=VID&N

Identity and Access Management

DirX Identity

High Availability

Version 8.10.10, Edition June 2025

All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.

Table of Contents

Copyright
Preface
DirX Identity Documentation Set
Notation Conventions
1. Overview
1.1. Relevant Server Components
1.2. Administrative Fail-over
1.2.1. Documentation
1.3. Automatic Fail-over with Circular Monitoring
1.3.1. Documentation
2. Installation and Initial Configuration
2.1. Installation
2.2. Initial Configuration
2.3. Documentation
3. Configuration
3.1. Java-based Servers
3.1.1. Assign Scheduler, Request WorkflowTimeout Check and Adaptors
3.1.2. Configure Monitoring Circle
3.1.3. Backup Adaptors
3.1.4. Secure Connections — SSL/TLS
3.2. C++-based Servers
3.3. Supervisor Configuration
3.4. Documentation
4, Supervisor Customization
4.1. Supervisor in Server Admin
4.2. Changing Mails in Supervisor Scripts
4.3, Java Classes
4.3.1. AdminClientController
4.3.2. Sendmail
5. Switching between Active and Passive Configurations
5.1. Prerequisites
5.2. Command-line Interface
5.3. Switching Configuration File
5.3.1. configuration Element
53.2.logging Element
5.3.3. process Element and its mode Attribute
53.3.1. auto
53.3.2. fromto
53.3.3. state

O O 3 0O U N N —o =

NN N NN DN NN S i T e T S R R T < T < T i G R R
NN N NI NNNNNOoOcODOOMIJTJdooon 0 d 0 N NDMNWBODROND=

53.3.4. How the Tool Determines Hostnames from LDAP
5.4. Sample Activation
Legal Remarks

24
24
28

Preface

This document describes how to set up and configure DirX Identity’'s high availability
features. It consists of the following chapters:

- Chapter 1 describes DirX Identity high availability concepts and implementations,
administrative fail-over and automatic fail-over with circular monitoring.

- Chapter 2 describes how to install and perform initial configuration.

- Chapter 3 describes how to configure the Java- and C++-based servers.

- Chapter 4 provides information on customizing the supervisor.

- Chapter 5 provides information on the tool for switching between active and passive
DirX ldentity configurations.

high-availability/ch1_overview.pdf
high-availability/ch2_installation.pdf
high-availability/ch3_configuration.pdf
high-availability/ch4_supervisor-config.pdf
high-availability/ch5_switching-active-passive.pdf

DirX Identity Documentation Set

The DirX Identity document set consists of the following manuals:

- DirX Identity Introduction. Use this book to obtain a description of DirX ldentity
architecture and components.

- DirX Identity Release Notes. Use this book to understand the features and limitations of
the current release. This document is shipped with the DirX Identity installation as the
file release-notes.pdf.

- DirX Identity History of Changes. Use this book to understand the features of previous
releases. This document is shipped with the DirX Identity installation as the file history-
of-changes.pdf.

- DirX Identity Tutorial. Use this book to get familiar quickly with your DirX Identity
installation.

- DirX Identity Provisioning Administration Guide. Use this book to obtain a description of
DirX ldentity provisioning architecture and components and to understand the basic
tasks of DirX Identity provisioning administration using DirX ldentity Manager.

- DirX Identity Connectivity Administration Guide. Use this book to obtain a description of
DirX Identity connectivity architecture and components and to understand the basic
tasks of DirX ldentity connectivity administration using DirX Identity Manager.

- DirX Identity User Interfaces Guide. Use this book to obtain a description of the user
interfaces provided with DirX Identity.

- DirX Identity Application Development Guide. Use this book to obtain information how
to extend DirX Ildentity and to use the default applications.

- DirX Identity Customization Guide. Use this book to customize your DirX Identity
environment.

- DirX Identity Integration Framework. Use this book to understand the DirX Identity
framework and to obtain a description how to extend DirX Identity.

- DirX Identity Web Center Reference. Use this book to obtain reference information
about the DirX Identity Web Center.

- DirX Identity Web Center Customization Guide. Use this book to obtain information
how to customize the DirX Identity Web Center.

- DirX Identity Meta Controller Reference. Use this book to obtain reference information
about the DirX Identity meta controller and its associated command-line programs and
files.

- DirX Identity Connectivity Reference. Use this book to obtain reference information
about the DirX Identity agent programs, scripts, and files.

- DirX Identity Troubleshooting Guide. Use this book to track down and solve problems in
your DirX Identity installation.

- DirX Identity Installation Guide. Use this book to install DirX Identity.

