=VID&N

Identity and Access Management

DirX Identity

Creating a Custom Target System Type

Version 8.10.10, Edition June 2025




All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.



Table of Contents

Copyright
Preface
DirX Identity Documentation Set
Notation Conventions
1. Overview
1.1. Use Cases
1.1.1. Defining a Custom Target System Instance
1.1.2. Defining a Custom Target System Template
1.1.3. Creating Java-based Provisioning Workflows
1.2. Use Case Comparison
1.3. Evaluation of the System to Connect
1.2.1. Representation of Identities
1.3.1.1. How Does the System Represent Identities?
1.3.1.2. How Many Accounts Exist and What is the Typical Change Frequency?
1.3.1.3. Can Accounts be Disabled?
1.3.2. How does the system model access control?
1.3.2.1. Access control model
1.3.2.2. Does the System Allow For Nested Groups?
1.3.3. Structural Conditions
1.3.3.1. Are Groups and Accounts Stored in a Hierarchical or Flat structure?
1.3.3.2. Are Memberships Stored at Accounts or at Groups?
1.3.4. Which provisioning interfaces are available?
2. Defining a Custom Target System Instance
2.1. About this Use Case
2.1.1. Documentation Hints
2.1.1.1. Tutorial
2.1.1.2. User Interfaces Guide
2.11.3. Application Development Guide
2.1.1.4. Customization Guide
2.11.5. Provisioning Administration Guide
2.1.2. Specific Hints and Guidelines
2.2. Setup and Configuration
2.2.]. Create a Target System Instance of the Generic Type
2.2.2. Customizing the Newly Created Target System Instance
2.2.2.1. Check and Set Up the Target System Tabs
2.2.2.2. Check and Set Up the Target System Configuration
2.3. Alternative or Extended Configurations
3. Defining a Custom Target System Template
3.1. About this Use Case

O 00 00 0 0 N N9 9 3o oo o o o0 ot 1 N o =

NN O NSNS =2=2=00000D0S0Jo



3.2. Compatibility
3.2.1. Documentation Hints
3.2.2. Specific Hints and Guidelines
3.3. Setup and Configuration
3.3.1. Prepare a Target System Instance
3.3.2. Create Your Custom Target System Template
3.3.2.1. Copying the Target System Instance
3.3.2.2. Configure the Target System Template
3.3.3. Use Your Custom Target System Template
3.4. Alternative or Extended Configurations
3.4.]. Creating the Custom Target System Template Using a Built-in Template
3.4.2. Creating the Custom Target System Template Using a Custom Template
4. Creating Java-based Provisioning Workflows
4.1. About this Use Case
4.1.1. Documentation Hints
4.1.1.1. Connectivity Administration Guide
4.11.2. Connectivity Reference
4.1.1.3. Application Development Guide
4.1.1.4. User Interfaces Guide
4.1.1.5. Use Case Description: Java Programming in DirX Identity
4.1.1.6. Integration Framework
4.1.2. Specific Hints and Guidelines
4.2. Setup and Configuration
4.21. Creating a Custom Scenario
4.2.2. Creating a New Connected Directory
4.2.3. Creating the New Java-based Provisioning Workflows
4.2.4. Refining the Objects
4.2.4.1. Refining the Connected Directory
4.2.4.2. Refining the Workflow(s)
4.2.4.3. Refining the Channels
4.2.5. Testing the Workflows
4.2.5]1. Check Correctness
4252 Live Testing
5. Transferring Custom Target System Templates
Legal Remarks

14
14
14
15
15
16
16
16
17
17
17

19
19
19
19
19
20
20
20
20
20
21
21
22
23
23
23
24
25
26
26
26
27
29



Preface

This document describes a set of use cases that explain how to use specific features of DirX
Identity. It helps users to model their use case with DirX Identity and to set up and run their
DirX Identity system.

The goal of this document is to explain how to define and use new target system types for
DirX Identity and to prepare the connectivity configuration accordingly.

It consists of the following chapters:

- Chapter 1 provides an overview on the described use cases.
- Chapter 2 explains how to define a single instance of a new target system type.
- Chapter 3 explains how to define a template for a new target system type.

- Chapter 4 describes how to set up the connectivity configuration for Java-based
provisioning workflows for newly created target system types.

- Chapter 5 explains how to transfer the templates for new target system types between
different environments.


creating-custom-targetSystemType/ch1_overview.pdf
creating-custom-targetSystemType/ch2_defining-custom-ts-instance.pdf
creating-custom-targetSystemType/ch3_defining-custom-ts-template.pdf
creating-custom-targetSystemType/ch4_creating-java-based-wf.pdf
creating-custom-targetSystemType/ch5_transferring-custom-ts-templates.pdf

DirX Identity Documentation Set

The DirX Identity document set consists of the following manuals:

- DirX Identity Introduction. Use this book to obtain a description of DirX ldentity
architecture and components.

- DirX Identity Release Notes. Use this book to understand the features and limitations of
the current release. This document is shipped with the DirX Identity installation as the
file release-notes.pdf.

- DirX Identity History of Changes. Use this book to understand the features of previous
releases. This document is shipped with the DirX Identity installation as the file history-
of-changes.pdf.

- DirX Identity Tutorial. Use this book to get familiar quickly with your DirX Identity
installation.

- DirX Identity Provisioning Administration Guide. Use this book to obtain a description of
DirX ldentity provisioning architecture and components and to understand the basic
tasks of DirX Identity provisioning administration using DirX ldentity Manager.

- DirX Identity Connectivity Administration Guide. Use this book to obtain a description of
DirX Identity connectivity architecture and components and to understand the basic
tasks of DirX ldentity connectivity administration using DirX Identity Manager.

- DirX Identity User Interfaces Guide. Use this book to obtain a description of the user
interfaces provided with DirX Identity.

- DirX Identity Application Development Guide. Use this book to obtain information how
to extend DirX Ildentity and to use the default applications.

- DirX Identity Customization Guide. Use this book to customize your DirX Identity
environment.

- DirX Identity Integration Framework. Use this book to understand the DirX Identity
framework and to obtain a description how to extend DirX Identity.

- DirX Identity Web Center Reference. Use this book to obtain reference information
about the DirX Identity Web Center.

- DirX Identity Web Center Customization Guide. Use this book to obtain information
how to customize the DirX Identity Web Center.

