Name

search.req.scope

search.req.sizeLimit

search.req.timeLimit

32

Supported
Assignments

E

E, LE, GE

E, LE, GE

Description

The scope that must be present in an
incoming search request to match the
condition. The value must be one of

- baseObject
- singlelLevel

- wholeSubtree

This token is only applicable to search
operations.

The sizeLimit value that must be present in an
incoming search request to match the
condition. The assigned value can either be an
equal, lessorequal or greaterorequal
assignment; for example,
search.req.sizeLimit>=1000. The assigned
string (here, 1000) is automatically converted
and compared to the integer value of sizeLimit
in the incoming LDAP PDU.

The timeLimit value that must be present in an
incoming search request to match the
condition. The assigned value can either be an
equal, lessorequal or greaterorequal
assignment; for example,
search.req.timelLimit<1. The assigned string
(here, 1) is automatically converted and
compared to the integer value of timeLimit in
the incoming LDAP PDU.

Token Name

search.req.attributes

search.req.control

Supported
Assignments

E

Description

The name of a requested attribute that must
be present in an incoming search request to
match the condition. The assigned value must
be a legal LDAP attribute name. Multiple
attribute names must be added to the
condition by adding another AND item, for
example,
(&(search.req.attributes=street)(search.req.att
ributes=sn)), which evaluates to true if the
incoming search contains both street and sn
in the list of requested attributes.

if the incoming request
contains shortcuts like “” (for
all user attributes) or “+” (for
all operational attributes), no
match against explicit values
will be performed that might
be contained within these
shortcuts; that is, no match is
detected if the incoming
ﬂ request contains “” and the
condition contains an explicit
name from the user-attribute
list. Example: if the condition is
search.req.attributes=title but
the incoming request contains
“" no match will occur even
though *title is implicitly
contained in the all-user
attributes list defined by “*".

The LDAPV3 control that must be present in
the incoming search request. Possible values
are simplePagedResult or serverSideSorting.
These values can be abbreviated to PR and
SSS.

33

Token Name

modify.req.object

34

Supported
Assignments

E, SI, SA, SF

Description

The name of the target entry that must be
present in the incoming request. The assigned
value must be a legal LDAP DN; for example:
modify.req.object=cn=richter,ou=sales,o=pqr.

The assigned value can also consist of a
combination of one or more substrings; for
example, modify.req.object=*richter*

or
modify.req.object=cn*abele*o=pqr

which evaluate to a filter expression of three
substrings:

initial : cn

any : abele

final : o=pqgr

This condition means that the incoming target
entry name of the modification must begin
with cn, must contain the substring abele and
must end with o=pqr. The condition will
evaluate to true only if all three conditions
match.

Token Name

add.reqg.entry

Supported
Assignments

E, SI, SA, SF

Description

The name of the target entry that must be
present in the incoming request. The assigned
value must be a legal LDAP DN; for example:

add.req.entry=cn=richter,ou=sales,o=pqr

The assigned value can also consist of a
combination of one or more substrings; for
example:

add.reqg.entry=*richter*
or

add.reqg.entry=cn*abele*o=pqr

which evaluates to a filter expression of three
substrings:

initial : cn

any : abele

final : o=pqr

This condition means that the incoming target
entry name of the add operation must begin
with cn, must contain the substring abele and
must end with o=pqr. The condition evaluates
to true only if all three substring conditions
match.

35

Token Name

delete.reqg.entry

36

Supported
Assignments

E, SI, SA, SF

Description

The name of the target entry that must be
present in the incoming request. The assigned
value must be a legal LDAP DN; for example:

delete.req.entry=cn=richter,ou=sales,o=pqr.

The assigned value can also consist of a
combination of one or more substrings; for
example:

delete.req.entry=*richter*
or

delete.reg.entry=cn*abele*o=pqr*

which evaluate to a filter expression of three
substrings:

*initial : cn

any : abele

final : o=pqr

This condition means that the incoming target
entry name of the delete operation must begin
with cn, must contain the sub-string abele and
must end with o=pqr. The condition evaluates
to true only if all three substrings match.

Token Name

modDN.req.entry

Supported
Assignments

E, SI, SA, SF

Description

The name of the target entry that must be
present in the incoming request. The assigned
value must be a legal LDAP DN; for example:

delete.req.entry=cn=richter,ou=sales,o=pqr

The assigned value can also consist of a
combination of one or more substrings; for
example:

delete.req.entry=*richter*
or

delete.reg.entry=cn*abele*o=pqr

which evaluates to a filter expression of three
substrings:

initial : cn

any : abele

final : o=pqr

This condition means that the incoming target
entry name of the modDN operation must
begin with cn, must contain the sub-string
abele and must end with o=pqgr; the condition
evaluates to true only if all three substring
conditions match.

37

Token Name Supported Description
Assignments

compare.req.entry E, SI, SA, SF The name of the target entry that must be
present in the incoming request. The assigned
value must be a legal LDAP DN; for example:

delete.req.entry=cn=richter,ou=sales,o=pqr

The assigned value may also consist of a
combination of one or more substrings, e.g.

delete.req.entry=*richter*
or

delete.req.entry=cn*abele*o=pqr*

which evaluates to a filter expression of three
substrings:

*initial : cn

any : abele

final : o=pqr

This condition means that the incoming target
entry name of the compare operation must
begin with cn, must contain the substring
abele and must end with o=pqr. The condition
evaluates to true only if all three substring
conditions match.

compare.req.attr E The name of the attribute in the incoming
request that is to be comypared.

0 LDAP search filters cannot be configured as conditions for proxy rules.

3.3.1.5. The actions Key

Actions operate on the request or the result. Actions can be general (for example, to reject
the entire request) or they can be specific to the LDAP PDU components (for example, to
change the baseObject of an incoming search request).

A general action is described by a simple token like denyreq while a protocol-specific
action has a more complex syntax described in this section.

Every proxy rule can have 1-n actions. If multiple actions are defined for a rule, they are
executed in the order in which they are defined within the rule (top-down). The input for a
subsequent action is the result of the all previous actions performed and not the original
request, that is

OriginalReq -» Actionl » ChangedReq]l » Action2 » ChangedReqg?2 ~

Consequently, when you are defining multiple actions in a rule, make sure that each action

38

definition considers the actions that precede it.

3.3.1.5.1. General Actions

The only general action currently supported for all rule types is denyreq, which rejects the
incoming request with an UNWILLING_TO_PERFORM error. The operation is not forwarded
to any LDAP server. The DLP server stops its processing operation when it detects a
denyreq action within a sequence of actions. Be careful when using the denyreq action
with general conditions. For example, consider the following condition/action pair:

condition : (&(opr.req.type=)(user=))
action : denyreq

This combination effectively locks out all users and all operations from the server.

3.3.1.5.2. Protocol-Specific Actions

Rewriting rules can specify protocol-specific actions to execute rewriting operations on
specific LDAP components within a request or result. The first three elements of a protocol-
specific action definition specify the component to be modified and mirror the condition
rule syntax. The fourth element is the action to be performed (for example, replace) and the
last three elements are the necessary parameters for the action.

Protocol-Specific Action Syntax

The general token syntax for addressing a specific LDAP component in a rule condition is:
operation-type.\{req|res}.component-name.action(parameterl, parameter2, parameter3)
where

operation-type specifies the LDAP operation (bind, search, modify, add, delete, modDN,
compare)

req|res specifies whether it is targeted for the request (req) or the result (res)

component-name specifies the component name as provided in the LDAP standard
RFC4511ff.

action is a string that specifies the operation to be performed on the component and can
be one of:

- replace — exchange an existing value with a new one (note that wildcard (¥)
replacements are not supported)

- add - add new value to the existing values

- delete — delete an existing value

- clear —remove either all values of an attribute or all values

- set — set a single value — existing values are lost

- hide - hide a resulting entry from a search result

39

- showonly — show only a list of attributes

operation on a baseObject is not possible. Also note that only the following

0 Not all actions are possible for all LDAP components; for example, an add
LDAP controls can be added:

- LDAP_CTRL_SESSION_ID 1.3.6.1.4.1.21008.108.63.1
- LDAP_CTRL_RELAXED_UPD 1.3.12.21107.1.3.2.12.5

The rewriting of LDAP controls (for example, changing attribute names in server-side-
sorting) is currently not supported.

parameterl, parameter2 and parameter3 are action parameters that may be necessary to
fulfill a specific rewriting operation and can be one of the following values:

- The string NULL, which indicates that the parameter is not used.
- An assignment string in the format type*=value; for example, *cn=smith
- A plain string; for example, objectClass

- An integer; for example, 700

The required syntax for these parameters depends on the specific action and on the
intended change to be applied. See the tables “Tokens for Actions on Requests” and
“Tokens for Actions on Results” for complete details about which parameter must be set for
a specific action. If a parameter is not of use for an action, the NULL string must be
specified. (You can use the NullParamStr key in the Defaults object to change the string to
be used for unused parameters to something other than NULL. See the section "The
Defaults Object" for details.)

Do not enter unnecessary blanks before or after the enclosing parentheses and before or
after the comma. If parameterl, parameter2 or parameter3 is an assignment (for example,
cn=abele), do not enter blanks on either side of the equal sign because they will be
interpreted as part of the value and may therefore generate undesired results.

Here is an example of an action definition:
search.req.baseObject.replace(o=pqr, o=my-company, NULL)

In this example, parameter] o=pqr indicates to the action (replace) that an incoming
baseObject o=pqr is to be replaced by a new value of o=my-company in a search request.
You are responsible for defining meaningful actions; for example, defining baseObject
rewriting actions for operations other than search should be avoided.

The DLP server ignores anything beyond the first closing parenthesis “)" in an action string;
for example, in search.req.baseObject.replace(cn=a,,NULL)), the extra close parenthesis “)”
is ignored.

Tokens for Actions on Requests

The following table shows the supported tokens and actions for request rewriting:

40

Token Name Action

bind.reg.name replace

search.req.baseObj replace
ect

set

search.req.attribut de/

es

replace

add

set

replace

P1

Old LDAP
DN
pattern

Old LDAP
DN
pattern

New LDAP
DN

Attribute
name.
Example:
cn.

Old
attribute
name.
Example:
strasse.

Attribute
name.
Ex*cn*.

NULL

Old
attribute
name.
Example:
road.

P2 P3

New NULL
LDAP DN

pattern

New NULL
LDAP DN

pattern

NULL NULL

NULL NULL

New NULL
attribute

name.

Example*

street*.

NULL NULL

NULL NULL

New NULL
attribute

name.

Example:

street.

Description

Replaces the pattern
specified by P!'in the
binder’s distinguished
name (DN).

Replaces the pattern
specified by P1 with pattern
specified by P2 in the
baseObject of the search
request. Example: with PT:
ou=sales and P2:
ou=NewSales, an incoming
baseObject
cn=richter,ou=sales,o=pqr
is modified to
cn=richter,ou=NewSales,o=
par. If P2 is an empty string,
the pattern P1is removed
from the original
baseObject DN.

Replaces the existing
baseObject DN with the
one given by P1.

Removes the attribute (for
example, cn) specified by P1
from the list of requested
attributes.

Renames an existing
attribute whose name is
specified by P1with the
name specified by P2 in the
requested attributes list.

Adds a new attribute
(specified by P1) to the list of
requested attributes.

Empties the list of
requested attributes; that is,
no attributes will be
returned.

Replaces an existing
attribute type name (P1)
with a new attribute type
name (P2) in the filter.

41

Token Name Action

search.req.filter replace

search.req.sizeLimi set
t

search.req.timeLim set
it

*.req.controls add
modify.req.object replace
modify.req.object add

42

P1

Attribute
name.

Example:
member.

New limit.

Example:
100.

New limit.

Example:
300.

Symbolic
name or
OID of
control to

be added.

Old LDAP
DN
pattern

Attribute
name.
Example:
cn.

P2 P3
Old string New
pattern. string
Example: patter
o=pqr. N
Examp
le*o=
my-
compa
ny*.
NULL NULL
NULL NULL
NULL NULL
New NULL
LDAP DN
pattern

Assertion NULL
value.

Example:
Digger.

Description

Replaces a substring in the
filter value of an attribute
specified by P1. The old
substring (P2) is replaced
with the new substring (P3).
If P1is ", the replacement
is made in any existing
attribute-value
independent of the
attribute type. Both
patterns (old and new)
must not contain the
character *“**",

Sets sizelLimit of the search
request to the value
specified by P1.

Sets timeLimit of the search
request to the value
specified by P1.

Adds a well-defined LDAPV3
control specified by P1to
the current operation.
Controls that already exist
in the incoming request are
not touched. The control
has the criticality set to
TRUE.

Replaces the pattern
specified by P1with the
pattern given by P2 in the
target entry DN of the.
Example: with P1: ou=sales
and P2: ou=NewSales, an
incoming target entry
cn=richter,ou=sales,o=pqr
is modified to
cn=richter,ou=NewSales,o=

par.

Adds the attribute specified
by P1to the incoming list of
attribute values to be added
in the target entry. If no
incoming list exists, a new
list is created containing the
attribute from P1.

Token Name

Action

modify.req.change de/

s_add

del

replace

P1

Attribute
name.
Example:
cn.

Attribute
name.
Example*
cn*

Old
attribute
name.
Example:*
cn*.

P2

P3

Assertion NULL

value.

Example:

Digger.

NULL

New
attribute
name.

Example:

mycn.

NULL

NULL

Description

Removes the given
attribute value (P2) of the
attribute specified by P1
from the incoming list of
attribute values to be added
in the target entry. If the
value does not exist in the
list, no action is performed.
If the value to be removed is
the only value of the
attribute in the list, the
entire list is removed.

Removes the attribute
specified by P1 (including all
of its values) from the
incoming list of attribute
values to be added in the
target entry. If the attribute
does not exist in the list, no
action is performed.

Renames the attribute type
specified by P1with the new
name specified in P2 in the
incoming list of attributes
to be added to the target
entry. If the old name does
not exist, no action is
performed. The values of
the attribute in the list are
not affected.

43

Token Name

44

Action

replace

clear

add

P1

Attribute
name.

Example:
member.

NULL

Attribute
name.
Example:
cn.

P2 P3

Old string New

pattern string

Example: patter

sales. N
Examp
le:
suppor
t.

NULL NULL

Attribute NULL
value.

Example:
Digger.

Description

Replaces the pattern from
P2 in the existing value of
the attribute specified by P1
with the pattern from P3.
Example: Old attribute-
value:
member=cn=smith,ou=sale
s,0=pqr. By defining P1 as
member and P2 as
ou=sales and P3 as
ou=support, the new
attribute value will be:
member=cn=smith,ou=sup
port,o=pqr.

Multiple replaces within the
same value are supported.
The replace is made to all
values of the same attribute
specified by P1. If P1is **",
the replacement is made to
all values for all existing
attributes.

Removes all attributes and
all values from the
incoming list of attributes
to be added in the target
entry. The incoming lists for
attributes to be deleted or
replaced are not touched.