- DirX Identity Migration Guide. Use this book to migrate from previous versions.

introduction:prf_identintroduction.pdf
release-notes:ReleaseNotes.pdf
release-notes:HistoryOfChanges.pdf
tutorial:prf_identtutorial.pdf
prov-admin-guide:prf_identprovadm.pdf
conn-admin-guide:prf_connectivity.pdf
user-interfaces-guide:prf_identgui.pdf
appl-dev-guide:prf_appldevgd.pdf
custom-guide:prf_identprovcustom.pdf
integration-framework:prf_identframework.pdf
web-center-ref:prf_identwebref.pdf
web-center-custom-guide:prf_identwebcustom.pdf
metacp-ref:prf_identcontref.pdf
conn-ref:prf_identagent.pdf
troubleshooting-guide:prf_identtrouble.pdf
install-guide:prf_install.pdf
migration-guide:prf_identmig.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

userlD_home_directory

The exact name of the home directory. The default home directory is the home directory of
the specified UNIX user, who is logged in on UNIX systems. In this manual, the home
pathname is represented by the notation user/D_home_directory.

install_path

The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userlD_home_directory/DirX Identity on UNIX
systems and C:\Program Files\DirX\Identity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

dirx_install_path

The exact name of the root of the directory where DirX programs and files are installed. The
default installation directory is userlD_home_directory/DirX on UNIX systems and
C:\Program Files\DirX on Windows systems. During installation the installation directory
can be specified. In this manual, the installation-specific portion of pathname is
represented by the notation dirx_install_path.

dxi_java_home

The exact name of the root directory of the Java environment for DirX Identity. This location
is specified while installing the product. For details see the sections "Installation" and "The
Java for DirX |dentity".

tmp_path

The exact name of the tmp directory. The default tmp directory is /tmp on UNIX systems. In
this manual, the tmp pathname is represented by the notation tmp_path.

tomcat_install_path
The exact name of the root of the directory where Apache Tomcat programs and files are
installed. This location is defined during product installation.

mount_point
The mount point for DVD device (for example, /cdrom/cdromO).

1. Overview

DirX Identity provides significant extensions to its load balancing and thus also to its high
availability features. As of V8.3, the dynamic load balancing features for Java-based
workflows are improved once more and so are the high availability features. As a downside,
the recovery features for Tcl-based workflows are slightly reduced.

DirX Identity high availability still focuses on high availability within one site. The
implemented solution requires file-based repositories to be accessible from the message
brokers, which is usually accomplished with highly-available storage systems in one site.
However, this configuration can be a significant cost and performance factor for remote
sites, and thus may not always be available.

Workflow implementations that may limit the deployment of high availability include:

- Workflows that import from a file or export to a file, including provisioning workflows,
report producers, history record exporters and others.

- Tcl-based workflows with intermediate files, where the activities are distributed across
systems.

Administrators can use the Web application Server Admin to get an overview of the state of
all Java- and C++-based servers and move functionality between them manually as
necessary. Using Server Admin, administrators can:

- Move the scheduler for Java-based workflows to another 1dS-J server.
- Move request workflow processing to another |dS-J server.
- Recover the messages of a crashed Java-based server to another |dS-J server.

- Move the configuration handler for forwarding certification changes to another |dS-J]
server.

The Server Admin functionality comprises administrative fail-over.

For automatic fail-over DirX Identity supports Circular monitoring. In Circular monitoring
each |dS-J server monitors the state of another server, altogether building a circle. If a
monitored server is no longer available, the monitoring server takes over its functionality
and the messages not yet fully processed. One of the |dS-J servers monitors all the 1dS-C
servers. If an IdS-C server is no longer available, it moves the Tcl-based workflows to another
IdS-C server.

Note that using DirX Identity’s high availability features requires an add-on license that
requires the business or the professional suite as a pre-requisite.

Note, too, that the Tcl-based supervisor provided in previous DirX Identity versions cannot
be deployed with the new Java-based supervisor, because it also monitors the IdS-C servers
and moves the messaging service and Tcl workflows and thus conflicts with these
operations in the Java-based supervisor. However, if you have deployed the Tcl-based
supervisor, you can continue to run it as long as you don't activate the Java-based
supervisor.

The following chapters describe in more detail how to install the high availability features
as a whole and then how to configure them.

1.1. Relevant Server Components

The following diagram gives an overview of the Java server components that are important
for understanding High Availability:

Host 1 Hiost 2

Dir¥ Identity | [Dir¥ Identity
ld5-J 1 ld5-J 2
deombdonitoredSaneer-DN

¥
4
§
2
g

@ é’
B3 %
1
i
It
'15[=_
T
E5

4
E
E
EQ

Shared Network Davice

Figure 1. Java-based Server Components

Each Java server is connected to the message broker, realized by Apache ActiveMQ. All IMS
clients send their messages to this broker and receive their messages from it. The broker
stores the messages in his (shared) repository, implemented by the Apache component
KahaDB. For High Availability the repository folder should be located on a shared network
device.