- DirX Identity Meta Controller Reference. Use this book to obtain reference information
about the DirX Identity meta controller and its associated command-line programs and
files.

- DirX Identity Connectivity Reference. Use this book to obtain reference information
about the DirX Identity agent programs, scripts, and files.

- DirX Identity Troubleshooting Guide. Use this book to track down and solve problems in
your DirX Identity installation.

- DirX Identity Installation Guide. Use this book to install DirX Identity.

- DirX Identity Migration Guide. Use this book to migrate from previous versions.


introduction:prf_identintroduction.pdf
release-notes:ReleaseNotes.pdf
release-notes:HistoryOfChanges.pdf
tutorial:prf_identtutorial.pdf
prov-admin-guide:prf_identprovadm.pdf
conn-admin-guide:prf_connectivity.pdf
user-interfaces-guide:prf_identgui.pdf
appl-dev-guide:prf_appldevgd.pdf
custom-guide:prf_identprovcustom.pdf
integration-framework:prf_identframework.pdf
web-center-ref:prf_identwebref.pdf
web-center-custom-guide:prf_identwebcustom.pdf
metacp-ref:prf_identcontref.pdf
conn-ref:prf_identagent.pdf
troubleshooting-guide:prf_identtrouble.pdf
install-guide:prf_install.pdf
migration-guide:prf_identmig.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

userlD_home_directory

The exact name of the home directory. The default home directory is the home directory of
the specified UNIX user, who is logged in on UNIX systems. In this manual, the home
pathname is represented by the notation user/D_home_directory.

install_path

The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userlD_home_directory/DirX Identity on UNIX
systems and C:\Program Files\DirX\Identity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

dirx_install_path

The exact name of the root of the directory where DirX programs and files are installed. The
default installation directory is userlD_home_directory/DirX on UNIX systems and
C:\Program Files\DirX on Windows systems. During installation the installation directory
can be specified. In this manual, the installation-specific portion of pathname is
represented by the notation dirx_install_path.

dxi_java_home

The exact name of the root directory of the Java environment for DirX Identity. This location
is specified while installing the product. For details see the sections "Installation" and "The
Java for DirX |dentity".

tmp_path



The exact name of the tmp directory. The default tmp directory is /tmp on UNIX systems. In
this manual, the tmp pathname is represented by the notation tmp_path.

tomcat_install_path
The exact name of the root of the directory where Apache Tomcat programs and files are
installed. This location is defined during product installation.

mount_point
The mount point for DVD device (for example, /cdrom/cdromO).



1. Overview

In a typical customer environment for an identity management solution you have to
connect standard connected systems like Active Directory or IBM Notes. DirX Identity
comes with a comprehensive set of pre-defined target system types and the corresponding
provisioning workflows.

In many cases there are other legacy systems or connected system types in place that shall
be connected to DirX Identity where the standard connectivity of DirX Identity does not
provide a solution. This document explains what needs to be done to connect such
systems.

The generic procedure to implement a viable solution is:
- Evaluate the system to connect thoroughly (see the section "Evaluation of the System to
Connect" below).
- Define a target system instance or template (described as the first two use cases)

- Implement a connector to access the target system or use an alternative access
method. How to implement a connector is not part of this document. Read the DirX
Identity Integration Framework Guide for more information.

- Configure the necessary provisioning workflows (described as the third use case)

DirX Identity supports this process completely. Correctly defined objects in provisioning
and connectivity configuration allow seamless integration of new connected systems into
DirX ldentity.

1.1. Use Cases

This document describes three use cases in detail. Be aware that other use cases are
possible that are not described in this document.

1.1.1. Defining a Custom Target System Instance

This use case allows you to create a new target system instance through customization of a
generic built-in target system template. According to the properties and the API of the
connected system you have to set up a target system instance together with the necessary
connected directory and the provisioning workflows.

This method is applicable if you need only one instance of the new custom target system.

1.1.2. Defining a Custom Target System Template

This use case is a natural extension of the previous one. After definition of a new target
system template you can create a set of target system instances.

Typically you will use this case when modeling a more common target system type that is
not supported by DirX Identity but shall exist in multiple instances within the company.



1.1.3. Creating Java-based Provisioning Workflows

This use case explains how to build the necessary Java-based provisioning workflows for a
custom target system type or one of its instances.

1.2. Use Case Comparison

The following table comypares the first two use cases described in this document to help
you with your decision process. The third use case is independent from the other two and
necessary in any case.

Table 1. Use Case Comparison

Criteria Custom TS Instance Custom TS Type
Number of instances required 1 N

Customization depth Low High

Re-use necessary No Yes

The table presents the following evaluation criteria:

Number of instances required - the number of target system instances the customer
needs.

Customization depth - the number of necessary customization regarding one of the
existing target system templates. High customization occurs if there are many custom
JavaScripts and reports necessary.

Re-use necessary - in hosting environments it might be necessary to copy the target
system templates to various domains.

1.3. Evaluation of the System to Connect

Before you start any implementation, evaluate the following questions and determine the
requirements that are necessary to implement connectivity to the system you want to
connect to.

Additionally, answering these questions can help to choose an existing target system type
as a starting point for your custom target system instance or type.

1.3.1. Representation of Identities

It is important to understand how the system represents identities which means users.

1.3.1.1. How Does the System Represent Identities?

There are various ways how identities can be represented:

- Most systems use so called accounts to represent the identity of the specific user.

- Some systems have several types of identities, for example a user entry that represents



the basic identity and a set of related entries that are related to this basic identity and
keep more specific information.

In the first case it is quite easy to connect to DirX Identity because an account on the target
system side represents exactly one account on the connected system side.

In the second case you have to map an account on the target system side to an account
structure on the connected system side. This requires setting up multiple channels in the
Java-based workflows to handle this situation correctly.

1.3.1.2. How Many Accounts Exist and What is the Typical Change Frequency?

These two numbers help to decide for the appropriate provisioning method:

- If there are only a few hundred accounts or a larger number but the change frequency
is low, you could think about using manual provisioning (for more information see the
chapter "Manual Provisioning of Offline Systems" in the DirX Identity Use Case
Document Service Management).

- If there are thousands of accounts and a medium or high change frequency it makes
sense to think about automatic provisioning via a connector.

The automatic provisioning method requires much more effort because you need to
implement a connector and a set of provisioning workflows.