Adds the given attribute
value (P2) to the attribute
specified by P1to the
incoming list of attribute
values to be deleted in the
target entry. If no incoming
list exists, a new list will be
created containing the
attribute from P1

Token Name

Action

modify.req.change de/

s_delete

del

replace

P1

Attribute
name.

Example:

cn.

Attribute
name.

Example:

cn.

Old
attribute
name.

Example:

cn.

P2

Attribute
value.

Example:

Digger.

NULL

New
attribute
name.

Example:

mycn.

P3
NULL

NULL

NULL

Description

Removes the given
attribute value specified by
P2 for attribute P1from the
incoming list of attribute
values to be deleted in the
target entry. If the value
does not exist in the list, no
action is performed. If the
value to be removed is the
only value of the attribute in
the list, the entire list will be
removed.

Removes the attribute
specified by P1 (including all
its values) from the
incoming list of attribute
values to be deleted in the
target entry. If the attribute
does not exist in the list, no
action is performed.

Renames the attribute type
specified by P1with the
new name specified by P2
in the incoming list of
attributes to be deleted to
the target entry. If the old
name does not exist, Nno
action is performed.

The values of the attribute
in the list are not affected.

45

Token Name Action P1 P2 P3

_replace Attribute Old string New

_ name. pattern. string
Example: Example: patter
member. sales. n.

Examp
le:
suppor
t.
clear NULL NULL NULL
add Attribute Attribute NULL
name. value.
Example: Example:
cn. Digger.

46

Description

Replaces the pattern from
P2 in the existing value of
the attribute specified by P1
with the pattern from P3.
Example: Old attribute-
value:
member=cn=smith,ou=sale
s,0=pgr. By defining P1as
member and P2 as
ou=sales and P3 as
ou=support, the new
attribute value will be:

member=cn=smith,ou=sup
port,o=pqr.

Multiple replaces within
same value are supported.
The replacement is made to
all values of the same
attribute specified by P1.

If P1is **", the replacement
is made to all values for all
existing attributes.

Removes all attributes and
all values from the
incoming list of attributes
to be deleted in the target
entry. The incoming lists for
attributes to be added or
replaced are not touched.
Please note that in LDAPV3,
a modification must have at
least one change present
(that is, an empty list is not
allowed).

Adds the given attribute
value (P2) to the incoming
list of attribute values to be
replaced in the target entry
for attribute P1. If no
incoming list exists, a new
list is created containing the
attribute from P1/P2.

Token Name

Action

modify.req.change de/

s_replace

del

replace

P1

Attribute
name.

Example:

cn.

Attribute
name.

Example:

cn.

Old
attribute
name.

Example:

cn.

P2

Attribute
value.

Example:

Digger.

NULL

New
attribute
name.

Example:

mycn.

P3
NULL

NULL

NULL

Description

Removes the given
attribute value given by P2
from the incoming list of
attribute values to be
replaced in the target entry
for attribute P1. If the value
does not exist in the list, no
action is performed. If the
value to be replaced is the
only value of the attribute in
the list, the entire list is
removed.

Removes the attribute
given by P1 (including all its
values) from the incoming
list of attribute values to be
replaced in the target entry.
If the attribute does not
exist in the list, no action is
performed.

Renames the attribute type
given by P1 with the new
name given in P2 in the
incoming list of attributes
to be replaced to the target
entry. If the old name does
not exist, no action is
performed. The values of
the attribute in the list are
not affected.

47

Token Name

add.reg.entry

48

Action

replace

clear

replace

P1

Attribute
name.

Example:
member.

NULL

Old LDAP
DN
pattern

P2

P3

Old string New

pattern.
Example:
sales.

NULL

New
LDAP DN
pattern

string
patter
n.
Examp
le:
suppor
t.

NULL

NULL

Description

Replaces the pattern from
P2 in the existing value of
the attribute specified by P1
with the pattern from P3.
Example: Old attribute-
value:
member=cn=smith,ou=sale
s,0=pqr. By defining P1 as
member and P2 as
ou=sales and P3 as
ou=support, the new
attribute value will be:
member=cn=smith,ou=sup
port,o=pqr

Multiple replaces within
same value are supported.
The replacement is made to
all values of the same
attribute specified by P1.

If P1is **", the replacement
is made to all values for all
existing attributes.

Removes all attributes and
all values from the
incoming list of attributes
to be replaced in the target
entry. The incoming lists for
attributes to be added or
deleted are not touched.

Replaces the pattern
specified by P1with the
pattern specified by P2 in
the DN to be added.
Example: with P1: ou=sales
and P2: ou=NewSales, an
incoming DN
cn=richter,ou=sales,o=pqr
will be modified to
cn=richter,ou=NewSales,o=

par.

Token Name

add.req.attributes

Action

del

del

replace

P1

Attribute
name.
Example:
cn.

Attribute
name.

Example:

cn.

Old
attribute
name.

Example:

road.

P2
NULL

Attribute
value.

Example:

Digger.

New
attribute
name.

Example:

street.

P3
NULL

NULL

Description

Removes all values for the
attribute (example: cn)
specified by P1from the list
of incoming attributes to be
added in the new entry.
Note: This action may cause
the add operation to fail if
mandatory attributes are
removed.

Removes the attribute
value specified by P2 from
the incoming list of
attribute values for the
attribute given by P1in the
target entry. If the value
does not exist in the list, no
action is performed.

Note: This action may cause
the add operation to fail if
mandatory attributes are
removed.

Renames an existing
attribute whose name is
given by P1with the name
given by P2 in the list of
attributes to be added.

49

Token Name Action P1

_replace Attribute
name.
Example:
member.

add Attribute
name.
Example:
cn.

clear NULL

delete.reqg.entry replace Old LDAP
DN
pattern

50

P2 P3

Old string New

pattern. string

Example: patter

sales. n.
Examp
le:
suppor
t.

Attribute NULL
value.

Example:
Digger.

NULL NULL

New NULL
LDAP DN
pattern

Description

Replaces the pattern from
P2 in the existing value of
the attribute specified by P1
with the pattern from P3.
Example: Old attribute-
value:
member=cn=smith,ou=sale
s,0=pqr. By defining P1 as
member and P2 as
ou=sales and P3 as
ou=support, the new
attribute value will be:

member=cn=smith,ou=sup
port,o=pqr.

Multiple replaces within the
same value are supported.
The replacement is made to
all values of the same
attribute specified by P1.

If P1is **", the replacement
is made to all values for all
existing attributes.

Adds a new value (specified
by P2) to the attribute
specified by P1in the list of
attributes to be added.

Removes all attributes and
all values from the
incoming list of attributes
to be added in the new
target entry.

Replaces the pattern
specified by P1with the
pattern specified by P2 in
the entry-DN to be
renamed/moved. Example:
with P1: ou=sales and P2:
ou=NewSales, an incoming
DN
cn=richter,ou=sales,o=pqr
will be modified to
cn=richter,ou=NewSales,o=

pqr.

Token Name

modDN.req.entry

modDN.req.newrd
n

modDN.req.newsu
P

compare.reqg.entry

Action

replace

replace

replace

replace

P1

Old LDAP
DN
pattern

Old LDAP
DN
pattern

Old LDAP
DN
pattern

old
attribute
name.

Example:

strasse

P2

New
LDAP DN
pattern

New
LDAP DN
pattern

New
LDAP DN
pattern

New
attribute
name.

Example:

street.

P3
NULL

NULL

NULL

NULL

Description

Replaces the pattern
specified by P1with the
pattern specified by P2 in
the DN of an incoming
ModifyDN request.

Replaces the pattern
specified by P1with the
pattern specified by P2 in
the newrdn component of
an incoming ModifyDN
request.

Replaces the pattern
specified by P1 with the
pattern specified by P2 in
the newsuperior
component of an incoming
ModifyDN request.

Replaces the attribute type
name for the attribute to be
compared specified by P1
with the one specified by
P2.

51

Token Name Action P1 P2 P3

compare.req.attr replace Attribute Old string New
name. pattern. string
Example: Example* patter
member. sales*. n.

Examp
le:
suppo
se.

Tokens for Actions on Results

Description

Replaces the pattern from
P2 in the existing value of
the attribute specified by P1
with the pattern from P3.
Example: Old attribute-
value:
member=cn=smith,ou=sale
s,0=pqr. By defining P1 as
member and P2 as
ou=sales and P3 as
ou=support, the new
attribute value will be:
member=cn=smith,ou=sup
port,o=pqr

Multiple replaces within
same value are supported.
The replacement is made to
all values of the same
attribute specified by P1.

If P1is ** the replacement is
made to all values for all
existing attributes.

The following table shows all allowed/supported tokens and actions for result rewriting.
Currently only result rewriting for search operations is supported.

Token Name Action P1 P2 P
search.res.objectN replace OIld LDAP New LDAP NULL
ame DN DN
pattern pattern
search.res.entry hide LDAP DN NULL NULL
pattern

52

Description

Replaces the pattern
specified by P1with the
pattern specified by P2 in
the resulting entry DN.
Example: P1is ou=sales
and P2 is ou=NewSales; a
resulting entry
cn=richter,ou=sales,o=pqr
appears as
cn=richter,ou=NewSales,o
=pqr in the client result.

Hides all resulting entries if
their DN matches the
pattern specified in P1.

Token Name

Action

search.res.attribute del

S

del

replace

replace

P1

Attribute
name.

Example:

cn.

Attribute
name.

Example:

cn.

Old
attribute
name.

Example:

strasse.

Attribute
name.

Example:
member.

P2
NULL

Attribute
value.
Example:
Digger.

New
attribute
name.
Example:
street.

Old string
pattern.
Example:
sales.

NULL

NULL

NULL

New
string
patter
n.
Examp
le:
suppor
t.

Description

Removes the attribute
(example: cn) specified by
P1from the result
(including all values).

Removes a single value
(example: cn=Digger) of
the attribute specified by
P1from the result. If the
removed value is the only
value of the attribute, the
entire attribute is removed.

Renames an existing
attribute whose name is
specified by P1 with the
name specified by P2 in
the LDAP result.

Replaces the pattern from
P2 in the existing value of
the attribute specified by
P1 with the pattern from
P3.

Example: Old attribute-
value:

member=cn=smith,ou=sal
es,o=pqgr

By defining P1 as member,
P2 as ou=sales and P3 as
ou=support, the new
attribute value will be:
member=cn=smith,ou=su
pport,o=pqr.

Multiple replaces within
same value are supported.
The replacement is made
to all values of the same
attribute specified by P1.

If P1is **", the replacement
is made to all values for all
existing attributes.

53

Token Name

54

Action

add

clear

clear

P1

Attribute
name.

Example:

cn.

Attribute
name.

Example:

cn.

NULL

P2

Attribute
value.
Example:
Digger.

NULL

NULL

NULL

NULL

NULL

Description

Adds a new value specified
by P2 to the attribute
specified by P1to the
result.

Clears all existing values of
the attribute specified by
P1. This action is equal to
search.res.attributes.del(a
ttr,NULL).

Clears all existing values of
all attributes. The effect is
that no attributes are
returned.

Token Name

A

Action P1

showonl! List of

v attribute
names
separated
by a plus-
sign +

Example:
tn+cn+des
cription+s
n

Or an
attribute-
list name
that refers
toa
previously
defined
list of
attribute
names.
(See “The
AttributelL
ist Objet”
for
details))
The
attribute
list name
is prefixed

by a @

Example
@ATTRLIS
TI

Must be
not an
empty
string or
NULL.

Please be careful not to define too many search result rules as they will be

Description

Removes all attributes that

are not contained in P1.

applied to every resulting entry, which might be a performance issue if

huge results are retrieved.

55

3.3.2. How the Rule Processing Sequence Affects Result Rewriting Rules

As mentioned in the ProxyRule object definition description in the “Configuration” chapter,
multiple proxy rules are executed in the order in which they are defined in the DLP server
configuration file, and multiple actions are executed in the order in which they're defined in
the rule.

For example, let’'s assume that three rules R1, R2 and R3 have been defined in the
configuration file: R1is the first rule to be defined, R2 is the second, and R3 is the third. The
DLP server checks the conditions for each rule in the same order as the rule definitions:

R1-»R2-R3

Now let's assume that R1 defines two actions: All and A12 R2 defines only one action: A21
and R3 defines three actions: A31, A32, and A33. If all three rule conditions - R1, R2 and R3 -
match the running operation O, the DLP server modifies the incoming operation O(in) in
the following sequence to the outgoing operation O(out):

O(in) ATl A12 5A21 5A31 5A32 5A33 » O(out)

As shown in this example, the DLP server executes the actions on the incoming operation
in the same sequence as they are presented in the configuration file.

Now let's consider what this execution sequence means for constructing result rewriting
rules, since the same execution sequence applies: the request/result input for an action is
always the request/result output of its preceding action. Suppose we have the following
two rules:

R1:

Cl: (&(opr.req.type=search)(search.req.baseObject=0=pqr))

Al: change base object to O=my-company in the running search

R2:

C2: (&(opr.req.type=search)(search.req.baseObject=o0=pqr))

A2: add an attribute cn to the list of requested attributes in the running search

It's clear that both conditions are identical and will match to an incoming search request
with baseObject o=pqr. However, because R1 is executed before R2, the action Al will
change the baseObject of the incoming request from o=pgr to o=my-company. Therefore,
when R2 is processed, the rule condition is no longer true and the action A2 will never be
executed.

3.3.2.1. Handling Attribute Name Aliases in Rewriting Rules

LDAP attribute names can have aliases. For example, the attribute telephonenumber has
the alias tn. If you intend to apply rewrite rules to attributes that have aliases, you may need
to specify multiple actions in order to cover all possible versions of an attribute name; for
example:

56

"object" : "ProxyRule",
"ruleType” : "RegRewrite”,

"name" : "Test 03",

"condition" : "opr.req.type=modify",
"actions" : [

"modify.req.changes_add.del(telephoneNumber,123,NULL)",
"modify.req.changes_add.del(tn,123,NULL)"]

3.3.3. Using Virtual Names in Rewriting Actions on Search Results

When defining rewriting rules for search results, a special problem can occur. For example,
suppose there is a single rule that rewrites the search result with an action like

search.res.attributes.replace(street, road)

This action changes the name of the attribute street in all resulting entries into a virtual
new name road. Therefore, the client receives the name road instead of street which is
(usually) not an attribute defined in the schema. Most clients will ignore this mismatch
against the schema (or simply do not even read the schema) and just display the attribute
with the new virtual name road like they would display the street attribute. As long as it is
only about viewing, it is (mostly) not of too much relevance as long as the client is familiar
with the new name. However, problems can occur if the received virtual attribute name is
used by the client for a subsequent operation (for example, modify). If road will be used in a
subsequent operation and if no further rule exists, the attribute road will be transmitted to
the LDAP server, which will possibly return an error due to this unknown attribute
(remember: the mapping is only known to the DLP server — not to the backend servers).