The JMS adaptors (for provisioning requests, entry change or password change events)
read messages from the message broker and store them in their own local file repository.
The adaptors delete a message from their repository only when it is completely processed
by the corresponding workflow. The reason for the separate repository is a IMS standard
feature: when an adaptor acknowledges a message to the broker, the broker deletes this
message and all that were received before. But DirX Identity cannot guarantee that
message processing is finished in the order they are obtained from the broker. Processing
for some messages takes longer than others. Sometimes errors occur and processing has
to be repeated.

If High Availability is activated, each Java server starts its Backup Adaptor. This Backup
Adaptor receives messages from the normal JMS adaptors on the monitored Java server
and stores them in its local backup repository. When a provisioning or password adaptor on
IdS-J2 receives a message from the broker, it immediately sends them to the Backup
Adaptor on IdS-J1. When the message has been processed, the JMS adaptor removes it

from its local repository and also instructs the Backup Adaptor to remove it from the
backup repository on IdS-J1.

When automatic fail-over is configured, each Java server starts its local supervisor. The
supervisor monitors the Java server identified by the Monitored Server link. In the diagram
above, |dS-J1 monitors 1dS-J2 and vice versa 1dS-J2 monitors |dS-J1.

A second message broker can be deployed on any host with a DirX Identity Java server or
on any other external server. Only one message broker has exclusive access to the message
repository, all other message brokers are locked out and haven't started their connectors
for the client. In case the message broker crashes, the database lock is removed, and the
next message broker gets the exclusive access to the database (and starts his connectors).
There is no algorithm of who is the next broker to take over; it's simply the fastest one. The
failover time is about 20 seconds.

1.2. Administrative Fail-over

This section describes how to move functionality from a failed server to a working server
manually.

As a pre-requisite, you should have deployed and configured at least two Java-based and
two C++-based servers. The message repositories should be located on a shared network
device, which is accessible from all the Java servers.

The tool to use here is the Server Admin Web application. It gives an overview of all Java-
and C++-based servers and allows you to:

- Recover the messages from the local Backup Adaptor.

- Move the request workflow Timeout Checker processing to another |dS-J server.

- Move the Scheduler for Java workflows to another IdS-J server.

- Move the Configuration Handler to another IdS-J server.

- Disable / enable permanent JMS adaptors.
Server Admin is available if you checked the appropriate selections during installation and

initial configuration and is deployed with each 1dS-J server. To access it, use the following
URL:

http://your_host:_port_/serverAdmin

By default, the admin port for the first installed IdS-J server is 40000 and for https it is
4000]1. For each subsequent 1dS-J server on the same system, you must choose a different
port; for example, 40100, 40200 and so on.

Log in as a user of the DirX Identity domain. Only users in the ServerAdmins group in the
DirKXmetaRole target system are allowed to use Server Admin.

The overview page shows the message brokers, the Java- and the C++-based servers, where
you can view the state of each server. For a Java-based server, you can see the set of active
adaptors and check boxes that indicate which server is responsible for processing request

workflows and the scheduler.

You can click the Details icon to view the details of a selected Java-based server in an extra
page. You can click the Update button to get an updated server state. For more details on
Server Admin, see the DirX Identity User Interfaces Guide.

When you notice that an 1dS-J server's state has degraded or that the server has dropped
out completely, you can move all of its functionality to other |dS-J servers, including:

- The request workflow timeout checker.

The Timeout Checker component actively searches for timeouts of request workflows and
their activities and then starts new activities when necessary. Clients - especially Web
Center - address their requests to create a new workflow or modify an existing one (for
example, in case of an approval) to the |dS-J server, which is currently responsible for the
request workflows. If they lose the connection to the request workflow web service, they
look up the IdS-J server that is currently configured to host the request workflows and set
up a new connection to this server.

- The scheduler for Java workflows.

The scheduler must only be running on one Java server per domain. It is responsible for all
schedules of that domain.

- Move JMS adaptors.

Most of the adaptors can be deployed to all servers in parallel, especially those that drive
real-time workflows that process events for provisioning, password changes, (user) entry
changes, and for mails. Typically, there is no need of moving them.

Especially you should leave the Backup Slave Listener, if high availability is active. They
backup the events for the Java server this server is monitoring.

Only the Configuration handler should be deployed at most on one server. It is responsible
for distributing changed certificates and message broker configurations — mainly for the
Windows Password Listener. This is the only adaptor you can move.

Note that any pending messages cannot be pushed back to the message server. This
feature is only available for automatic fail-over.