1.3.1.3. Can Accounts be Disabled?

This aspect is mainly relevant for the connectivity configuration. It influences the handling
of the dxrTSState attribute within the connectivity workflows.

1.3.2. How does the system model access control?

In this section you have to evaluate the access control model in various dimensions.

1.3.2.1. Access control model

There are several methods how access control can be implemented:

- Some systems implement access rights to resources as attributes at the account
entries. This method is called DAC (discretionary access control). Main disadvantage is
that general changes in the access control model requires individual adaption of the
access rights for a set of accounts.

- To avoid this problem, many systems offer a group based approach. In these systems
groups can be defined that have specific access rights to resources. Assigning an
account to one or more of these groups inherits the corresponding access rights to the
accounts. Changing the access rights of such a group changes the access rights of the
assigned accounts automatically.

- A third category of systems allows modeling a hierarchical model of groups. In this case
the higher level groups are called roles (this method is called RBAC = role based access
control). They aggregate some lower level roles or groups. Assigning one or more of
these roles to a user inherits all lower level access rights to this user.



Dependent on the found model it is not straight forward to find an appropriate model in
DirX Identity. We recommend the following methods:

- If there are only accounts with access control attributes, create for each access control
attribute a corresponding group in the target system. Assigning the group manages
the corresponding attributes at the account via DirX Identity’'s obligation mechanism.

- If there are accounts and a simple group model you can use the natural DirX |[dentity
model with accounts and group (a one to one relationship).

- If the system uses groups and roles you should decide for one of the levels. Your
decision should be driven by the granularity you want to control and make visible in
DirX Identity. In any case you will model either the groups or the roles as groups in the
target system.

Note that in case that the system has only accounts, the account management of such
systems in DirX Identity can be modeled via the assignment and unassignment of a default
dummy group which will be not synchronized to the connected system at all. An example
of such an approach may be found in the Imprivata OneSign target system definition and
its corresponding connectivity workflows.

1.3.2.2. Does the System Allow For Nested Groups?

Check whether a group in the system to connect to can contain another group as a
member (so called nested groups)? DirX ldentity supports nested groups in a limited
manner. Try to get rid of the nested groups if possible, that means restructure the system
accordingly.

1.3.3. Structural Conditions

The way how objects are organized and structured in the target system can influence the
complexity of your provisioning approach.

1.3.3.1. Are Groups and Accounts Stored in a Hierarchical or Flat structure?

There are systems that keep all accounts and groups in a flat structure, others use object
hierarchies to order and structure the objects.

A hierarchical structure is common for LDAP-based systems and also for Active Directory.

Databases keep the accounts and groups in separate tables which is a flat structure.

1.3.3.2. Are Memberships Stored at Accounts or at Groups?
These types can exist:

- In most cases the memberships are stored at the group side. A big disadvantage of this
method is that all these systems have either an upper limit (for example RACF allows
only 5000 memberships per group) or performance decreases drastically for high
numbers of memberships. Unfortunately the maximum number of memberships can
be equal to the number of identities if all users shall be member of a specific group.
Examples for such systems are LDAP and Active Directory.



- Much better is the approach to store the memberships at the account side because
even if you have a large number of groups in your system, no account will have more
than some thousand memberships. Due to that fact high member numbers do not
occur. An example for such a system is SAP UM R3.

- Some systems use both methods together. For example the UNIX-PAM target system
type stores memberships at the group object but the primary group must be directly
stored at the account object.

- Special types of systems are the ones that are based on relational databases. They store
the membership in a special table which requires an advanced connectivity
configuration for Java-based workflows.

In a DirX Identity target system you can configure both methods. Switching the flag
triggers an automatic reconfiguration of the target system that can last a long time if a lot
of accounts and groups is to change.

Additionally the provisioning workflows can handle cross memberships, that means the
target system keeps the memberships on the account side and the connected system
keeps it on the group side (the group side versus account side scenario is possible but does
not make any sense because in this case the account side / account side scenario should be
used).

We recommend strongly using account side memberships on the target system side
whenever possible.

1.3.4. Which provisioning interfaces are available?
There are many methods possible:

- An optimal solution is if the system provides an SPML compatible web service interface.
In this case the standard SPML connector of DirX Identity can be used.

- Many systems have their own proprietary provisioning API or an API that can be used
for provisioning. In this case you have to implement a custom connector that provisions
via this API. Alternatively you can use the manual provisioning method (for more
information see the chapter "Manual Provisioning of Offline Systems" in the DirX
Identity Use Case Document Service Management).

- If a system provides only a file-based interface, you can implement a custom connector
that implements this interface or use the manual provisioning method (for more
information see the chapter "Manual Provisioning of Offline Systems" in the DirX
Identity Use Case Document Service Management).

- If a system does not provide any suitable interface you have two options:
Use the Boston Workstation and the available target system and derive a variant of this
connectivity package or use the manual provisioning method (for more information see
the chapter "Manual Provisioning of Offline Systems" in the DirX Identity Use Case
Document Service Management).

because the Boston Workstation interface has proven to be unreliable,
we recommend to perform manual provisioning.



2. Defining a Custom Target System
Instance

This chapter describes how to set up a new custom target system instance by customizing
a generic built-in target system template.

2.1. About this Use Case

This use case allows you to create a new target system instance through customization of a
generic built-in target system template. According to the properties and the API of the
connected system you have to set up a target system instance together with the necessary
connected directory and the provisioning workflows.

This method is applicable if you need only one instance of the new custom target system.

2.1.1. Documentation Hints

You can find additional information related to this use case in the following documents:

2.1.1.1. Tutorial

Getting Started -» Setting Up a New Target System — describes the steps to set up a target
system instance of a supported type.

2.1.1.2. User Interfaces Guide

Using DirX Identity Manager » Using Wizards » How the Target System Wizard Works -
describes the functionality of the target system wizard.

2.1.1.3. Application Development Guide

Configuring Custom Scenarios - provides overall information about configuration of new
scenarios for provisioning and connectivity configuration including the creation of new
target system instances of a supported type.

2.1.1.4. Customization Guide

- Customizing Wizards » Customizing the Provisioning Target System Wizard -
contains general information about customization of target system wizard.

- Customizing Target System — provides a detailed description of customization
possibilities of the target system instances of an existing type. It is the most important
part of the DirX Identity documentation for the use cases described in this guide.

2.1.1.5. Provisioning Administration Guide

Use the context sensitive help when customizing the created target system instance.
Alternatively you can access these parts of the documentation directly through the online
help.