Consequently, if you intend for the rewritten attribute to be re-usable by the client in
subsequent operations, you need to define additional rules to perform the corresponding
conversion from client to server again (for example, road to street) in order for the
operation to succeed in the backend servers, which are unaware that a rewrite has
occurred in the DLP server.

To support the road to street re-conversion from our example in a subsequent modify
operation, it may be necessary to add other rules with actions like

modify.req.changes_add.replace(road, street)
modify.req.changes_delete.replace(road, street)
modify.req.changes_replace.replace(road,street)

This will do the job for modify operations if the attribute is not a naming attribute (that is,
an attribute that does not appear in DNs).

To exchange the virtual name road in all possible modification operations, similar rules for
other operations like add, compare may be necessary in order to translate road into street

57

again.

present, as actions are applied sequentially in the order in which they're

0 These actions must be defined in the first rules if other actions are to be
defined in a rule.

Things get more complicated if the re-written attribute may also appear in DNs (as a type
of an RDN that builds up the DN).

The chapter "Result-Rewriting Considerations" provides some additional guidance for
administrators on how to maintain a consistent approach to the database in subsequent
calls after result rewriting takes place.

3.4. Character Set Requirements in Rule Conditions
and Actions

UTF-8 is the only character encoding allowed by LDAP.However, special Latin-1 characters
like the German umlaut (3, 6, U) may need to be used in condition and action assignments,
especially in DN strings.The DLP server can convert these Latin-1 characters to their UTF-8
representation for processing by LDAP.The JISONCodeSet key in the Defaults object
definition indicates to the DLP server in which character set the proxy rules in the DLP
server configuration file are encoded and thus whether or not they need to be
converted.Make sure that all conditions and all actions in all ProxyRule objects you define in
a DLP server configuration file use the same character encoding: Latin-1 or UTF-8. Do not
mix character sets within a single DLP server configuration file.See the “Configuration”
chapter for more information on the Defaults and ProxyRule objects.

3.5. Handling Special Characters in Rule Conditions
and Actions

Both LDAP and JSON define characters that require special handling in certain cases.The
proxy rule parameter syntax also defines special characters.When a condition assignment
or an action parameter needs to contain one of these special characters, the character
must be converted to its hex string representation and prefixed with the # character in the
proxy rule definition.

LDAP RFC4514 requires escaping the following characters when they appear in DNs:

- A space (U+0020) or number sign (# U+0023) that occurs at the beginning of the string
- A space (U+0020) character that occurs at the end of the string

- One of the characters ", +,,,;, <, >, or \ (U+0022, U+002B, U+002C, U+003B, U+003C,
U+003E, or U+0O05C, respectively)

- The null (U+0000) character

JSON RFC4627 requires the following characters to be escaped when they appear in
property names or property values:

58

Special Character Escaped Output

Quotation mark (") \"
Backslash (\) \\
Slash (/) V
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t

The proxy rule condition rule and parameter syntax requires the following characters to be
escaped:

- Open parenthesis (
- Close parenthesis)

- Comma,

When you find that a condition assignment or an action parameter needs to use one of
these special LDAP, JSON or proxy rule syntax characters, you must use the character’s hex
string representation and prefix it with the # character.

For example, let's assume the value James, Bond (007), which contains the special

characters®,”, “(* and “)" is to be set as a parameter. The following hex string can be used as
the parameter:

#4A616D65732C20426F6E64202830303729
James ,Bond(007)

The hex string consists of the hex bytes of each character in text format (J=4A, a=61, m=6D,
and so on). This is the same method that LDAP allows for representing DNs that contain
special or binary characters.

If a value to be added as a parameter begins with a # but does not contain any special
characters, the value itself must start with another #, for example, the value ##Hello There#
must be represented as ##Hello There#. This extra # prefix is only necessary if the first
character is a #. If the # appears at any other position, the string remains unchanged.

The parameter represented by the hex string must still obey the code-set (Latin-1or UTF-8)
from the Default object’'s ISONCodeSet setting. See the Default object description in the
“Configuration” chapter and the chapter “Operations” for more details.

59

4. Operation

This chapter provides information about DLP server operation in the areas of server process
startup, connect timeout, off-line handling and server retry, round-robin selection and
failover and character set handling and provides a general workflow example that shows
how server selection works and how failover is handled for a user-routing rule.

4.1. LDAP Server Process Startup for DLP

When the LDAP server process (dirxldapv3) starts, it reads the IdapProxyMode attribute
from its corresponding LDAP configuration subentry.The subentry name is specified on the
command line with the -n option; if it is not specified, the server process uses the subentry
name ldapConfiguration.

When the IdapProxyMode attribute is set to 1or 2, the server process runs as a DLP
server.All well-known settings from the LDAP configuration subentry continue to apply as
long as they refer to the client side (for example, LDAP port, number of pool threads,
maximum number of client connections).Settings that affect the DAP backend (for
example, unbind delay time, DAP share count) are ignored.

Note the following about LDAP server process startup as a DLP:

- If the IdapProxyMode attribute is not present in the LDAP configuration
subentry, the LDAP server continues to run as a plain LDAP server.

- If the server process starts with a proxy mode >=1 but it cannot locate
the DLP server configuration file, it starts in plain LDAP server mode.

- If the server process starts with a proxy mode >=1 but the DLP server
configuration file contains syntax errors, the LDAP server will not start

0 until the configuration file is correctly specified.

- If the server process starts with a proxy mode >=1 but the LDAP
configuration subentry name specified in the -n option (or the default
name IdapConfiguration if the -n option is not specified) does not
match any of the LdapProxy object names defined in the DLP server
configuration file, it starts in plain LDAP server mode. Therefore, it is
important to note that the LDAP server process must find 1) a proxy
mode >=1in the LDAP configuration subentry and 2) a matching
LdapProxy object in the DLP server configuration file in order to
establish itself as a working DLP server.

4.1.1. Connect Timeout

Before the DLP server can forward a client request to a selected target server, it must
perform a TCP-connect operation (possibly followed by an SSL-connect()).The connection is
usually established rather quickly, but timeout effects may occur if the peer is unavailable
or unreachable.A normal successful TCP connect consists of a three-way handshake
between the initiator and the responder (we assume here that all IP addresses are properly
configured and routable):

60

State Initiator (DLP Server) Direction Responder (LDAP Server)

send SYN > recv SYN
recv SYN-ACK « send SYN-ACK
send ACK > recv ACK

The connect timeout typically appears at state 2 when the initiator waits for the SYN-ACK
from the peer. The amount of time spent in state 2 depends heavily on the state of the
responder:

a.
b.
C.
d.

e.

Responder-host is running, application listens on port

Responder-host is running, no application listens on port

Responder-host is running, application listens but firewall blocks initiator IP
Responder host is down

Network to responder is broken

For cases a. and b., an immediate response is sent from responder to initiator.

For case c,, it depends on the firewall whether or not it will create a RST (reset) to reject the
connection.If it doesn't, the SYN is un-answered and times out on the initiator side.

For cases d. and e, there is no peer TCP that could respond with error and so the initial SYN
packet is lost and is never answered.After some time, the initiator TCP starts a re-
transmission of the SYN packet, likely with the same unanswered result.Usually the re-
transmission occurs N times (a TCP parameter) and the time the sender is willing to wait is
doubled.On the Windows platform, N is 3 and the initial wait is 3 seconds, which results in 3
+ 6 +12 =21 second timeout for cases c,, d. and e.

The DLP server contacts the target servers sequentially one after the other.Therefore, if a
rule contains M servers, each try might take up to 21 seconds to detect that the target is
down before it tries the next server from the list.You can use the ConnectTimeout value in
the Defaults object definition to help reduce the time it takes to detect a server outage
during the TCP-connect().By default, the DLP server uses 3 seconds - which is the first
retransmission timeout on Windows - to speed up detection of cases c,, d. and e We
recommend leaving the default in place until TCP analysis has shown that some other
value helps to overcome connection problems.Never set ConnectTimeout to O as it may
render the DLP server completely unable to connect.

Note that there is no timeout for normal I/O read/write operations because introducing one
imposes the requirement of determining the worst-case runtime of any of the connected
target servers for all possible legal searches.For example, when a search request is sent out,
what is the right amount of time to wait before returning with a timeout?Choosing the
right timeout requires the ability to predict the maximum search runtime that can occur
with any possible search.This is almost impossible to calculate, as some simple searches are
fast but more complicated searches can last a long time.

61

4.2. Offline Handling and Server Retry

When the DLP server forwards a request to a target LDAP server, it may detect a network
failure.There are basically two incidents for such a failure:

- Failure detected while processing the TCP connect() while establishing a connection to
the target server

- Failure detected during read/write I/O while the connection was already established
Both detections lead the DLP server to mark the target server as OFFLINE.

If more than one target server is configured and the rule allows for failover, the DLP server
continues to try to process the request to the next target server.This action continues until
the request can be processed or all until servers fail.Switching to another target server is
transparent to the client: the DLP server automatically re-establishes the LDAP connection
with the credentials that existed at failure time if the error occurs while a connection was
established at error time.

If a target server is marked OFFLINE, the DLP server will not select it for any further
operations for a certain amount of time, no matter for which rule the server was configured.
Even if a server outage was detected by user X, the target server will not be selectable for
any other user Y after the detection.

The selection of possible target servers for a user occurs at the time of the first operation on
the corresponding client LDAP connection; usually this operation is a bind, but LDAPV3
allows starting with any operation, in which case the anonymous user is then assumed.As a
result, if a target server is marked as OFFLINE due to failure detection, it does not affect the
target servers that are already selected for other user connections that existed at failure
time.Users that establish a new LDAP connection will not have servers marked as OFFLINE
as their target server choice.

+You can use the OfflineRetryTimeout key in the Defaults object definition to control the
duration for which an OFFLINE server is not selectable; after this amount of time has
passed, the server is selectable again for a retry for new users.The default is 60 seconds

Please note that there is a difference between “selectable” and a real retry.

When a target server is selectable, it means that the DLP server adds it to the list of
possible servers configured by the corresponding rule.If the target server is not the rule's
primary server (the first one in the list) it's possible that it may never be contacted.Thus,
being selectable does not necessarily imply that an actual retry occurs.Therefore, the server
remains selectable until a real retry returns another error, in which case it is marked as
OFFLINE again and will not be selectable again for the configured retry time.If a target
server is retried successfully after an offline-retry timeout, it remains selectable.

Be careful not to set OfflineRetryTime too high.As we have seen, if a server
cannot be reached and is marked as OFFLINE, a server is not retried until
A the OfflineRetryTime expires.Thus, if all relevant servers cannot be reached,
they will all stay in the OFFLINE state for at least OfflineRetryTime and will
therefore not be selected even if the server is physically up before the

62

OfflineRetryTime expires.If you set this time to a high value - for example, 5
minutes — for users that only have these servers configured for their use,
further operation is not be possible until the OfflineRetryTime expires.On
the other hand, if you set OfflineRetryTime to a very low value - for
example, 1second — a lot of operations will retry these servers very
frequently and may experience a significant TCP timeout for their
operation duration if the server is down for a long time.

We recommend setting OfflineRetryTime in the range of 30-60 seconds to establish a
good balance between not frequently calling servers that are down and having a
reasonable early detection timeframe once they are up again.

4.3. Round-Robin Selection and Failover

If round-robin (RR) selection is enabled for a rule and failover (FO) is also enabled, they are
both applied separately, which may lead to unexpected target selection for subsequent
binds.

Let's illustrate this concept with the following example:

- User A has a rule where both RR and FO are enabled.
- User A uses the target servers L1, L2 and L3.
- The target server L3 is down.

- The time between each bind is longer than the OfflineRetryTime setting.

On user A's first bind, the selected target servers are L1, L2, L3. The first bind goes to L1and
succeeds.When user A makes a second bind later on, L2 is selected (due to RR), resulting in
a successful bind.After some time, user A issues a third bind; L3 is selected (RR) and
fails.Because FO is active, the next server L1 is selected and succeeds.

What happens when user A performs a fourth bind?Which server is contacted?lt is server
L1, because RR and FO are treated separately; that is, a failover selection (next server) will
not change the next selection for the RR algorithm.Therefore, as RR selected L3 for bind #3
(which failed and was shifted to L1 by FO), the RR algorithm will select the next after L3,
which is L1.

This behavior may look strange, as L1 has received the last two binds from user A although
RR is active, but it is due to the fact that FO simply selects the next server from the current
failing server, and RR simply selects the next server in line after the last RR selection.

4.4. Character Set Handling

Although proxy rule tokens, keys and components are plain ASCII strings, there may be
some assignment values within a proxy rule condition or action that contain special Latin-1
characters like 3, 6, U, and so on (for example, for DNs).In order to match a condition or
action containing these Latin-1 characters properly to the UTF-8 character values contained
in LDAP, it is necessary to identify to the DLP server which format the DLP server
configuration file uses.There are currently two choices defined in the Defaults object

63

definition of the DLP server configuration file:

"JSONCodeSet" : 0 // declares the configuration file to be a Latin-1 content file
"JSONCodeSet" :1// declares the configuration file to be a UTF-8 content file

If a value of O is specified, the DLP server interprets all condition and action strings
contained in all ProxyRule objects as Latin-1 characters and performs an implicit conversion
to UTF-8 before storing them to its internal configuration.This option might be useful if
your JSON text editor does not support storing Latin-1 characters like 6 as their multi-byte
UTF-8 char representations.

A value of 1 indicates that all condition and action strings in the DLP server configuration
file are encoded in UTF-8 format and do not require conversion.By default, UTF-8 is
assumed (JSONCodeSet = 1).

4.5. General Operation Forwarding Example

This example describes internal operation when a user X performs a sequence of LDAP
operations bind -» search » unbind- bind-search-»unbind on a plain (non SSL) connection
against the DLP server.We assume that the primary server LDAP3 is down and
unavailable.Servers LDAP1 and LDAP2 are up and available.We further assume that the DLP
server has not yet contacted LDAP3 and so is not aware that it is down.We also assume that
user X has an explicit rule of the form:

{
"object"” : "ProxyRule",
"ruleType” : "UserRouting”,
"“name” : "USERROUTING2",
"condition” : "(user=cn=admin,o=pqr)",
"actions” : ["forwardto(LDAP3,LDAP1)" 7],
"loadbalance" : 0,
"failover" 01
5

before he can send out the bind PDU, he must establish a TCP connection. During TCP
connection establishment, the DLP server recognizes a new LDAP connection and creates
an internal object called LdapConnection. As no authentication happened so far
(remember that the bind PDU has not yet been sent), the DLP server assigns the
‘anonymous’ user to this new connection and waits for further data to arrive.

Once the TCP connection is established, the client can now send the LDAP bind PDU
containing the credentials (user+pwd) for this connection. The DLP server receives this
PDU, detects that it is a bind PDU and extracts the user name (DN) from it.

Next, the DLP server reads the configured rule sets and checks to see if there is a rule for
user X. It finds the user rule and then builds a list of possible target servers by reading the
forwardto servers from the rule and checking whether or not a round-robin selection

64

should be used on the list. Because the rule does not supply the loadbalance key and it is a
specific-user rule, round-robin selection is not performed and the first server in the list
(LDAP3) becomes the primary server. As LDAP3 has never been contacted, the DLP server
assumes that it is available and selects it as the target server for user X.