10



Context-Sensitive Help » Target Systems View - general hints how to manage and set up
specific features for the target system instances.

2.1.2. Specific Hints and Guidelines

Use a built-in generic type target system to create a single instance of a custom target
system.

Regard the following issues when you configure it:

- Try to model only the really necessary features of the specific target system.

- Use standard features for DirX Identity target systems management and try to reuse
existing settings as much as possible.

- The generic target system type is built on two levels of object descriptions. The first level
is defined by the object descriptors contained in the target system instance in
cn=0Object Descriptions,target system name,cn=TargetSystems,cn=domain.

The object descriptors of the first level include and reference the object descriptors
stored in the default target system configuration in

cn=0Dbject Descriptions,cn=Default,cn=TargetSystems,cn=Configuration,cn=domain.
It is common for built-in target system types that the target system specific object
descriptions are built on three levels hierarchy. It is also possible to create target system
specific object descriptions that do not include any other files. We recommend using
two levels of object descriptions as suggested by the generic target system type here.

2.2. Setup and Configuration
To set up a new instance of a custom target system perform these steps:

- Create a target system instance of the generic type

- Customize the newly created target system instance

2.2.1. Create a Target System Instance of the Generic Type
Login into the Provisioning configuration and then:

- Select the Target Systems view.

- Select the target system container or cluster under which you want to create the new
instance.

- Select New » Target System from the context menu to start the target system wizard.

- In the Target System Selection step select the Generic type. You can check the option
Account and groups in common subtree if desired.

- Fill the next target system wizard step Target System General as desired.

- Proceed to the step called Target System Advanced. Note that the generic target
system type allows you to set and redefine the Type of the target system which is stored
in the dxrType attribute. The value of the dxrType attribute is important when
configuring the connectivity workflows. Typically the dxrType attribute value matches

n



the value of the corresponding connected directory type. See existing templates and
documentation for more details.

- Go on to the Associated Connected Directory step. Since the target system template
for generic type has no default connected directory associated, you can freely pick one
of the existing connected directories that is suitable for your purposes. This step allows
you to copy all related connectivity configuration objects. You can customize them later
on.

- Proceed with the next steps as described in the documentation until you reach the
Provisioning Workflows step. Select all workflows that you want to copy to your
instance. You can customize them later on.

- Go to the end step and then Finish the wizard.

Your new target system instance is now created together with the related objects in the
connectivity configuration (a connected directory and the selected provisioning workflows).

2.2.2. Customizing the Newly Created Target System Instance

In the previous step you created a fully independent target system instance that now
needs to be customized. Study the customization guide carefully before you proceed with
the following tasks.

2.2.2.1. Check and Set Up the Target System Tabs

Ensure that the target system tab layout shows the required attributes. If not, adapt the
object description accordingly.

2.2.2.2. Check and Set Up the Target System Configuration

Typically a target system instance configuration contains the following information:

JavaScripts — a container for JavaScript implementations needed for this target system
instance. Typically these JavaScripts are referenced from other object descriptions of this
target system instance.

Object Descriptions — a container for object descriptions related to target system specific
objects. Typically it contains files with the target system instance definition (TS.xml), the
account definition (TSAccount.xml) and the group definition (Group.xml). It may also
contain definitions of additional target system specific types of objects. This container must
exist and contain at least the object descriptions for the target system instance (TS.xml)
and for the group objects (Group.xml). The object descriptions for accounts are required
only if the membership in the target system groups is stored at the accounts and not at
user objects.

Obligations — contains obligation definitions if these shall exist. An obligation allows the
execution of special actions triggered by group assignment or unassignment. For examples
see the configuration of the ADS or UNIX-PAM target system type definitions.

Property Page Descriptions — may contain target system specific definition of property
page descriptions written in Beans Markup Language (BML).

12



Note: this feature is deprecated and should only be used when adapting a legacy instance
of a target system.

Proposal Lists — optional container for target system specific proposal lists.

Reports — may contain target system instance specific reports. Adapt it freely to your needs.
Do not forget to create the corresponding access policies, otherwise your reports are not
visible in Web Center.

2.3. Alternative or Extended Configurations

There are currently no extended or alternative configurations available for the described
use case.

13



3. Defining a Custom Target System
Template

This chapter describes how to set up a custom target system template that can be used
later on to create multiple instances of this target system type.

3.1. About this Use Case

This use case is a natural extension of the previous one. After definition of a new target
system template you can create a set of target system instances.

We explain three methods for target system template creation:

- Use an already existing instance of a target system (the main use case). The advantage
of this method is that you can model and especially test a custom target system
instance thoroughly before you use it as a new template.

- Customize one of the built-in target system templates (an alternate configuration
proposal).

- Copy one of the existing custom target system templates (an alternate configuration
proposal).

Typically you will use this case when modeling a more common target system type that is
not supported by DirX Identity but shall exist in multiple instances within the company.

3.2. Compatibility

If you have already used the folder cn=TargetSystems,cn=Customer
Extensions,cn=Configuration,cn=domain check if there are TargetSytem Type specific
object descriptions. If yes you have to move these definitions to another folder (for example:
"cn=TargetSystemDefinitions,cn=Customer Extensions,cn=Configuration,cn=domain")
and adjust all the imports referencing these object description. Otherwise you may run in
problems like the one described in MZQLRZ: Incorrect Object descriptor nach DX18.2B
Update.

3.2.1. Documentation Hints

The documentation hints of the previous use case are also valid for this one. Read the
appropriate chapter above.

3.2.2. Specific Hints and Guidelines

Use a built-in generic type target system to create a single instance of a custom target
system.

Regard the following hints and guidelines when you configure you custom target system
template:

14



- A good starting point is to use the target system instances that you created in the
previous use case.

- Your new target system template should use two levels of target system object
descriptions if possible. For more information see the "Specific Hints and Guidelines"
section of the previous use case.

- Use a three level object description hierarchy for your target system template only
when you want to customize an existing built-in target system template of other type
than generic. In such a case the target system type (dxrType) should be unchanged.
This is the preferred method when you plan common customization of a larger number
of target system instances of a supported type. Assume for example that you need
more specialized target system instances of an ADS or JDBC type. In such a case a new
target system template of a known type may be prepared and then simply be reused.

- Target system templates stored in cn=TargetSystems,cn=Customer
Extensions,cn=Configuration,cn=domain are based on commmon target system
instances. They use the same object descriptions and folders. They should never be
used directly while implementing a corresponding connectivity workflow. The group
and account objects within a target system template do not trigger any real time
events for provisioning workflows.

- The custom target system template should use a unique customer specific name. That
name is used by the target system wizard.

3.3. Setup and Configuration

Set up of a custom target system template while reusing an existing target system
instance requires you to perform the following steps:

- Prepare a target system instance
- Create your custom target system template

- Use your custom target system template

3.3.1. Prepare a Target System Instance
Perform these steps:
- Login into the Provisioning configuration.

- Select the Target Systems view

- Prepare a new or existing target system instance. Later on you can use this instance as
basis for your custom target system template.

Note that you can use the target system instance that you generated based on the built-in
generic target system type in the previous use case.

Any existing target system instance can be used as a target system template. Be sure that
the selected one is correctly configured and then continue with the next step.

15



3.3.2. Create Your Custom Target System Template

Simply copy a well prepared target system instance to create your custom target system
template.

All templates must be stored in the folder:
cn=TargetSystems,cn=Customer Extensions,cn=Configuration,cn=domain

Otherwise the target system wizard is not able to locate them.

3.3.2.1. Copying the Target System Instance

Perform these steps:
- Select an existing target system instance in the Target Systems view that you want to
reuse.
- Select Copy (Ctrl+C) from the context menu.
- Click the Domain Configuration view.

- Navigate to
cn=TargetSystems,cn=Customer Extensions,cn=Configuration,cn=domain

- Select Paste (Ctrl+V) from the context menu.

The result is a complete copy of your target system instance.

3.3.2.2. Configure the Target System Template

All target system templates must contain the following folder:

Configuration - this folder contains all configuration objects that are relevant for this type
of target system. Read the product documentation for details. During creation of a target
system instance, the entire content of this folder is copied to the instance.

Dependent on the method to store accounts and groups you have to options:

- Accounts and groups are stored in separate folders that are named Accounts and
Groups.

- Accounts and groups are stored in a common folder that is named Accounts and
Groups.

While creating a new target system instance with the target system wizard you can select
the method via the flag Accounts and groups in common subtree. Because the target
system wizard requires for full functionality all three containers to exist, create the missing
ones:

- Use New » Account Container from the context menu to create a missing Accounts
folder (its type is dxrTSAccountContainer).

- Use New 2 Groups Container from the context menu to create a missing Groups folder
(its type is dxrTSGroupContainer).

16



- Use New » Account-Group Container from the context menu to create a missing
Accounts and Groups folder (its type is dxrTSAccountGroupContainer).

The target system wizard checks the presence of these containers and may disable the
option Accounts and groups in common subtree according to the existing containers.

Note that the target system template should only contain objects that should be copied to
each target system instance that is created from this template. Remove all unnecessary
objects, for example all accounts and groups and leave only the objects that shall belong to
the template. If you need additional objects in the template, create or copy them now.

The target system templates can be also renamed, use common context menu for this
purpose.

3.3.3. Use Your Custom Target System Template

If the custom target system template is correctly configured, you can use it to create new
target system instances. Perform these steps:

- Click the Target Systems view.

- Select a target system container or a cluster and start the target system wizard.

- In the Target System Selection step you should see all built-in templates as well as your
new custom target system type.

- Select your new type and fill all necessary tabs and fields to complete the target system

creation.

Your new target system instance is created.

3.4. Alternative or Extended Configurations

There are more possibilities to create custom target system templates. Create it with the
target system wizard directly from built-in types or copy an already existing custom target
system template.

We recommend using the method we described above, creating a template from an
instance. The big advantage is that you can configure and test the instance completely,
especially the connectivity workflows (this is subject of the next chapter).

3.4.1. Creating the Custom Target System Template Using a Built-in
Template

Perform these steps:

- Login into the Provisioning configuration.
- Select the Domain Configuration view.

- Navigate to
cn=TargetSystems,cn=Customer Extensions,cn=Configuration,cn=domain.

17



- Select New » Target System from the context menu. A list containing all built-in

templates is displayed. Select one of them and the system will create a target system
template including the corresponding connectivity workflows if selected.

- Perform Reload Object Descriptors.

- Add the missing Accounts, Groups or Accounts and Groups folders.

Note that the list does not contain any custom target system templates. Only built-in types
can be used this way.

Customize the created template to get your custom target system template.

3.4.2. Creating the Custom Target System Template Using a Custom
Template

Perform these steps:

- Login into the Provisioning configuration.

- Select the Domain Configuration view.

- Navigate to

cn=TargetSystems,cn=Customer Extensions,cn=Configuration,cn=domain.

- Select one of the existing custom target system templates and choose Copy Object

from the context menu. Do not forget to change the name before you click OK.

- Perform Reload Object Descriptors.

Customize the copied template to get your new custom target system template.

18



4. Creating Java-based Provisioning
Workflows

This use case explains how to build the necessary Java-based provisioning workflows for a
custom target system type or one of its instances. This is the most complex part of this use
case document that requires a sound knowledge base about DirX Identity.

4.1. About this Use Case

If a target system template has a reference to a connected directory in the connectivity
configuration, the target system wizard copies the necessary connectivity objects (mainly
the connected directory and the associated workflows) as specified.

Correct set up of a custom target system template together with all workflows allows
connecting a new connected system instance within minutes. Nevertheless this setup
must be done thoroughly.

Note that you can use manual provisioning as an alternative solution if you do not or not
yet need direct connectivity. In this case use the built-in Service Management target
system type as starting point for your custom target system type.

4.1.1. Documentation Hints

You can find additional information related to this use case in the following documents:

4.1.1.1. Connectivity Administration Guide

- Managing DirX Identity Connectivity » Managing Connected Directories — describes
overall how to manage connected directories in the connectivity configuration.

- Managing DirX Identity Connectivity » Managing Provisioning Workflows — describes
overall how to manage provisioning workflows in the connectivity configuration.

- Managing DirX Identity Connectivity » About Java-based Configuration Objects
— describes roughly the Java-based workflows configuration.

- Managing Connected Directories — describes how to manage connected directories in
the connectivity configuration.

- Managing Provisioning Workflows » Managing Java-based Provisioning Workflows —
describes how to configure and copy existing Java-based workflow objects.