Now the DLP server opens a TCP connection to LDAP3 and detects the outage (this may
take a few seconds) and marks LDAP3 as OFFLINE. Next, it checks whether the user rule
allows failover and whether there are other servers configured for failover. Both conditions
are true. Thus, LDAP2 becomes the new primary target server. The DLP server performs a
TCP connect against LDAP2 which now succeeds.

Next, the DLP server forwards the bind to this target server and receives the bind result
PDU indicating a successful bind. The received PDU is now sent back to the client.

Once the client receives the bind success, it issues the search by sending the search PDU
out to the DLP server. The DLP server receives the PDU and recognizes a search. For the
DLP server, this means that no target server selection is necessary as there is already a
working connection to LDAP2. Thus the DLP server simply sends out the search PDU to
LDAP2 and receives the search result. After receiving the result, the DLP server returns the
result to the client.

After the client has received the search result, it invokes the unbind operation. The unbind
PDU is sent to the DLP server and is received. Again the DLP server knows that the target
server is LDAP2 and sends out the unbind operation. As unbind is not a confirmed
operation, the DLP server does not need to wait for a response and closes the TCP
connection to LDAP2. It also closes the frontend connection to the client and destroys the
internal LdapConnection object. As a result, the DLP server no longer has any frontend or
backend connection and is back to the state it was in before the first bind.

Now the client sends the second bind. The DLP server establishes a TCP connection,
creates a new LdapConnection object and assigns the anonymous user. The client sends
the second bind PDU which is received by the DLP server. The DLP server extracts user X
from the bind and performs a lookup against the rules. It again finds a user rule without
load balancing where the primary server is LDAP3. However, as it has detected that LDAP3
is OFFLINE, the DLP server ignores it, selects LDAP2 as the primary server, establishes a
new TCP connection and sends the bind to LDAP2 again. The successful bind response is
received and returned to the client. The remaining operations search and unbind
operations work exactly as for the first sequence.

65

5. Monitoring and Analysis

As request/result re-writing is an on-the-fly process within the LDAP proxy server and thus
only either the client will see the rewritten results or the target server will see the rewritten
request it is hard to actually see whether the rules are applied correctly as intended.

In order to provide better insight some extensions to the existing monitoring capabilities
have been made.

5.1. Analyzing Errors in Rewriting Rule Definitions

As everything regarding rewriting is controlled by the rules contained within the DLP
server configuration file, it is pretty easy to make incorrect definitions either by making
syntax errors or by making logical mistakes between relations.

Let's assume we made a rewriting rule definition like this one:

{
"object"” : "ProxyRule",
"ruleType” : "ReqRewrite",
"name” : "REQREWRITEL1",
"condition”

"(&(opr.req.typ=search)(search.req.baseObject=o=my-company))",
"actions” : ["search.req.baseObject.replace(NULL,o=pqr)"]

The definition looks fine at first glance, but still the DLP server refuses to start.

5.1.1. Finding Syntax Errors

One of the most common errors is one or more syntax errors in a condition or an action
definition.

With the definition from the previous section, the server will not start. Why not?

ProxyConf-Error: Illegal condition-string
'(&(opr.req.typ=search)(search.req.baseObject=o0=my-company))' found
in ProxyRule object 'REQREWRITE1'!

FATAL: Cannot read PROXY configuration (ldap_proxy.json)!

LDAP Server exit (ExitCode: 19 Reason: FATAL: Cannot process PROXY
configuration! Server stopped.)

Chances are that you can't see the problem immediately, so what can we do to find it?

66

The best way to localize the problem is to activate DLP server tracing by setting:

"Tracing": 3

in the Defaults object definition in the DLP server configuration file and then restarting the

DLP server.

Restarting the server causes a trace file to be generated at

install_path*/Ildap/log/proxytrace*PID* txt*, where PID is the process ID of the newly started

server.

When we look at the end of the file, we find the following data:

pid:8788,t1d:10704, 10:42:46.401
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3786)

ConditionListTolLdapFilter((opr.req.typ=search)(search.req.baseObject=

o=my-company))

pid:8788,t1d:10704, 10:42:46.401
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3932)
ConditionTolLdapFilter((opr.req.typ=search))

pi1d:8788,t1d:10704, 10:42:46.401
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3639)
SimpleConditionTolLdapFilter(opr.req.typ=search)

pi1d:8788,t1d:10704, 10:42:46.401
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3533)
IsLegalConditionToken(opr.req.typ=search)

pid:8788,t1d:10704, 10:42:46.401
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3622)
TLLEGAL TOKEN or VALUE found in 'opr.req.typ=search'!

p1d:8788,t1id:10704, 10:42:46.401
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3709)
[JSON] Illegal Token found in condition string: 'opr.req.typ'

pi1d:8788,t1d:10704, 10:42:46.401
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3763)
[JSON] Syntax error in Condition-Filter

From this output, we can see that the error is caused by the incorrect token name

opr.req.typ in the condition definition. The correct token name is opr.req.type. We can

67

easily correct this error in the corresponding proxyRule object in the configuration file.

ProxyConf-Error: Illegal CMD-String in Action
'search.req.baseObject.replace(NULL,o=pqr)"!

FATAL: Cannot read PROXY configuration (ldap_proxy.json)!

LDAP Server exit (ExitCode: 19 Reason: FATAL: Cannot process PROXY
configuration! Server stopped.)

As we can see, the error has changed. Now it reports an error in the action string.

Looking again at the trace file, we find the following data:

pi1d:8400,t1d:10292, 13:10:59.032
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3018)
PrepareCmdParamsStr(search.req.baseObject.replace(NULL,o=pqr))

pid:8400,t1d:10292, 13:10:59.032
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:3055)

Bad parameters found in 'search.req.baseObject.replace(NULL,o=pqr)"
-> P1 & P2 must contain old-value and new-value!

pid:8400,t1d:10292, 13:10:59.032
(..\..\dirxldapv3\mainthread\mn_proxy.cpp:4214)
PrepareAction():Illegal action specification:
'search.req.baseObject.replace(NULL,o=pqr)"’

This gives the error reason. The problem is that the parameter list (NULL,0=pqr) is not a
legal parameter list for the replace action on the component search.req.baseObject.

The first parameter must be the old string to be replaced by the string in the second
parameter.

The definition contains NULL as the first parameter, which is not allowed for a replace
operation. Let's correct this mistake in the proxyRule object in the configuration file:

{
"object” : "ProxyRule",
"ruleType" : "RegRewrite",
"name" : "REQREWRITEL1",
"condition”

"(&(opr.req.type=search)(search.req.baseObject=o=my-company))",
"actions” : ["search.req.baseObject.replace(o=my-

68

company,0=pqr)"]
3

After doing so, our server starts up.

Don't forget to disable tracing after fixing, otherwise performance will
decrease dramatically.

5.1.2. Detecting Logical Errors

These types of errors are much harder to detect as the server will not necessarily report an
error at all. Suppose we have the following rule definition:

1
"object"” : "ProxyRule",
"ruleType" : "ReqRewrite",
“name” : "REQREWRITEL1",
"condition”

"(&(opr.req.type=modify) (search.req.baseObject=o=my-company))",
"actions” : ["search.req.baseObject.replace(o=my-

company,o=pqr)"]

5

This definition has no syntax errors so the server can start.

The problem here is that the condition will never match any request because there is no
modify operation for a search baseObject.We wanted to address a search, but we mistyped
a modify instead.The server will not detect such incorrect use/mixing of incompatible
tokens.It only checks whether the syntax is OK and whether all mandatory components are
described.The DLP server will not detect logical errors.

In our example, the rule will never become active but the DLP server administrator may
never discover the problem.Therefore, we strongly recommend running a quick check on
any new rule you create by performing an operation that should match the rule and then
checking whether or not everything is applied as expected.

5.2. DLP Server Logging

The LDAP server binary is the same whether it is running as a DLP server or a plain LDAP
server.Consequently, the same logging environment applies to both modes.

To view details about DLP server processing, add the following components to the
dirxlog.cfg file:

Idap_op.1.4.5

69

Because logging can have a significant performance impact, it is recommmended to enable
this only for diagnostic purposes, not for normal operation.

5.2.1. Logging Example

This example shows sample output of the logging generated when a client performs an
LDAP bind operation against the DLP server:

LDAP Listener Ox000024fc LDAP 9.2.104 dir D1
28.03.2017 16:14:21

-- 0x45046755 DEBUG1L ldap_op mn_ldap_listener 429

14:21:997
1 New LDAP connection (Conl) accepted from client IP:
"127.0.0.1":63210

The DLP server recognizes traffic on the LDAP port by the listener thread - listener creates
a new connection object (Con0) and hands processing over to the pool thread.

PoolThread#1 Ox00002b60 LDAP 9.2.104 dir Di
28.03.2017 16:14:21

-- 0x4504674e DEBUGL ldap_op op_ldap_operatio 535
14:21:997
® New operation: "LDAP_Conl_Op@" "BindReq" V3

The pool thread creates a new operation object on ConO and receives data from client: it
detects a bind request.

-- 0x45046766 DEBUGS5 ldap_op mn_proxy.cpp 2842
14:21:997
1 lookup_user_rule(user:"cn=richter,ou=sales,o=my-company")="FOUND"

The DLP server extracts the user DN from the bind operation and performs a lookup
against the operation-forwarding rules for this user.

70

-- Ox4504676a DEBUGS ldap_op mn_proxy.cpp 3014
14:21:997
1 "get_relevant_servers(cn=richter,ou=sales,o=my-company)=USER_RULE
URule: USERRULE3 (type:2) (match:cn=richter,ou=sales,o=my-company)

ORule: none"

The DLP server's lookup has found a forwarding rule (USERRULE3) for the user and
prepares the possible target servers.

-- @Ox4504676a DEBUGS ldap_op mn_proxy.cpp 3017
14:21:998
1 "Found 2 Relevant Servers from Rule”

-- 0x4504676a DEBUG5 ldap_op mn_proxy.cpp 3044
14:21:998

1 "ServerName: LDAP1

Address:127.0.0.1:1636

Protocol:LDAPS - TLSvl1l.2

Trusted-CA-File:C:/Program Files/DirX/Directory/conf/testCA.pem

Cipher:HIGH"

-- @Ox4504676a DEBUGS ldap_op mn_proxy.cpp 3044

14:21:998
1 "ServerName: LDAP3

Address:127.0.0.1:3333

Protocol:LDAP"

The identified user rule defines two target servers (LDAP1, LDAP3) with corresponding
server parameters. LDAPT1 is the primary server.

-- 0x4504675c DEBUG1 ldap_op mn_proxy.cpp 742
14:22:005
2 ldap_connect(sd:836)=PROXY_OK(Q)
OpName: "LDAP_Conl_0Op@",
Server:"127.0.0.1":1636 ("LDAP1") sec:"ssl"

The DLP server prepares to establish a LDAP connection via SSL/TLS to LDAP1.

-- @Ox4504676d DEBUG4 ldap_op mn_proxy.cpp 3403
14:22:005

71

1 GetTargetServerConnection(): Using Connection to Server '"LDAP1"'

The DLP establishes a connection to the server.

-- 0x45046762 DEBUG4 ldap_op mn_proxy.cpp 1611
14:22:005
2 SendLdapDataToServer("LDAP1",6 sd:836)=PROXY_OK(®)
Data: (len:277)
0000 30 82 01 11 @2 @1 01 60 26 02 @1 @3 04 19 63 6E

0010 3D 72 69 63 68 74 65 72 2C 6F 75 3D 73 61 6C 65
=richter, ou=sale

0020 73 2C 6F 3D 70 71 72 80 06 61 62 63 31 32 33 A0
s,o=my-company..abcl23

0030 81 E3 30 75 @4 1A 31 2E 33 2E 36 2E 31 2E 34 2E
.aQu..1.3.6.1.4.

0040 31 2E 32 31 30 30 38 2E 31 30 38 2E 36 33 2E 31
1.21008.108.63.1

0050 04 57 30 55 04 @C 31 30 2E 39 33 2E 32 35 2E 31
Wou. .10.93.25.1

0060 36 32 04 @D 64 69 72 78 63 70 20 5B 37 32 36 30
62..dirxcp [7260

0070 5D 04 1C 31 2E 33 2E 36 2E 31 2E 34 2E 31 2E 32
1..1.3.6.1.4.1.2

0080 31 30 30 38 2E 31 30 38 2E 36 33 2E 31 2E 33 04
1008.108.63.1.3.

0090 18 63 6E 3D 61 62 65 6C 65 39 2C 6F 75 3D 73 61
.cn=abele9, ou=sa

00A® 6C 65 73 2C 6F 3D 70 71 72 30 6A 04 18 31 2E 33
les,o=my-company@j..1.3

00BO 2E 31 32 2E 32 2E 31 31 30 37 2E 31 2E 33 2E 32
.12.2.1107.1.3.2

00CO 2E 31 32 2E 38 04 4E 30 4C 04 24 36 36 65 63 38
.12.8.NOL . $66ec8

QoD@ 62 35 31 2D 32 35 31 31 2D 34 38 32 32 2D 38 32 b51-
2511-4822-82

OOE® 62 33 2D 32 33 32 63 30 31 66 61 66 35 34 35 04 b3-
232c0@1lfaf545.

Q0F® 24 64 66 37 35 64 32 31 35 2D 36 30 36 64 2D 34
$df75d215-606d-4

72

0100 33 62 30 2D 39 37 61 64 2D 39 35 61 37 31 31 61 3b0-
97ad-95a711a
0110 62 63 63 37 30

The DLP server sends the client bind request to the target server (implicitly the OpUUID
was appended to the request — this is visible at the end of the hex-dump).

-- @Ox45046763 DEBUG4 ldap_op mn_proxy.cpp 1801
14:22:021
3 RecvlLdapDataFromServer("LDAP1",6 sd:836)=PROXY_OK(0Q)
Data: (len:52)
0000 30 32 02 01 @1 61 2D QA 01 00 04 @0 04 26 42 69

0010 6E 64 20 73 75 63 63 65 65 64 65 64 2E 20 28 43 nd
succeeded. (C

0020 6F 6E 74 61 63 74 2D 44 53 41 3A 2F 43 4E 3D 44
ontact-DSA:/CN=D

0030 53 41 33 29

The DLP server receives the bind result PDU from the LDAP server.