4.1.1.2. Connectivity Reference

Identity Connectors — describes the functionality and configuration of the connectors
which are used in the Java-based provisioning workflows.

19



4.1.1.3. Application Development Guide

- Understanding the Default Application Workflow Technology » Understanding Java-
based Workflows - provides overall information about configuration and functionality
of Java-based provisioning workflows.

- Using the Default Connectivity Applications — explains the rules when working with
the default configuration objects.

- Using the Target System (Provisioning) Workflows » Understanding the Java-based
Target System Workflows — describes functionality and implementation of delivered
standard Java-based provisioning workflows. This is the most important documentation
part for this use case.

4.1.1.4. User Interfaces Guide

Using DirX Identity Manager » Using the Connectivity Views » Using the Expert View -
contains general information about usage of connectivity expert view which is necessary
for this use case.

4.1.1.5. Use Case Description: Java Programming in DirX Identity

- Provisioning Workflow Extensions — describes how to implement custom mappings,
user hook and filters used by Java-based provisioning workflows.

- Implementing a Custom Connector — explains how to implement a new connector that
may be used in new Java-based provisioning workflows.

4.1.1.6. Integration Framework

- Connector Integration Framework » Java Connector Integration Framework —
contains detailed information about Java framework that must be typically used when
implementing own Java components for Java-based provisioning workflow.

4.1.2. Specific Hints and Guidelines

Creation of a completely new connectivity workflow requires experience with Java-based
provisioning workflows:

- Try to identify the Java-based workflow that fits best as template for the new
connectivity workflow you want to create.

- Consider all necessary aspects of the new connectivity workflow. Most important is that
you have a connector ready that implements access to the connected system via the
provided API.

- Be sure that you do not create objects with display names that exist already. Use display
names that cannot collide with existing ones especially when working in the
connectivity Expert View within the Connectivity Configuration Data/Configuration.

- This guide expects the existence of a customer specific instance of the Identity Store
within Connected Directories/scenario_name/Provisioning/Identity Store. Create it by
using the new target system wizard if not yet existing. Do not place any new objectsin a
directory that contains settings for default objects (contains Default in the path) unless

20



this is mentioned explicitly.

4.2. Setup and Configuration
For configuration of Java-based provisioning workflows follow these steps:

- Create a custom scenario for your custom target system templates
- Create a new connected directory
- Create the required Java-based provisioning workflows
- Refine the copied objects
- Test the new Java-based provisioning workflows
Note that there is an alternative way to create Java-based workflows. You can build all

objects from scratch in the Expert view but this requires much more expert knowledge
and we do not recommend this method.

4.2.1. Creating a Custom Scenario

We recommend creating a scenario with a fixed name to be able to recognize objects that
belong to custom target system templates.

This step is only necessary if the CustomTemplates » Provisioning scenario does not exist,
that means you have to perform it when you create the first custom target system
template in your domain.

In this case perform these steps:

- Login into the Connectivity configuration.

- Select the Global view.

- Select the Scenarios node and choose New - Folder from the context menu.

- Enter CustomTemplates as name, set a description and click OK.

- Select the CustomTemplates node and choose New » Scenario from the context menu.

- Enter Provisioning as name, fill the other attributes and click OK.
A new and empty scenario exists. Additionally we need an Identity Store.
- Click into the blue empty area and select New Connected Directory from the context
menu. A connected directory icon with the name '(new') is created.

- Right click the icon and perform Configure from the context menu.

- In the wizard's Choose a Template step select the Identity Store (from the folder
Default/Identity Store).

- Step through the wizard steps but do not change anything. At the end click Finish to
complete the wizard.

The icon is renamed to Identity Store and contains all the information of the original

21



instance. For correct operation, you should link the Identity Store to your already created
scenario.

- In the scenario tree of the Global view click the Provisioning scenario and select
Properties from the context menu.

- Click Edit and set the link in the Identity Store field to your newly created Identity Store
(Connected Directories » CustomTemplates » Provisioning » Identity Store » Identity
Store). Click OK.

This step is necessary that the target system wizard can recognize the ldentity Store later
on.

4.2.2. Creating a New Connected Directory

For each custom target system type we need a connected directory that represents the
system to provision in the connectivity configuration.

Use an existing connected directory template that is similar to your new connected
directory. Add this template to your scenario:

- Click into the blue empty area and select New Connected Directory from the context
menu. A connected directory icon with the name '(new') is created.
- Right click the icon and perform Configure from the context menu.

- In the wizard's Choose a Template step select the template that you want to use as a
starting point. Click Next.

- In the Supply General Information step set the name equal to the name of your already
existing custom target system template. Set the other parameters in this step as
required.

Note: here you could also define a new connected directory type if you already created
it. If not, you can perform this task later on or you can stay with the current type. Click
Next.

- Fill the relevant parameters in the Set Provisioning Parameters step. Click Next.
- In the Set Bind Profiles step you can define or redefine bind profiles. Click Next.

- The next steps are dependent on your selected template. Typically you have to adapt
the attribute configuration file according to the real attributes of the new connected
directory. Fill all information according to the documentation or online help. At the end
of the wizard click Finish.

The new connected directory exists. You can find it in the Expert view in the folder:
Connected Directories » CustomTemplates » Provisioning » Target Scheduled

You can perform additional changes here in the Expert view or you can re-run the wizard in
the Global view.

Now we have to link this new connected directory to our already created custom target
system template:

22



- Click the Provisioning view group and select Domain Configuration.

- Navigate to the custom target system template in Customer Extensions » Target
Systems.

- Click it and perform Edit.
- In the Relationships area of the General tab set the link in the Connected Directory

field to your newly created connected directory.

This step is necessary that you can later on configure and run provisioning workflows from
the Provisioning configuration side.

4.2.3. Creating the New Java-based Provisioning Workflows

The next task is to copy the necessary workflows. First you should create a workflow line
between the newly created connected directory and the Identity Store:

- Click into the blue empty area and select New Workflow Line from the context menu.
Click both connected directory icons to create the line.

For each workflow you want to create perform these steps:

- Select the workflow line and perform New from the context menu. The workflow wizard
opens and shows all workflows that fit between these two endpoints. Select the correct
template and then click Next.

Note: if you cannot find the required template, deselect the Matching Endpoints flag.
Now you can see all workflows in your connectivity configuration regardless whether
they fit the two endpoints or not. Be aware that you have to adapt such a copied
template afterwards before it can work correctly.

- In the General Workflow Parameters step set the correct name for your new workflow
and adapt all the other parameters as described in the online help.

- Step through the other tabs and set all parameters as required. At the end click Finish.
Each workflow is normally copied to the folder
Workflows » CustomTemplates » Provisioning » Target Realtime - type

You can perform additional changes here in the Expert view or you can re-run the workflow
wizard in the Global view.

4.2.4. Refining the Objects

The copied connected directory as well as the copied workflows should be adapted further
to reflect all requirements.

4.2.4.1. Refining the Connected Directory

You can redefine almost anything. Consider the following issues:

New Connected Directory Type?

23



DirX Identity comes with a lot of pre-defined connected directory types (verify this in the
Expert view under Configuration » Connected Directory Types). A connected directory
type can be used by many connected directory definitions (for example the connected
directory type LDAP).

If you need a new one, create it under Configuration » Connected Directory Types. Use an
existing connected directory type object, copy it and rename it. Next you can redefine its
objects descriptions and wizards in the corresponding subfolders of the connected
directory type.

Having the connected directory type created, update the references for Wizard and
Directory Type at the new connected directory object which was previously created.

Tab Layout and the Displayed Attributes?

If you want to use other layout for the new connected directory, edit the object description
for the related connected directory type. Alternatively you can use the Design Mode for
simple adaptations of the layout. For more information see the documentation.

Attribute Configuration?

The attribute configuration of the connected directory reflects the schema of the system to
connect. If you have an LDAP type connected directory, you can reload the schema to
adapt the attribute configuration. Otherwise you have to enter and maintain all attributes
by hand.

Note that the attribute configuration is only necessary for Tcl-based workflows.

4.2.4.2. Refining the Workflow(s)

The workflow wizard copied all workflow objects correctly and set the corresponding links
(for example the links from the ports to the channels). Nevertheless you can adapt
everything as required. Consider these issues:

Workflow » General?

Adapt the Is applicable for, the Timeout and the Wizard Parameters sections. See the
online help for more information.

Join » General?
Adapt the Error Handling section. See the online help for more information.

Consider also the creation of a new resource family for running the activities of this new
Java-based workflow. You can create a new one under Configuration » Resource Families.
Create the folder CustomTemplates and then copy an existing resource family, rename it
and set it for the activities of the new workflow object (typically error and join activity).

Always check that the configured resource families are deployed for a running Java-based
server otherwise the activity cannot run.

Join » Controller?

24



You can also consider a change of the used controller. See the documentation for further
information.

If you intend to use global user hooks for the new workflow, enter the appropriate class
name of the implementing class to Controller tab of the join activity.

TS Port » Target System?

If you created a new connector, you have to set the Connector field correctly. You can
define new connector definitions under Configuration » Connector Types. As a template
use an existing one, copy it and define a component description for it (under the
Component Descriptions subfolder). Set the correct class name for the class that
implements the connectivity to the new connected directory.

4.2.4.3. Refining the Channels

The workflow wizard copied already all necessary channels from the selected workflow
template on both sides (connected directory and Identity Store). All links were correctly
adapted.

Adapt the Channel Structure
Typically four types of the channels should be present for a new connected directory:

- Channel for account object validation and synchronization
- Channel for group object validation and synchronization
- Channel for membership validation and synchronization

- Channel used for password synchronization (needed only by password sync workflows)

Each channel synchronizes one type of target system specific object if possible. These
channels exist typically in pairs. One channel exists at the connected directory definition
side. The other corresponding channel exists at the Identity Store side. The password
channel exists only at the connected directory side. You can use more channels, if there are
more types of objects to be synchronized.

If you need additional channels, copy or create them and configure them accordingly. You
have so set up the channels below the connected directory » Channel folder as well as
under the Identity Store » Channels folder. Be sure to set up the corresponding and correct
folder structure. Link the channel pairs correctly.

If you intend to use password synchronization, set also correctly the Password Primary
Channel for the password channel (typically the account channel). Set the Member
Channel for the correct channel (the channel that handles objects that store the group
membership).

Refining Mappings, Post Mappings and Channel User Hooks

Setup the mappings for the Java-based workflow channels as required. You can also define
post mappings and specify the class name of the Java class implementing the channel user
hook. Use Java class mapping instead of Java source wherever possible. It allows you to

25



debug Java mappings in a Java IDE. Define a new package name used for Java mappings
which must be also defined at the channel object. Use the common naming conventions.

4.2.5. Testing the Workflows

We recommend performing the tests in two steps:

4.2.5.1. Check Correctness

Check the correctness of the new workflow. Enable Design mode to see the Content
resolved tab at the Java-based provisioning workflow object.

View the content of this tab and try to find the characters ### in the displayed XML
content. This would mean that some references are incorrectly resolved. That does not
always mean that an error occurred, but we recommend evaluating these inconsistencies
and fix them if possible.

4.2.5.2. Live Testing

Now you are ready to perform a live test.

Create a new target system instance that is based on your custom target system template
and that comes with the corresponding workflows. Test the workflow using the DirX
Identity manager and the Java-based server.

You can debug the global and channel user hooks, the Java class mappings and the post
mMappings using a Java IDE. This requires the corresponding Java server running in the
debug mode. This mode can be enabled by starting the Java Server via the command line
using a batch runServer.bat (or .sh). Edit it and uncomment line beginning by REM SET
debug (when working with Windows version otherwise use ported settings for UNIX
systems). This will enable remote debugging on the pre-configured port 48174. Any Java
IDE supporting remote debugging is now able to connect to this port and debug your Java
classes used in the new Java-based provisioning workflows.

See the DirX Identity Use Case Document "Java Programming" for more information.

26



5. Transferring Custom Target System
Templates

The full target system configuration with provisioning workflows consists of the
provisioning domain specific configuration and the connectivity configuration. The DirX
Identity transport workflows support automated configuration transfer from the
provisioning or connectivity configuration. It is necessary to transfer connectivity and
provisioning configuration in two separate steps.

You can create custom target system templates in a specific provisioning domain. If you
intend to use these templates also in a different provisioning domain, it is necessary to
configure the appropriate transport workflow. This allows you to correctly reconfigure the
provisioning domain name. See documentation for more details.

The connectivity workflow configuration can be shared between more provisioning
domains. This allows you to use simple collection mechanism for the configuration transfer.
You can also use the transport workflows if desired.