-- 0x45046765 DEBUGS ldap_op mn_proxy.cpp 1438
14:22:021
4 DecodelLdapPdu(pduType:1l, data:0x0000000004C24F50,
data_len:52)=PROXY_OK(Q)
Decoded:
STRUCT LDAP_Message_V3 {
bit_mask = 0 ;
messageID = Ox1 ;
protoOp = UNION ProtoOp {
choice = Ox2 ;
u.bindResp_V3 = STRUCT LDAP_BindResp_V3
bit_mask = 0 ;
resultCode = LDAP_SUCCESS(Q) ;
matchedDN = <ABSENT>
errorMessage = 38 char value(s)
0000 42 69 6E 64 20 73 75 63 63 65 65 64 Bind

succeed

000C 65 64 2E 20 28 43 6F 6E 74 61 63 74 ed.
(Contact

0018 2D 44 53 41 3A 2F 43 4E 3D 44 53 41
-DSA: /CN=DSA

0024 33 29

referral V3 = <ABSENT> :
serverSaslCreds_V3 = <ABSENT> ;

h
controls_V3 = <ABSENT> ;

The DLP server decodes the received bind result PDU for two reasons: a) to get the LDAP
result code and b) to check whether the received data is really a correct bind response
PDU. In this example, PDU and bind were OK.

-- 0x45046764 DEBUG4 ldap_op mn_proxy.cpp 1491
14:22:021
3 SendLdapDataToClient(sd:1216)=PROXY_OK(®)
Data: (len:52)
0000 30 32 02 01 @1 61 2D QA 01 00 04 00 04 26 42 69

0010 6E 64 20 73 75 63 63 65 65 64 65 64 2E 20 28 43 nd
succeeded. (C

0020 6F 6E 74 61 63 74 2D 44 53 41 3A 2F 43 4E 3D 44
ontact-DSA:/CN=D

0030 53 41 33 29

The DLP server sends the received result back to the client.

-- @Ox4504675b DEBUG1 ldap_op mn_proxy.cpp 1259
14:22:021
1 ldap_bind(user:"cn=richter,ou=sales,o=my-company")=PROXY_OK(Q)
OpName: "LDAP_Conl_Op@",
Server:"127.0.0.1":1636 ("LDAP1") sec:"ssl" sd:836

The final log indicates that the forwarded bind was OK.

74

5.3. DLP Server Audit

The DLP server uses the same audit mechanism as the plain LDAP server.The only major
difference is the record layout.The same common tool dirxauddecode can be used to
evaluate DSA audit, LDAP server audit and DLP server audit.Note that the dirxaudstatistics
tool does not recognize proxy-mode records and thus cannot be used to evaluate DLP
server audit files

5.3.1. DLP Server Audit Record Layout

The layout of DLP server audit records is quite different from the LDAP server records due
to the different tasks of customizing or forwarding a request rather than processing
it.Nevertheless, the evaluation of a DLP server audit file is still the same.For example,
consider the following command:

dirxauddecode -1 audit.log -a audit.log.txt -v -v

The command produces an ASCII file with an initial header that looks very similar to the
LDAP audit header.The only difference is that the Content Type field is PROXY instead of
LDAP:

A AR# DIR.X AUDIT TRAIL (c) Eviden
HAAB B A BB AR BB AR B AR AR A
Cmd-Line: -1 audit.log -a audit.log.txt -v -v

Audit File # 11

Input File ;audit. log

Output File raudit.log.txt

Audit Version :9.2

Server UUID :0235b963-169d-403f-8918-2425fef3ae34
Audit Start Time (local) :Thu Apr 20 10:13:39 2017
Audit Start Time (GMT) :Thu Apr 20 ©08:13:39 2017
Content Type : PROXY

OpSelection ;all

OpErrors :yes

Audit Level :max

Audit Encryption :none

Overflow Action: :move

Max Records per File :5000

Value Limit :128

Server-PID 17680

DB Master-Entries 1118503

DB Copy-Entries :0

75

Filter Records with IP i---
Ignore Records with IP i---

Included LDAP Ops (ATL

Included DSA Ops :All

0OS Name :Microsoft Windows 7 64-bit- Service Pack
1 (build 7601)

Total Phys Memory :16266 MB

Avail Phys Memory :11851 MB

Allocated CTX Size :56 MB

HWM CTX Size :88 MB

CTX ULimit :6000 MB

MemPagesize 14096

CPUs 14

Max Open Files soft :unlimited

Max Open Files hard :unlimited

Audit Disk Space Total :807641084 kB

Audit Disk Space Free 1465029860 kB

PID : 7680

Host Name : XXXXXXXX

Host IP :1.1.1.1

Server Version :DirX Directory V8.6 9.2.104 2017:03:25
20:10 64-Bit

Server Type :Frontend Proxy Server

Server Mode :Read/Write

Contact-DSA :Name=/CN=DSA1, enabled=yes, fails=0,

PSAP=TS=DSA1,NA="TCP/IP_IDM!internet=1.2.3.4+port=4711",6DNS="(HOST=XX
XXXXX, SSLPORT=21201, PLAINPORT=21200,MODE=ss1) '

SSL Encryption :SSLv3.0 TLSv1.0 TLSvl.1l TLSvl.2
Server Start Time :Thu Apr 20 10:13:38 2017
Configuration Name : ldapConfiguration

ClCfg File :C:\Program
Files\DirX\Directory\ldap\conf\dirxldap.cfg

Ldap Port :389

SSL Port 1636

RPC Port 16999

Max Conn 2777

Client Idle Time :300

TCP/IP Response Mode 124

Socket Mode :async

Thread Pool Size 132

DN Escape Mode :backslash

76

Allowed IPs :all

Denied IPs :12.23.34.45
Denied IPs :11.22.33.44
Denied IPs :100.101.102.103

DB-Index-Info:

Attr: uid : initial final
present

Attr: userid : initial final
present

Attr: objectClass : initial

Attr: ocl : initial

Attr: cn : initial final
Attr: commonName : initial final
Attr: sn : initial final
Attr: surname : initial final
Attr: c : initial final
Attr: countryName : initial final
Attr: o : initial final
Attr: organizationName : initial final
Attr: collectiveOrganizationName : initial final
Attr: ou : initial final
Attr: organizationalUnitName : initial final
Attr: collectiveOrganizationalUnitName : initial final
Attr: description : initial final
Attr: dsc : initial final
Attr: remarks : initial final
contains

DB-Index-Usage:
Attribute access counter high score at Thu Apr 20 10:12:45 2017

Attribute name : Index access counter

INITIAL FINAL CONTAINS
PRESENT
uid : 2719993 0 -
/)]
cn : 1175911 0 -

objectClass : 95 - -

description : 4 14 -

o) : 4 (0] -
sn :)} 3 -
ou 2 0] -

that any information about the DSA or the database is derived from the
local DSA and not from the target servers. For example, the information:

DB Master-Entries :118503
describes the local DSA DB and provides no information about the target server’'s database.

The single operation records follow the header. These records have a different layout from
plain LDAP records since the server is running as a DLP server, not as a plain LDAP server.

5.3.2. Bind, Search, Add Example

To illustrate the meaning of an audit record, let’s assume a user has performed three
operations: a bind, a search and an add request with the following DLP server proxy rules
defined for these three operations:

i
// redirect user ‘richter’ to LDAP1
"object"” : "ProxyRule",
"ruleType" : "UserRouting",
"name" : "USERROUTING1",
"condition" : "(user=cn=richter,ou=sales,o=pqr)",
"actions” : ["forwardto(LDAP1)" T,
"loadbalance" : 1,
"failover” 1

5o

i
// redirect ADDs to LDAP2
"object” : "ProxyRule",
"ruleType” : "OprRouting",
"name” : "OPRROUTING2",

78

"condition" : "opr.req.type=add",

"actions” : ["singleforwardto(LDAP2)" T,
"failover" : 0,
"keepconn” 1
[y
i
// change o=my-company to o=pqr for search bases
"object"” : "ProxyRule",
"ruleType" : "ReqRewrite",
“name” . "RegRewritel”,
"“condition” : "opr.req.type=search"”,
"actions” : ["search.req.baseObject.replace(o=my-

company,o=pqr,NULL)"]
3

// remove sn=Digger from any search result

// add description=blabla to all result entries

"object” : "ProxyRule",

"ruleType" : "ResRewrite",

"name"” : "Test 04",

"condition" : "opr.req.type=search”,

"actions" : ["search.res.attributes.del(sn,Digger, NULL)",

“search.res.attributes.add(description,blabla,NULL)"

Now let's look at the audit output. Note that in the example shown here, fields that have
the same meaning as for LDAP audits are not described.

5.3.2.1. The DLP Server Bind Record

Let's start with the DLP server bind record:

————————————————— OPERATION 000001 ----------------
Create Time :Wed Jul 25 14:46:33.036496 2018
Start Time :Wed Jul 25 14:46:33.036571 2018
SrvSend EndTime:Wed Jul 25 14:46:33.062344 2018
SrvRecv EndTime:Wed Jul 25 14:46:33.072868 2018
ClSend EndTime :Wed Jul 25 14:46:33.074132 2018
End Time :Wed Jul 25 14:46:33.075126 2018

OpUUID
Concurrency
OpStackSize
OpFlow In/Out
Contact-Server
SrvRelRule
SrvSecurity
SrvSslProtocol
SrvSslCipher
#ContactedSrv
SrvSocket
SvrErrno
SvrConnectDur
SvrSendDur
SvrRecvDur
SvrBytesSent
SvrBytesRecv
Duration

User
ClIP+Port+Sd
Op-Name
Operation
Version
MessagelD
ClSecurity
ClRecvDur

:35d6c5ad-89fa-44e3-84d3-845F70b97F51
11

11

:0/0

:127.0.0.1:1636 (LDAPL)
:USERROUTING1

issl

:TLSv1.2
:ECDHE-RSA-AES256-GCM-SHA384

11

11232

10

:0.014270 sec

:0.000299 sec (1 calls)

:0.010132 sec (2 calls)

1279

129

:0.038555 sec
:cn=richter,ou=sales,o=pqr
:[127.0.0.1]+55631+668
:LDAP_Con®@_0Op@
:BIND

:3

11

:plain
:0.005230 sec

(3 calls, @ WouldBlocks,

WouldblockTime:0@.000000 sec)

ClSendDur

:0.000021 sec

(1 calls, @ WouldBlocks,

WouldblockTime:0.000000 sec)

As shown in the lines above, all records start with some absolute timestamps that give the

ReqRewriteDur
ResRewriteDur
ClBytes Rcvd
ClBytes Sent
LdapResultCode

:0.000584 sec
:0.000000 sec
1169
129

:0 (success)

ProxyResultCode: 0

time at which the operation was processed.

The line:

80

Create Time :Wed Jul 25 14:46:33.036496 2018
shows the time at which the request was recognized by the DLP server via TCP to come in
from the LDAP client.

The line:

Start Time :Wed Jul 25 14:46:33.036571 2018

shows the time at which the DLP server started processing the request by reading the
LDAP PDU, decoding it, etc. Usually this time is close to the CreateTime which shows that
the server was not too busy and processing started immediately. If this time is significantly
later (by seconds) it indicates that no pool thread was available to process the request and
the request had to wait for a pool thread to become available. This kind of message may
indicate a heavy load situation, especially if the concurrency (number of parallel processed
operations) is high.

The line:

SrvSend EndTime:Wed Jul 25 14:46:33.062344 2018

shows the time at which the request was completely forwarded to the target LDAP server
(when the local processing (deciding which target server to use, decoding the message,
performing request rewrite actions) has completed.

The line:

SrvRecv EndTime:Wed Jul 25 14:46:33.072868 2018

shows the time the answer from the server was completely received (for search results, this
includes the receipt of all resulting entries).

The line:

ClSend EndTime :Wed Jul 25 14:46:33.074132 2018

shows the time at which the result (after applying all result rewriting rules) was completely
sent out to the client.

The line:

81

End Time :Wed Jul 25 14:46:33.075126 2018
shows the time at which the operation ended within the DLP server (after cleanup, audit
write and other operations.).

This line:

Contact-Server :127.0.0.1:1636 (LDAP1)

shows the target LDAP server to which the request was finally forwarded, with IP, port and
logical server name taken from the DLP server configuration file.

The line:

SrvRelRule :USERROUTING1

shows which rule defined the target server. In our example, it was USERROUTINGT for user
richter. Note that only user-routing rules or the LB fallback servers have any effect on this

property.

These lines:

SrvSecurity :ss'l
SrvSslProtocol :TLSvl.2
SrvSs1Cipher :ECDHE-RSA-AES256-GCM-SHA384

show that the target server (LDAPT) was contacted via SSL/TLS.

These lines:
SrvSocket 11232
SvrErrno :0
SvrConnectDur :0.014270 sec
SvrSendDur :0.000299 sec (1 calls)
SvrRecvDur :0.010132 sec (2 calls)

SvrBytesSent 1279
SvrBytesRecv 129

provide details about the socket number used to transfer data to the target server, how
long it took to establish a TCP connection (if it was necessary to create a new connection to
the target), how long it took and how many send() calls were necessary to send out the

82

request and for the result to be received along with the amount of data sent out and
received from the target LDAP server.

This line:

Duration :0.038555 sec

shows the time the DLP server took to process the request (including the time spent at the
target server).

These lines:
ClSecurity :plain
ClRecvDur :0.005230 sec (3 calls, @ WouldBlocks,
WouldblockTime:0.000000 sec)
ClSendDur :0.000021 sec (1 calls, © WouldBlocks,

WouldblockTime:0.000000 sec)
ClBytes Rcvd 1169
ClBytes Sent :29

provide information about the client activity: how it accessed the server (via a plain
connection, not SSL/TLS) how long it took to read the request from the client, how long it
took to send the result back to the client and the amount of data received in the
request/response.

These lines:

ReqRewriteDur :0.000584 sec
ResRewriteDur :0.000000 sec

show how long it took to rewrite the request or the result. Please note that even if NO rule
matches and NO rewrite takes place, the DLP server needs time to evaluate these
conditions.

These lines:

LdapResultCode :@ (success)
ProxyResultCode: 0

show that we have two result codes: the result code as received from the LDAP server and
the result code about the DLP server processing. It can be that the request was successfully
processed by the LDAP server but could not be sent back to the client (for example, due to
network problems).

83

5.3.2.2. The Search Record

The subsequent search received from the client by the DLP server looks like this:

Create Time
Start Time

SrvSend EndTime:Wed
SrvRecv EndTime:Wed

ClSend EndTime
End Time
OpUUID
Concurrency
OpStackSize
OpFlow In/Out
Contact-Server
SrvSecurity
SrvSslProtocol
SrvSs1Cipher
SrvSocket
SvrErrno
SvrConnectDur
SvrSendDur
SvrRecvDur
SvrBytesSent
SvrBytesRecv
Duration

User
ClIP+Port+Sd
Op-Name
Operation
Version
MessagelD
ClSecurity
ClRecvDur

OPERATION 000002
:Wed Jul 25 14:46:
:Wed Jul 25 14:46:
Jul 25 14:46:
Jul 25 14:46:
:Wed Jul 25 14:46:35.764063
:Wed Jul 25 14:46:35.764587 2018
:al4f4lda-ella-43cl-a8e8-6afde8d3472f
11

11

:0/0

:127.0.0.1:1636 (LDAP1)

:ss'l

:TLSv1.2

:ECDHE-RSA-AES256-GCM-SHA384

11232

:0

:0.000000 sec

:0.000362 sec (1 calls)

:0.068365 sec (60 calls)

1284

11301

:0.263396 sec
:cn=richter,ou=sales,o=pqr
:[127.0.0.1]+55631+668

:LDAP_Con@_0Opl
:SEARCH

:3

10

:plain
:0.000405 sec

.501099
.501191
.510630
.761931

(3 calls, @ WouldBlocks,

WouldblockTime:0.000000 sec)

ClSendDur

:0.000340 sec

WouldblockTime:0@.000000 sec)

84

RegRewriteDur
ResRewriteDur

NumResEntries

:0.004085 sec
:0.115512 sec
129

(30 calls, © WouldBlocks,

ClBytes Rcvd 1181

ClBytes Sent 12043

LdapResultCode :@ (success)

ProxyResultCode: 0

ProxyRuleExec :ReqRewritel (CallCount: 1, ItemsModified: 1)
ProxyRuleExec :Test 04 (CallCount: 29, ItemsModified: 29)

Most fields are identical to the bind record audit output. We can see that the search went
to the same target (LDAPT1) on the same socket as the bind operation.

The last lines of the output show the list of rules that were applied to this operation
(ProxyRuleExec). Each line refers to a separate rule and indicates how many times the
condition was evaluated (CallCount) and how many changes/actions were executed
(IltemsModified). We see that one item in the request was modified. From the
corresponding rule (RegRewritel), we know that the incoming baseObject was modified.
The returned results were modified by rule Test 04. We know that 29 entries were returned
(NumResEntries=29) and all of them were modified (ItemsModified=29).

You may notice that the following two values differ:

ClBytes Rcvd :181 // bytes received from client
SvrBytesSent :284 // bytes forwarded to backend LDAP

Shouldn't they be the same? In principle yes, but the DLP server adds a control to the
request that allows shifting the DLP server-generated UUID to the LDAP server, which uses
this UUID in its corresponding audit log record and even passes it to the DSA, which also
includes it into its audit. This operation makes it easier to locate the corresponding record
in DLP server/LDAP/DSA audits. As it is appended to the incoming request, the size of the
forwarded request will grow a little.

5.3.2.3. The Add Record

The subsequent add operation received from the client by the DLP server looks like this:

————————————————— OPERATION 000003 ----------------
Create Time :Wed Jul 25 14:47:30.304363 2018
Start Time :Wed Jul 25 14:47:30.304413 2018
SrvSend EndTime:Wed Jul 25 14:47:30.340626 2018
SrvRecv EndTime:Wed Jul 25 14:47:30.343205 2018
ClSend EndTime :Wed Jul 25 14:47:30.344562 2018

End Time :Wed Jul 25 14:47:30.345118 2018
OpUUID :36fadde3-274c-4e23-a96¢c-508395b515d2
Concurrency 11

OpStackSize 11

85

OpFlow In/Out :0/0

Contact-Server :127.0.0.1:2636 (LDAP2)
SrvSecurity :ss'l

SrvSslProtocol :TLSv1l.2

SrvSslCipher :ECDHE-RSA-AES256-GCM-SHA384
#ContactedSrv :1

SrvSocket 1836

SvrErrno :0

SvrConnectDur :0.017388 sec
SvrSendDur :0.000840 sec (2 calls)
SvrRecvDur :0.010794 sec (4 calls)

SvrBytesSent :570
SvrBytesRecv 178

Duration :0.040705 sec

User :cn=richter,ou=sales,o=pqr
ClIP+Port+Sd :[127.0.0.1]+55631+668

Op-Name :LDAP_Con®@_0Op2

Operation :ADD

Version 13

MessagelD 10

ClSecurity :plain

ClRecvDur :0.000162 sec (3 calls, @ WouldBlocks,

WouldblockTime:0.000000 sec)
ClSendDur :0.000033 sec (1 calls, @ WouldBlocks,
WouldblockTime:0.000000 sec)
:0.000616 sec
ResRewriteDur :0.000000 sec
ClBytes Rcvd 1181
ClBytes Sent 149
LdapResultCode :32 (noSuchObject)
ProxyResultCode: 0
:OPRROUTING2 (CallCount: 1, ItemsModified: 0)

ReqRewriteDur

ProxyRuleExec

At the end of the output, we see that OPRROUTING2 was applied. From the proxy rule
definition given at the start of this example, we know that this is an operation-routing rule
and should redirect the operation to LDAP2, which is confirmed by the line:

Contact-Server :127.0.0.1:2636 (LDAP2)

We can also see that the LDAP operation failed with a “noSuchObject” error, but the
processing was fine from the DLP server’s point of view:

86

LdapResultCode :32 (noSuchObject)
ProxyResultCode: 0

5.4. LDAP Extended Operations for DLP Servers

DirX provides the following LDAP operations to observe and control a DLP server:

- ldap_proxy_status - Shows the current status of the server
- ldap_proxy_update - Triggers a runtime update of the DLP server configuration file
- ldap_proxy_server_disable - Disables an LDAP target server

- ldap_proxy_server_enable - Re-enables a disabled LDAP target server

All of these extended operations can be invoked by the dirxextop tool.See the DirX
Directory Administration Reference for a description of dirxextop.

The DLP server status display and update trigger can also be invoked in the DirX Directory
Manager with the Monitoring view:

SR DAP |
i-[] Defaults

l:l Extended-Ops Config
l:l Configuration

User Policies

EIE Proxy
: >D Show Proxy Status
_ t..] Update Proxy Settings
.u e
-_] Cache

-] 350

-] Audit

#-_] Process Info

l:l Exceptions

------ [show Mapped LDAP Bind Name
-] DSA

Disabling and enabling a target server can only be performed via dirxextop.

5.4.1. I[dap_proxy_server_disable

5.4.1.1. Synopsis

Idap_proxy_server_disable server_name

87

5.4.1.2. Purpose

Removes an LDAP server from selection as a target server for the DLP server.

5.4.1.3. Parameters

server_name
The name of the target server to be disabled, as specified in the DLP server configuration
file.

5.4.1.4. Description

The Idap_disable_config_dsa LDAP extended operation allows DirX Directory
administrators to permanently disable a target LDAP server for a DLP server; for example,
before taking it off-line for maintenance.

Use the mandatory server_name parameter in the -P option to dirxextop to specify the
name of the LDAP server to be disabled.

The OID of this extended operation is 1.3.12.2.1107.1.3.2.11.62.

When you use this operation to disable a server, you must explicitly re-enable it with the
Idap_proxy_server_enable LDAP extended operation before the DLP server can select it
again.

5.4.1.5. Example

The following example shows how to apply the Idap_proxy_server_disable LDAP extended
operation with the dirxextop command. In the example, the target LDAP server LDAP2 is
disabled:

dirxextop -h localhost -p 389 -D cn=admin,o=my-company -w dirx -t
ldap_proxy_server_disable -P LDAP2

Use the Idap_proxy_status extended operation to view the result:

——————————————————————————— [Servers

:l _______________________________________
NumlLdapServers : 5 (SelCount:2)

Server : Name=LDAP5, Status:AVAILABLE

Addr=10.93.25.72:3333, Sec=plain,
ConnOK=0, ConnFail=0, OpOK=0@, OpFail=0

88

Server : Name=LDAP4, Status:AVAILABLE
Addr=127.0.0.1:3333, Sec=plain,
ConnOK=0, ConnFail=0, OpOK=0, OpFail=0
Server : Name=LDAP3, Status:AVAILABLE
Addr=127.0.0.1:3333, Sec=plain,
ConnOK=0, ConnFail=0, OpOK=0, OpFail=0
Server : Name=LDAP2, Status:DISABLED since Tue Apr 18
16:00:11.115654
Addr=127.0.0.1:2636, Sec=TLSv1l.2,
ConnOK=0, ConnFail=0, OpOK=0@, OpFail=0
Server : Name=LDAP1l, Status:AVAILABLE
Addr=127.0.0.1:1636, Sec=TLSvl.2,
ConnOK=2, ConnFail=0, OpOK=3, OpFail=0

The server section of the output shows that the server LDAP2 has the status DISABLED.

5.4.1.6. See Also

Idap_proxy_server_enabled

Idap_proxy_status

5.4.2. |[dap_proxy_server_enable

5.4.2.1. Synopsis

Idap_proxy_server_enable server_name

5.4.2.2. Purpose

Returns an LDAP server to possible selection as a target server.

5.4.2.3. Parameters

server_name
The name of the target LDAP server to be enabled, as specified in the DLP server
configuration file.

5.4.2.4. Description

The Idap_proxy_server_enable LDAP extended operation allows DirX Directory
administrators to enable an LDAP server that was previously disabled with the
Idap_proxy_server_disable LDAP extended operation.

Use the mandatory server_name parameter in the -P option to dirxextop to specify the
name of the LDAP server to be enabled.

89

What is the OID for this operation is 1.3.12.2.1107.1.3.2.11.63.

5.4.2.5. Example

The following example shows how to apply the Idap_enable_config_dsa LDAP extended
operation with the dirxextop command. In the example, the LDAP server LDAP2 is
enabled:

dirxextop -h localhost -p 389 -D cn=admin,o=my-company -w dirx -t
ldap_proxy_server_enable -P LDAP2

5.4.2.6. See Also

Idap_proxy_server_enabled

Idap_proxy_status

5.4.3. |dap_proxy_status

5.4.3.1. Synopsis

Idap_proxy_status

5.4.3.2. Purpose

Displays the current DLP server status regarding servers, rules and selections.

5.4.3.3. Description

On success, this operation returns the current state of the DLP server in readable format.
The output consists of a header section, a server section and a rule section.

The header section provides general information about the DLP server, including:

- The selected LDAP configuration subentry name for the DLP server. By default, the
proxy-name is IdapConfiguration, which is the name of the server’'s default LDAP
configuration subentry if not set otherwise. (See the section in the DirX Directory
Administration Guide that describes how to add multiple LDAP servers for details.)

- The proxy mode in which the DLP server is currently running. A value of T indicates that
SSL/TLS is not in use on any target server. A value of 2 indicates that at least one target
server has been contacted via SSL/TLS.

- The currently active Proxy-ID number. At DLP server startup, this field isset to1and is
incremented with every ldap_proxy_update call. You can use this field to determine
how many online updates of the DLP server configuration have occurred to date.

- Whether or not failover is enabled. When enabled, the DLP server uses the next
configured LDAP server when a failure is detected. We recommend enabling this
feature in the operation-forwarding rule object definition(s) (with the failover key)
and/or in the Defaults object definition (with the LdapProxy.lb_failover key. See the

90

“Configuration” chapter for details.

- Whether or not the primary LDAP server function is shifted among the available load-
balancing LDAP servers (LB-servers). When disabled, all traffic for users without any
forwarding rule will go to the first LB-server. We recommend enabling the feature in the
Defaults object definition (with the LdapProxy.lb_balance key). See the “Configuration”
chapter for details. Note that load balancing is not performed for users that match a
configured user, subuser or wildcard user rule.

- How long (in seconds) the DLP server will wait for a TCP connect to be confirmed before
dropping the server and switching to the next server (if possible).

- How long (in seconds) the DLP server will wait to select a failed target server for new
client connections.

- The character encoding of the DLP server configuration file.

- Whether (1) or not (0) notification of request/result rewriting is included in the LDAP
response error message.

- The string used to indicate an empty parameter in protocol-specific rewriting actions.
- The level of tracing information sent to stderr.

- How many active subscribers (client connections) (and thus implicitly which target
servers) were selected against the settings of this DLP server configuration. Every new
bind operation always uses the most recent DLP server configuration and increments
the subscription counter for this DLP server configuration. Every unbind operation will
decrement the subscription counter (DLP server configuration objects with a
subscription count of O are scheduled to be removed at next automatic cleanup).

- The last subscribed user to this DLP server configuration.

The “Processed LDAP Requests” section displays how many operations of which type have
been processed to date and the number of result entries returned by searches.

The server section:
- Lists all available target servers by their name, IP, port and whether they will be
contacted via SSL/TLS or plain connections.
- Displays the current status of each server. Possible states are:
- AVAILABLE (the server can be selected)
- OFFLINE (the server cannot be selected for some period of time)
- DISABLED (the server will not be selected until it has been re-enabled).

- Shows how many successful/failed connects and operations have been seen for each
server. Note that for the DLP server, an operation fails if an I/O error occurs, but not
because an LDAP operation returns an error code != 0. The LDAP result code never
affects DLP server operation.

The user- and operation-routing rules section shows the rules of these types that have been
defined in the DLP server configuration file. For each rule, the output displays:

- The rule condition that must be met

91

- How many times the rule has been selected to date
- The servers that are involved if the rule is selected

- Whether failover, load-balancing (user-routing only), and keep connection (operation-
routing only) are in force

The request- and result-rewriting rules section shows the rules of these types that have
been defined in the DLP server configuration file. For each rule, the output displays:

- The rule conditions that must be met and the actions to be performed.

- How many times the rule matched a request or a result to date. Note that a result
matching can occur for each returned entry of a search rules. Consequently, if a search
result contains n result entries, the selection count can increase by n.

- How many attributes and/or values the rule actions have actually changed to date. Note
that if m actions are applied to n result entries of a single search request, the counter is
increased by n*m.

The OID for this extended operation is 1.3.12.2.1107.1.3.2.11.61.