27



DirX Product Suite

The DirX product suite provides the basis for fully integrated identity and access
management; it includes the following products, which can be ordered separately.

DirX Identity

DirX Identity provides a comprehensive,
process-driven, customizable, cloud-
enabled, scalable, and highly available
identity management solution for
businesses and organizations. It provides
overarching, risk-based identity and access
governance functionality seamlessly
integrated with automated provisioning.
Functionality includes lifecycle
management for users and roles, cross-
platform and rule-based real-time
provisioning, web-based self-service
functions for users, delegated
administration, request workflows, access
certification, password management,
metadirectory as well as auditing and
reporting functionality.

DirX Access

DirX Access is a comprehensive, cloud-ready,
scalable, and highly available access
management solution providing policy- and
risk-based authentication, authorization
based on XACML and federation for Web
applications and services. DirX Access
delivers single sign-on, versatile
authentication including FIDO, identity
federation based on SAML, OAuth and
OpenlD Connect, just-in-time provisioning,
entitlement management and policy
enforcement for applications and services in
the cloud or on-premises.

DirX Directory

DirX Directory provides a standards-
compliant, high-performance, highly
available, highly reliable, highly scalable, and
secure LDAP and X.500 Directory Server and
LDAP Proxy with very high linear scalability.
DirX Directory can serve as an identity store
for employees, customers, partners,
subscribers, and other 10T entities. It can also
serve as a provisioning, access management
and metadirectory repository, to provide a
single point of access to the information
within disparate and heterogeneous
directories available in an enterprise
network or cloud environment for user
management and provisioning.

o nva

DirX Audit provides auditors, security
compliance officers and audit
administrators with analytical insight and
transparency for identity and access. Based
on historical identity data and recorded
events from the identity and access
management processes, DirX Audit allows
answering the “what, when, where, who and
why" questions of user access and
entitlements. DirX Audit features historical
views and reports on identity data, a
graphical dashboard with drill-down into
individual events, an analysis view for
filtering, evaluating, correlating, and
reviewing of identity-related events and job
management for report generation.

For more information: support.dirx.solutions/about

28


https://support.dirx.solutions/about

=VIDEN

Eviden is a registered trademark © Copyright 2025, Eviden SAS - All rights reserved.

Legal remarks

On the account of certain regional limitations of sales rights and service availability,
we cannot guarantee that all products included in this document are available
through the Eviden sales organization worldwide. Availability and packaging may
vary by country and is subject to change without prior notice. Some/All of the features
and products described herein may not be available locally. The information in this
document contains general technical descriptions of specifications and options as
well as standard and optional features which do not always have to be present in
individual cases. Eviden reserves the right to modify the design, packaging,
specifications and options described herein without prior notice. Please contact your
local Eviden sales representative for the most current information. Note: Any
technical data contained in this document may vary within defined tolerances.
Original images always lose a certain amount of detail when reproduced.



	Creating a Custom Target System Type
	Copyright
	Table of Contents
	Preface
	DirX Identity Documentation Set
	Notation Conventions
	1. Overview
	1.1. Use Cases
	1.1.1. Defining a Custom Target System Instance
	1.1.2. Defining a Custom Target System Template
	1.1.3. Creating Java-based Provisioning Workflows

	1.2. Use Case Comparison
	1.3. Evaluation of the System to Connect
	1.3.1. Representation of Identities
	1.3.1.1. How Does the System Represent Identities?
	1.3.1.2. How Many Accounts Exist and What is the Typical Change Frequency?
	1.3.1.3. Can Accounts be Disabled?

	1.3.2. How does the system model access control?
	1.3.2.1. Access control model
	1.3.2.2. Does the System Allow For Nested Groups?

	1.3.3. Structural Conditions
	1.3.3.1. Are Groups and Accounts Stored in a Hierarchical or Flat structure?
	1.3.3.2. Are Memberships Stored at Accounts or at Groups?

	1.3.4. Which provisioning interfaces are available?


	2. Defining a Custom Target System Instance
	2.1. About this Use Case
	2.1.1. Documentation Hints
	2.1.1.1. Tutorial
	2.1.1.2. User Interfaces Guide
	2.1.1.3. Application Development Guide
	2.1.1.4. Customization Guide
	2.1.1.5. Provisioning Administration Guide

	2.1.2. Specific Hints and Guidelines

	2.2. Setup and Configuration
	2.2.1. Create a Target System Instance of the Generic Type
	2.2.2. Customizing the Newly Created Target System Instance
	2.2.2.1. Check and Set Up the Target System Tabs
	2.2.2.2. Check and Set Up the Target System Configuration


	2.3. Alternative or Extended Configurations

	3. Defining a Custom Target System Template
	3.1. About this Use Case
	3.2. Compatibility
	3.2.1. Documentation Hints
	3.2.2. Specific Hints and Guidelines

	3.3. Setup and Configuration
	3.3.1. Prepare a Target System Instance
	3.3.2. Create Your Custom Target System Template
	3.3.2.1. Copying the Target System Instance
	3.3.2.2. Configure the Target System Template

	3.3.3. Use Your Custom Target System Template

	3.4. Alternative or Extended Configurations
	3.4.1. Creating the Custom Target System Template Using a Built-in Template
	3.4.2. Creating the Custom Target System Template Using a Custom Template


	4. Creating Java-based Provisioning Workflows
	4.1. About this Use Case
	4.1.1. Documentation Hints
	4.1.1.1. Connectivity Administration Guide
	4.1.1.2. Connectivity Reference
	4.1.1.3. Application Development Guide
	4.1.1.4. User Interfaces Guide
	4.1.1.5. Use Case Description: Java Programming in DirX Identity
	4.1.1.6. Integration Framework

	4.1.2. Specific Hints and Guidelines

	4.2. Setup and Configuration
	4.2.1. Creating a Custom Scenario
	4.2.2. Creating a New Connected Directory
	4.2.3. Creating the New Java-based Provisioning Workflows
	4.2.4. Refining the Objects
	4.2.4.1. Refining the Connected Directory
	4.2.4.2. Refining the Workflow(s)
	4.2.4.3. Refining the Channels

	4.2.5. Testing the Workflows
	4.2.5.1. Check Correctness
	4.2.5.2. Live Testing



	5. Transferring Custom Target System Templates
	Legal Remarks