5.4.3.4. Example

The following example shows how to apply the Idap_proxy_status LDAP extended
operation on the local LDAP server (which is running with the complete database and the
default ports on the local machine) with the dirxextop command:

dirxextop -D cn=admin,o=my-company -w dirx -t ldap_proxy_status

The LDAP extended operation returns output like the following:

+++ LDAP-Proxy-Configuration Status at:Thu Oct 11 10:12:34.576991
+++ Proxy-Name: ldapConfiguration
+++ Proxy-Mode: 2 (support for SSL/TLS target servers)

+++ Number of existing Proxy-Config Objects: 1

Active Proxy-ID i1

CreateTime : Thu Oct 11 10:10:58.144897
LB-Failover : yes

LB-Balance 1 yes

ConnectTimeout : 5 sec

OfflineRetryTime : 30 sec

JSON CodeSet : UTF8

92

NotifyRewrite . yes

NullParamStr : NULL

Tracing : 0

Active Subscribers : 2
LastSubscriber : Conn:LDAP_Conl,

User:cn=richter,ou=sales,o=pqr, Time:Thu Oct 11 10:12:10.301399

Total Requests : 16

Binds i 2

Searches : 13 (17 ResultEntries)
Adds 0

Modifys 0

Deletes 0

ModDNs 0

Compares 0

Unbinds 0

ExtOPs 1

NumLdapServers : 5 (SelCount:1)

Server : Name=LDAP5, Status:AVAILABLE
Addr=10.93.25.72:3333, Sec=plain, ConnOK=0,

ConnFail=0, OpOK=0, OpFail=0

Server : Name=LDAP4, Status:AVAILABLE
Addr=127.0.0.1:3333, Sec=plain, ConnOK=0,

ConnFail=0, OpOK=0, OpFail=0

Server : Name=LDAP3, Status:AVAILABLE
Addr=127.0.0.1:3333, Sec=plain, ConnOK=0,

ConnFail=0, OpOK=0, OpFail=0

Server : Name=LDAP2, Status:AVAILABLE
Addr=127.0.0.1:2636, Sec=TLSv1l.2, ConnOK=0,

ConnFail=0, OpOK=0, OpFail=0

Server : Name=LDAP1l, Status:AVAILABLE

93

Addr=127.0.0.1:1636, Sec=TLSvl.2, ConnOK=1,
ConnFail=0, OpOK=1, OpFail=0

NumLBServers : 3 (SelCount:0)
LBServers : LDAP1->LDAP2->LDAP3
—————————————————————————— [UserRoutingRules
] _______________________________
NumUserRules : 2 (TotSelCount:2)
Rule-Name : USERROUTING1
Condition
(] (user=cn=richter,ou=sales,o=pqr) (wcuser=cn=IADM. *) (subuser=ou=sales
,0=pqr))
Selection-Count : 1
Failover : yes
Load-balance 0

#Target-Servers : 2
Target-Servers : LDAP2->LDAP1

Rule-Name : USERROUTING2

Condition
(| (user=cn=admin, o=pqgr) (wcuser="cn=ad.*) (subuser=ou=sdevelopment, o=pq
r))

Selection-Count : 1

Failover : yes

Load-balance 10

#Target-Servers : 2
Target-Servers : LDAP3->LDAP1

NumOprRules : 2 (TotSelCount:5)
Rule-Name : OPRROUTING1

94

Condition :
(&(opr.req.type=search)(search.req.control=simplePagedResult))

Selection-Count : 5

Failover : no

KeepConn 1 yes

#Target-Servers : 2

Target-Servers : LDAP2->LDAP1

Rule-Name : OPRROUTING2
Condition :
(&(opr.req.type=search) (search.req.baseObject=0=pqr))
Selection-Count : @
Failover : yes
KeepConn . yes
#Target-Servers : 2
Target-Servers : LDAP1->LDAP3

] _________________________________
NumRegRewriteRules : 5
Rule-Name : REQREWRITE®
Condition : (opr.req.type=search)
Selection-Count : 13
Change-Count 10
Action : SEARCH.res.entry.hide(o=my-company,NULL,NULL)

Rule-Name : REQREWRITEL
Condition : (&(opr.req.type=search)(user=anonymous))

Selection-Count : 0

Change-Count : 0

Action : search.req.filter.replace(mycn,cn,NULL)
Action : search.req.filter.replace(*,abele, richter)
Action : search.req.filter.replace(mycn,abc,NULL)

Rule-Name : REQREWRITEZ2

95

Condition : (opr.req.type=modify)

Selection-Count : 0

Change-Count : 0
Action : modify.req.object.replace(my-company, pqr,NULL)
Action : modify.req.changes_add.replace(abc,23,45)

Rule-Name : REQREWRITE4

Condition : (opr.req.type=modDN)

Selection-Count : @

Change-Count : 0

Action : modDN.req.newrdn.replace(myxx,cn,NULL)
Action : modDN.req.newsup.replace(xxx,sales2,NULL)

Rule-Name : REQREWRITES

Condition : (&(opr.req.type=compare) (compare.req.attr=road))
Selection-Count : @

Change-Count 10

Action : compare.req.attr.replace(road,street,NULL)

:l __________________________________
NumResRewriteRules : 1

Rule-Name : RESREWRITEQ

Condition : (opr.req.type=search)

Selection-Count : 18

Change-Count i1

Action : search.res.entry.hide(Abele72,NULL,NULL)

Action : search.res.attributes.replace(street,road,NULL)

Action

search.res.attributes.replace(road, Schonweg, Schoenweq)
Action

search.res.attributes.replace(road, Schoenweg, Hausweq)
Action :

search.res.attributes.replace(description, jensen,#4DC3BC6C6CE572)
Action

search.res.attributes.replace(description, Der\,Hund,Der Wolf)

96

5.4.3.5. See Also

(Configuration chapter) DLP Server Configuration Objects
(Proxy Rules chapter) User-routing Rules, Operation-routing Rules, Rewriting Rules
Idap_proxy_server_enable

Idap_proxy_server_disable

5.4.4. |dap_proxy_update

5.4.4.1. Synopsis

Idap_proxy_update

5.4.4.2. Purpose

Activates changes made to the DLP server configuration file for a DLP server without
having to re-start the server.

5.4.4.3. Description

This operation is used to update the settings from the DLP server configuration file while
the DLP server is running. Use this extended operation when you've added new rules or
servers to the configuration file and want to update the DLP server without interrupting
the service.

If an update is performed, chances are that there are existing connections that were
established against the previous DLP server configuration settings. To maintain a clean
relationship between existing users and the DLP server settings, the old settings are
preserved as long as there are users that were bound when these old settings were active.
As a result, multiple DLP server configurations can coexist and multiple users can be
subscribed to these different configurations. To which configuration a user is subscribed
depends solely on the time of its connection to the DLP server. When the DLP server
configuration is updated via an Idap_proxy_update call, a new configuration instance is
created to which all subsequent users will subscribe. Users that were subscribed before the
update remain attached to the old configuration and will thus follow the old rules and
settings until they unbind from the DLP server. When the last user unbinds from a
configuration, the entire configuration is deleted

97

The OID for Idap_proxy_update is 1.3.12.2.1107.1.3.2.11.60.

5.4.4.4. Example

The following example shows how to apply the Idap_proxy_update LDAP extended
operation on the local LDAP server (which is running with the complete database and
using the default ports on the local machine) with the dirxextop command:

dirxextop -D cn=admin,o=my-company -w dirx -t ldap_proxy_update

The LDAP extended operation returns output like the following:

+++LDAP-Proxy-Configuration Update Started at:Thu Oct 11
13:54:05.016999

+++Proxy-Name: ldapconfiguration

Proxy-Update suceeded. Old Proxy-Mode: 1, New Proxy-Mode: 1
Number of existing Proxy-Configuration Objects: 2

Proxy-Object-ID: 9, Subscribers: @ (active)

CreateTime : Thu Oct 11 13:54:05.016999
NumAllServers : 4
NumLBServers (sel-count:0)

2
NumUserRoutingRules 1 (sel-count:0)
NumOprRoutingRules : 2 (sel-count:0)

3

NumRewriteRules (2 Req, 1 Res)

Proxy-Object-ID: 8, Subscribers: 1

CreateTime : Thu Oct 11 09:24:32.085999
LastSubscriber : LDAP_Con33 (Thu Oct 11 13:50:19.832999)
NumAllServers 4

NumLBServers (sel-count:2)

2
NumUserRoutingRules 1 (sel-count:0)
NumOprRoutingRules : 2 (sel-count:Q)

3

NumRewriteRules (2 Req, 1 Res)

98

This example shows that the DLP server configuration was updated for the eighth time
since server startup (Proxy-Object-ID: 9) It also shows that one user is still subscribed to the
previous configuration settings (Proxy-Object-ID: 8) while O users are subscribed to the
new settings.

The reason for these values is that the update was performed via dirxextop, which
performs a bind and then the extended operation; as a result, at the time of the
configuration update, the user of the dirxextop tool was subscribed to the settings
established by the Proxy-Object-ID: 8. Instance. The update created Proxy-Object-I1D: 9 but
no new bind operation has since been initiated.

For each DLP server configuration instance, the number of servers and rules are listed
along with their total selection count per rule group.

If the update fails, the existing configuration remains active.

5.4.4.5. See Also

(Configuration chapter) DLP Server Configuration File

Idap_proxy_status

99

6. Examples and Considerations

Generally, there are two types of proxy rules:

- Rules that define target servers

- Rules that can change requests/results

This chapter provides some examples to illustrate the use of both types of rule with a
special focus on operation-routing rules and the rewriting rules.

As described in the chapter “Proxy Rules”, all rules have a condition key. Rules that define
target servers specify target servers while rules that define request/result rewriting rules
have action keys.

6.1. Operation-Routing Rules: Examples

The following examples illustrate the impact of different settings of the keepconn and
failover keys in operation-routing rules. The examples include failover and non-failover
scenarios.

6.1.1. Example 1: All Target LDAP Servers Up and Running
In this example, the following rules exist:

- User-routing rule: Forward User_A to LDAP_Server_1.

- Operation-routing rule: Forward all add operations to LDAP_Server_2.
No operation routing rules are defined for search operations.

The following tables illustrate where the operations are routed to based on the keepconn
key.

keepconn=1

Step # Operation executed Target server selected for operation
Step 1 User_A binds. LDAP_Server_l.
Step 2 User_A performs an add LDAP_Server_2.
operation.
Step 3 User_A performs a search LDAP_Server_2 due to keepconn=1from
operation Step 2.

keepconn=0

Step # Operation executed Target server selected for operation

Step 1 User_A binds. LDAP_Server_l.

100

Step # Operation executed Target server selected for operation

Step 2 User_A performs an add LDAP_Server_2.
operation.

Step 3 User_A performs a search LDAP_Server_1 due to keepconn=0 from
operation Step 2.

These tables show that keepconn=1 overrules the target server from a previous user-
routing rule for all subsequent operations that do not have their own rule. A keepconn=1
can also be seen as a “switch-connection” operation. (Of course the switch is only applied if
the operation was successful).

6.1.2. Example 2: Target Server Failure, no Failover Servers Defined

In this example, the following rules exist:

- User-routing rule: Forward User_A to LDAP_Server_1.

- Operation-routing rule: Forward add operations to LDAP_Server_2.
No operation-routing rules are defined for search operations.

The following tables illustrate where the operations are routed to based on the keepconn
settings in the operation-routing rule:

Note that a server failure means that the server cannot be reached via the network for the
rest of the test sequence; that is, it is not available again until end of the sequence.

Sequence 1: Keepconn=1 or keepconn=0

Step # Operation executed Target server selected for operation

Step 1 User_A binds. LDAP_Server_l.

! LDAP_Server_2 fails.

Step 2 User_A performs an add Operation fails, due to no failover servers defined.
operation.

Step 3 User_A performs a search LDAP_Server_1 due to no connection available
operation from Step 2.

Sequence 2: keepconn=1

Step # Operation executed Target server selected for operation

Step 1 User_A binds. LDAP_Server_l.

Step 2 User_A performs an add LDAP_Server_2.
operation.

! LDAP_Server_2 fails.

Step 3 User_A performs a search Operation fails due to LDAP_Server_2 failure
operation after Step 2 and keepconn=1in Step 2.

101

Sequence 2: keepconn=0

Step # Operation executed Target server selected for operation
Step 1 User_A binds. LDAP_Server_l.
Step 2 User_A performs an add LDAP_Server_2.
operation.
! LDAP_Server_2 fails.
Step 3 User_A performs a search LDAP_Server_1 due to keepconn=0 for Step 2.

operation

As the example shows, the reaction towards the client depends on when the target server
drops out, although the client executes the same sequence. As the target servers are
transparent to the client (the client is unaware of being physically connected to a DLP
server and not to an LDAP server) this might look strange, because the client never “lost”
the LDAP-connection but might still receive different results.

6.1.3. Example 3: Target Server Failure, Failover=1, Multiple Targets

In this example, the following rules exist:

- User-routing rule: Forward User_A to LDAP_Server_1.

- Operation-routing rule: Forward add operations to LDAP_Server_2 or LDAP_Server_3.
No operation-routing rules are defined for search operations.

The following tables illustrate where the operations are routed to based on various
keepconn settings and failover=1in the operation-routing rule:

Sequence 1: Keepconn=1

Step # Operation executed Target server selected for operation
Step 1 User_A binds. LDAP_Server_l.
! LDAP_Server_2 fails.
Step 2 User_A performs an add LDAP_Server_3 due to failover=1.
operation.
Step 3 User_A performs a search LDAP_Server_3 due to keepconn=1from Step 2.

operation

Sequence 1. Keepconn=0

Step # Operation executed Target server selected for operation
Step 1 User_A binds. LDAP_Server_l.

! LDAP_Server_2 fails.

Step 2 User_A performs an add LDAP_Server_3 due to failover=1.

102

operation.

Step #
Step 3

Operation executed

User_A performs a search
operation.

Sequence 2: Keepconn=1

Step #
Step 1
Step 2

!

Step 3

Operation executed
User_A binds.

User_A performs an add
operation.

LDAP_Server_2 fails.

User_A performs a search
operation.

Sequence 2: Keepconn=0

Step #
Step 1
Step 2

Step 3

Operation executed
User_A binds.

User_A performs an add
operation.

LDAP_Server_2 fails.

User_A performs a search
operation

Target server selected for operation

LDAP_Server_1 due to keepconn=0 from Step 2.

Target server selected for operation
LDAP_Server_1.
LDAP_Server_2.

LDAP_Server_3 due to keepconn=1from Step 2
and failover=1 for LDAP_Server_2 down.

Target server selected for operation
LDAP_Server_l.
LDAP_Server_2.

LDAP_Server_1 due to keepconn=0 from Step 2.

6.2. Rewriting Rules: Examples and Considerations

This section supplies some examples of rewriting rules and describes considerations to

keep in mind when using rewriting rules.

6.2.1. Examples of Rewriting Conditions and Actions

Here are some condition/action pair examples.In these examples, C: refers to a condition
and A: refers to an action.

6.2.1.1. Example 1: Enforce SSL/TLS

Enforce all users to connect via SSL/TLS only by denying any operation that comes from
plain/unsecure socket:

C: (&(opr.req.type=*)(security=plain))

A: denyreq

103

6.2.1.2. Example 2: Deny Requests from Local Host

Do not allow any requests from the local host (this rule does not apply to extended
operations)

C: (&(opr.req.type=*)(ip=127.0.0.1))

A: denyreq

6.2.1.3. Example 3: Reject binds from a User

Reject binds from a specific user:

C: (&(opr.req.type=bind)(bind.req.name=cn=hohner,ou=sales,o=my-company))
A: denyreq

6.2.1.4. Example 4: Reject Anonymous Users

Reject all operations from anonymous users:

C: (&(opr.req.type=*)(user=anonymous))

A: denyreq

6.2.1.5. Example 5: Replace a Base Object String in a Request

Replace the substring “o=pqgr” with “o=my-company” in the base object of incoming search
requests:

C: (opr.req.type=search)

A: search.req.baseObject.replace(o=pqr,o=my-company,NULL)

6.2.1.6. Example 6: Remove a Base Object String

Remove the string “ou=sales” from the incoming BaseObject
C: (opr.req.type=search)

A: search.req.baseObject.replace(ou=sales,NULL,NULL)

6.2.1.7. Example 7: Add/Remove Requested Attributes (Two Actions)

Add the requested attribute mycn and remove an existing requested attribute cnin a
search request:

C: (opr.req.type=search)
A: search.req.attributes.add(mycn,NULL,NULL) « first action

A: search.req.attributes.del(cn,NULL,NULL) « second action

104

6.2.1.8. Example 8: Add/Remove Requested Attributes (One Action)

Add the requested attribute mycn and remove an existing requested attribute cnin a
search request with one action:

C: (opr.req.type=search)

A: search.reqg.attributes.replace(cn,mycn,NULL)

6.2.1.9. Example 9: Change a Filter Attribute Name

Change the attribute name cn to mycn in all filter attribute-names:
C: (opr.req.type=search)

A: search.req.filter.replace(cn,mycn,NULL)

6.2.1.10. Example 10: Change a String in One Attribute Filter Value

Change the substring pgr to my-company in all filter values for the attribute organization:
C: (opr.req.type=search)

A: search.req.filter.replace(o,pgr,my-company)

6.2.1.11. Example 11: Change a String in All Attribute Filter Values

Change the substring pqr to my-company for all attributes in the filter:
C: (opr.req.type=search)

A: search.req.filter.replace(,pgr,my-company)*

6.2.1.12. Example 12: Deny Anonymous User Subtree Searches

Deny subtree searches for anonymous users:

C: (&(opr.req.type=search)(search.req.scope=wholeSubtree)(user=anonymous))
A: denyreq

6.2.1.13. Example 13: Deny Unlimited Searches

Deny unlimited (sizelimit=0) searches:

C: (&(opr.req.type=search)(search.req.sizelimit=0))

A: denyreq

6.2.1.14. Example 14: Set a Size Limit for Anonymous User Searches

Set a size-limit of 1000 for any search from anonymous users:

105

C: (&(opr.req.type=search)(user=anonymous))

A: search.req.sizeLimit.set(1000,NULL,NULL);

6.2.1.15. Example 15: Change a String in all Entry DNs of a Search Result

Change the string o=my-company to o=pgr in all resulting entry DNs of a search request:
C: (opr.req.type=search)

A: search.res.objectName.replace(o=my-company,o=pqr,NULL)

6.2.1.16. Example 16: Hide an Attribute from Returned Search Result Entries

Hide the attribute secret (with all its values) from any returned search result entry:
C: (opr.req.type=search)

A: search.res.attributes.del(secret,NULL,NULL)

6.2.1.17. Example 17: Remove an Attribute from a Request List

Remove the attribute secret from the request list:
C: (opr.req.type=search)

A: search.req.attributes.del(secret,NULL,NULL)

6.2.1.18. Example 18: Change an Attribute Value in Returned Search Results

Change the string MainStreet to Hauptstrasse in all values of the attribute street in any
returned search result entry:

C: (opr.req.type=search)

A: search.res.attributes.replace(street,MainStreet,Hauptstrasse)

6.2.1.19. Example 19: Escape a Special Character

Replace a substring that contains a comma using the LDAP escape character \ (backslash).
The original output is description=The,dogs bark loud. The desired output is
description=The wolves bark loud.

the double escape is necessary because ‘\' (backslash) is defined as a meta-
character in JSON.

C: (opr.req.type=search)

A: search.res.attributes.replace(description,The\\,dogs,The wolves)

106

6.2.1.20. Example 20: Deny Renaming or Moving Entries

Deny renaming or moving entries in the DIT:

C: (opr.req.type=modDN)

A: denyreq

6.2.1.21. Example 21: Prevent Attribute Value Creation for New Entries

Prohibit creation of any values for the attribute strange for newly created entries:
C: (opr.req.type=add)

A: add.reqg.attributes.del(strange,NULL,NULL)

6.2.1.22. Example 22: Prevent an Attribute Modification
Never modify the attribute strange:

C: (opr.req.type=modify)

A: modify.req.changes_add.del(strange,NULL,NULL)
A: modify.req.changes_del.del(strange,NULL,NULL)

A: modify.req.changes_replace.del(strange,NULL,NULL)

6.2.2. Considerations for Rewriting Rules

When search results are changed/re-written, it is usually necessary to add additional rules
in order to maintain a consistent approach to the database in subsequent calls.

To illustrate this concept, let's look at the following simple example.Suppose there is a
group of legacy clients that are accessing a DIT tree via LDAP calls.The DIT tree consists of a
simple structure with a context prefix (CP) of o=companyX.The company decides to
rename itself from companyX to companyZ and all the entries in the DIT need to reflect
this change to the calling clients.

One way of achieving the result is to rename all entries in the DIT by changing the entry
o=companyX to o=companyZ.This solution also implies that all clients must use
o=companyZ as new target addresses; for example, for baseObjects in searches or in entry
DNs for adds or modifys.But what if some of the legacy clients cannot be changed so
easily?

A better approach is to use the DirX Directory LDAP proxy server with a simple rewriting
rule like this:

C: (opr.req.type=search)

A: search.req.baseObject.replace(companyX,companyZ,NULL)

107

This rule changes any occurrence of companyX on-the-fly into companyZ in the
baseObject of any search, making the search successful again for clients that are only
aware of o=company.

Well, but what is returned now? The returned entries from the LDAP server will contain the
new name o=companyZ again. Clients may now struggle to receive entries containing
o=companyZ in their DNs although they have given a baseObject of o=companyX and
therefore expect such resulting DNs.

Again, the DLP server can help by adding another simple result-rewriting action to another
rule like:

C: (opr.req.type=search)
A: search.res.objectName.replace(companyZ,companyX,NULL)

Note that it must be another rule because the rule will now operate on results and so the
ruleType must be ResRewrite. The baseObject change was performed by a RegRewrite
rule type.

By adding this result-rewriting rule, a client now receives the resulting entries as usual with
the well-known old name companyX.

What if the client now decides to create a new group-of-names entry containing all
received DNs as members from the previous search result? The client will surely issue an
add request. As the client is only aware of o=companyX, the target DN of the add operation
may again contain companyX and the member attributes will also contain the companyX
name.

Clearly this add operation is bound to fail, as the LDAP servers no longer recognize
companyX. Thus, it will be necessary to define further rules like

C: (opr.req.type=add)
A: add.reqg.entry.replace(companyX,companyZ,NULL)
A: add.reqg.attributes.replace(member,companyX,companyZ)

where the first action corrects the DN and the second action changes the members to the
new name.

If you plan to deploy result rewriting, you need to have a full understanding of client
behavior. You may need to add many more additional rules to manage the changes in
subsequent add, modify, delete, moddn or compare operations properly.

108

DirX Product Suite

The DirX product suite provides the basis for fully integrated identity and access
management; it includes the following products, which can be ordered separately.

DirX Identity

DirX Identity provides a comprehensive,
process-driven, customizable, cloud-
enabled, scalable, and highly available
identity management solution for
businesses and organizations. It provides
overarching, risk-based identity and access
governance functionality seamlessly
integrated with automated provisioning.
Functionality includes lifecycle
management for users and roles, cross-
platform and rule-based real-time
provisioning, web-based self-service
functions for users, delegated
administration, request workflows, access
certification, password management,
metadirectory as well as auditing and
reporting functionality.

DirX Access

DirX Access is a comprehensive, cloud-ready,
scalable, and highly available access
management solution providing policy- and
risk-based authentication, authorization
based on XACML and federation for Web
applications and services. DirX Access
delivers single sign-on, versatile
authentication including FIDO, identity
federation based on SAML, OAuth and
OpenlD Connect, just-in-time provisioning,
entitlement management and policy
enforcement for applications and services in
the cloud or on-premises.

DirX Directory

DirX Directory provides a standards-
compliant, high-performance, highly
available, highly reliable, highly scalable, and
secure LDAP and X.500 Directory Server and
LDAP Proxy with very high linear scalability.
DirX Directory can serve as an identity store
for employees, customers, partners,
subscribers, and other 10T entities. It can also
serve as a provisioning, access management
and metadirectory repository, to provide a
single point of access to the information
within disparate and heterogeneous
directories available in an enterprise
network or cloud environment for user
management and provisioning.

o nva

DirX Audit provides auditors, security
compliance officers and audit
administrators with analytical insight and
transparency for identity and access. Based
on historical identity data and recorded
events from the identity and access
management processes, DirX Audit allows
answering the “what, when, where, who and
why" questions of user access and
entitlements. DirX Audit features historical
views and reports on identity data, a
graphical dashboard with drill-down into
individual events, an analysis view for
filtering, evaluating, correlating, and
reviewing of identity-related events and job
management for report generation.

For more information: support.dirx.solutions/about

109

https://support.dirx.solutions/about

=VIDEN

Eviden is a registered trademark © Copyright 2025, Eviden SAS - All rights reserved.

110

Legal remarks

On the account of certain regional limitations of sales rights and service availability,
we cannot guarantee that all products included in this document are available
through the Eviden sales organization worldwide. Availability and packaging may
vary by country and is subject to change without prior notice. Some/All of the features
and products described herein may not be available locally. The information in this
document contains general technical descriptions of specifications and options as
well as standard and optional features which do not always have to be present in
individual cases. Eviden reserves the right to modify the design, packaging,
specifications and options described herein without prior notice. Please contact your
local Eviden sales representative for the most current information. Note: Any
technical data contained in this document may vary within defined tolerances.
Original images always lose a certain amount of detail when reproduced.

	LDAP Proxy
	Copyright
	Table of Contents
	Preface
	DirX Directory Documentation Set
	Notation Conventions
	1. Introduction
	1.1. Configuration Elements
	1.1.1. LDAP Configuration Subentry
	1.1.2. Proxy Mode Attribute
	1.1.3. DLP Server Configuration File

	1.2. Features and Limitations

	2. Configuration
	2.1. LDAP Proxy Mode Attribute
	2.1.1. Abbreviation
	2.1.2. LDAP Name(s)
	2.1.3. Syntax (DAP)
	2.1.4. Syntax (LDAP)
	2.1.5. Example (DAP)
	2.1.6. Example (LDAP)

	2.2. DLP Server Configuration File
	2.2.1. DLP Server Configuration File Syntax
	2.2.2. Locating JSON Syntax Errors

	2.3. DLP Server Configuration Objects
	2.3.1. The LdapProxy Object
	2.3.2. The LdapServer Object
	2.3.3. The AttributeList Object
	2.3.4. The Defaults Object
	2.3.5. The ProxyRule Object

	3. Proxy Rules
	3.1. User-routing Rules
	3.1.1. Syntax Description
	3.1.2. How User-routing Rules are Processed

	3.2. Operation-routing Rules
	3.2.1. Syntax Description
	3.2.2. How Operation-routing Rules are Processed

	3.3. Rewriting Rules
	3.3.1. Syntax Description
	3.3.1.1. The object Key
	3.3.1.2. The ruleType key
	3.3.1.3. The name Key
	3.3.1.4. The condition Key
	3.3.1.4.1. Condition Rule Syntax
	3.3.1.4.2. Condition Token Syntax
	3.3.1.4.3. Using the opr.req.type Token
	3.3.1.4.4. Condition Token Names and Assignments

	3.3.1.5. The actions Key
	3.3.1.5.1. General Actions
	3.3.1.5.2. Protocol-Specific Actions

	3.3.2. How the Rule Processing Sequence Affects Result Rewriting Rules
	3.3.2.1. Handling Attribute Name Aliases in Rewriting Rules

	3.3.3. Using Virtual Names in Rewriting Actions on Search Results

	3.4. Character Set Requirements in Rule Conditions and Actions
	3.5. Handling Special Characters in Rule Conditions and Actions

	4. Operation
	4.1. LDAP Server Process Startup for DLP
	4.1.1. Connect Timeout

	4.2. Offline Handling and Server Retry
	4.3. Round-Robin Selection and Failover
	4.4. Character Set Handling
	4.5. General Operation Forwarding Example

	5. Monitoring and Analysis
	5.1. Analyzing Errors in Rewriting Rule Definitions
	5.1.1. Finding Syntax Errors
	5.1.2. Detecting Logical Errors

	5.2. DLP Server Logging
	5.2.1. Logging Example

	5.3. DLP Server Audit
	5.3.1. DLP Server Audit Record Layout
	5.3.2. Bind, Search, Add Example
	5.3.2.1. The DLP Server Bind Record
	5.3.2.2. The Search Record
	5.3.2.3. The Add Record

	5.4. LDAP Extended Operations for DLP Servers
	5.4.1. ldap_proxy_server_disable
	5.4.1.1. Synopsis
	5.4.1.2. Purpose
	5.4.1.3. Parameters
	5.4.1.4. Description
	5.4.1.5. Example
	5.4.1.6. See Also

	5.4.2. ldap_proxy_server_enable
	5.4.2.1. Synopsis
	5.4.2.2. Purpose
	5.4.2.3. Parameters
	5.4.2.4. Description
	5.4.2.5. Example
	5.4.2.6. See Also

	5.4.3. ldap_proxy_status
	5.4.3.1. Synopsis
	5.4.3.2. Purpose
	5.4.3.3. Description
	5.4.3.4. Example
	5.4.3.5. See Also

	5.4.4. ldap_proxy_update
	5.4.4.1. Synopsis
	5.4.4.2. Purpose
	5.4.4.3. Description
	5.4.4.4. Example
	5.4.4.5. See Also

	6. Examples and Considerations
	6.1. Operation-Routing Rules: Examples
	6.1.1. Example 1: All Target LDAP Servers Up and Running
	6.1.2. Example 2: Target Server Failure, no Failover Servers Defined
	6.1.3. Example 3: Target Server Failure, Failover=1, Multiple Targets

	6.2. Rewriting Rules: Examples and Considerations
	6.2.1. Examples of Rewriting Conditions and Actions
	6.2.1.1. Example 1: Enforce SSL/TLS
	6.2.1.2. Example 2: Deny Requests from Local Host
	6.2.1.3. Example 3: Reject binds from a User
	6.2.1.4. Example 4: Reject Anonymous Users
	6.2.1.5. Example 5: Replace a Base Object String in a Request
	6.2.1.6. Example 6: Remove a Base Object String
	6.2.1.7. Example 7: Add/Remove Requested Attributes (Two Actions)
	6.2.1.8. Example 8: Add/Remove Requested Attributes (One Action)
	6.2.1.9. Example 9: Change a Filter Attribute Name
	6.2.1.10. Example 10: Change a String in One Attribute Filter Value
	6.2.1.11. Example 11: Change a String in All Attribute Filter Values
	6.2.1.12. Example 12: Deny Anonymous User Subtree Searches
	6.2.1.13. Example 13: Deny Unlimited Searches
	6.2.1.14. Example 14: Set a Size Limit for Anonymous User Searches
	6.2.1.15. Example 15: Change a String in all Entry DNs of a Search Result
	6.2.1.16. Example 16: Hide an Attribute from Returned Search Result Entries
	6.2.1.17. Example 17: Remove an Attribute from a Request List
	6.2.1.18. Example 18: Change an Attribute Value in Returned Search Results
	6.2.1.19. Example 19: Escape a Special Character
	6.2.1.20. Example 20: Deny Renaming or Moving Entries
	6.2.1.21. Example 21: Prevent Attribute Value Creation for New Entries
	6.2.1.22. Example 22: Prevent an Attribute Modification

	6.2.2. Considerations for Rewriting Rules

	Legal Remarks