When a C++-based server fails, the associated workflows and activities have to be moved
and —if it was the primary server — also the Status Tracker. Note that the configuration
changes are persistently stored in the Connectivity database and thus survive re-starts of all
the Java- and C++-based servers. If you want to return to the previous configuration after
the failed server is up again, you must do it manually: Perform the move using Server
Admin in the same way as previously described. This is the only way to make this change.
Changing the configuration with DirX Identity Manager is NOT sufficient, because Manager
does not inform the affected servers. They will (de-)activate the corresponding functionality
only when they start the next time.

1.2.1. Documentation

To understand this issue, we recommend reading the following chapters:

- DirX Identity User Interfaces Guide, especially the chapter on Server Admin.

- DirX Identity Connectivity Admin Guide, the chapter on managing Servers.

1.3. Automatic Fail-over with Circular Monitoring

This section describes how to configure the Java-based servers so that they monitor each
other as well as the C++-based servers and automatically move functionality from a failed
server to an active one.

The message broker setup is independent of this and is used like a black box. Failover of
the message broker is done automatically by means of ActiveMQ.

The following diagram illustrates this deployment:

Figure 2. Automatic Fail-over with Circular Monitoring

The deployment comprises several Java-based servers and two C++-based servers. The
Java-based servers monitor each other in a circle: IdS-J1 monitors [dS-J2, 1dS-J2 monitors
IdS-J3 and 1dS-J3 monitors |dS-J1. IdS-J1 hosts the scheduler for the Java workflows, 1dS-J2
monitors all C++-based servers and 1dS-J3 processes the request workflows.

Use DirX Identity Manager to configure this scenario as follows:

- For each of the Java-based server entries in the Connectivity database:
- Activate Automatic Monitoring.
- Enter the monitored Java-based server.

- Enter the supervisor configuration and reference it from each Java-based server. The

supervisor configuration entries are Configuration » Java Supervisors (see DirX ldentity
Manager's Connectivity View » Expert View). Create your own folder — preferably one per
domain - and a new configuration entry. The important fields to be entered are the
Monitoring Interval, the Retry Count and the fields for defining the mail. The supervisor
sends an e-mail whenever it considers a server to be unavailable and moves functions
to another one.

We recommend using the same supervisor configuration for all Java-based servers.

- For exactly one Java-based server, check Monitor C++-based Servers.
- For exactly one Java-based server set the flag for the scheduler.

- For exactly one Java-based server set the flag for request workflow Timeout checker.

No special configuration is needed for the C++-based servers: just distribute the Tcl-
based workflows and their activities according to your needs.

A supervisor considers a monitored server to be down when it does not respond to a IMX
monitor operation (getState) after several (retryCount) repetitions or when the returned
state is below a certain limit (4 in a range of O to 10). Note that the supervisor recognizes
when a server has been intentionally stopped and does not consider this to be a failure. In
other words, when a server is intentionally stopped, the supervisor does not automatically
take over its services. However, you can perform the move using Server Admin as described
in the chapter above. The following diagram illustrates an example.

Id5-C1 1d5-C2

Figure 3. Automatic Fail-over with Circular Monitoring - Java-based Server Down

In this example, let’'s assume that IdS-J2 is no longer responding. |dS-J1 takes over the
monitoring tasks of the |dS-J2 supervisor: it monitors |dS-J3 and all adaptors that are active
on 1dS-J2, but not on |dS-J1.

The supervisor changes the configuration accordingly in the Connectivity database and
requests its hosting 1dS-J server to start the additional adaptors.

10

If IdS-J1 would fail, then 1dS-J3 would take over especially the scheduler. Analogous, if IdS-J3
fails, then 1dS-J2 would take the responsibility for the request workflows.

When |dS-J2 comes up again, the previous configuration is not automatically restored. The
administrator must move the adaptors, the scheduler and/or the request workflow service
back to IdS-J2. This is not so for the monitoring tasks, because the supervisor does not
change the configuration regarding monitoring. Therefore, IdS-J2 will again monitor 1dS-33
and the IdS-C servers. |[dS-J1 continues to monitor 1dS-J2 and stops monitoring the others
as soon as it considers |dS-J2 to be up and running.

When I1dS-Cl1 fails to respond to the JIMX getState() operation, IdS-J2 moves the schedules,
workflows and activities to 1dS-C2: it changes the configuration in the connectivity
database accordingly and requests |[dS-C2 to re-start and evaluate the configuration again.

1d5-C1 1d5-C2

+ Workflows Id5-C1

Figure 4. Automatic Fail-over with Circular Monitoring — C++-based Server Down

1.3.1. Documentation
To understand this issue, we recommend reading the following chapters:

- DirX Identity Connectivity Administration Guide: the chapters on Java-based server
configuration, messaging service configuration and on Java Supervisor configuration in
the context-sensitive help.

n

2. Installation and Initial Configuration

This chapter describes the installation and initial configuration for high availability.

2.1. Installation

For a detailed description of the installation procedure, see the DirX Identity Installation
Guide. This chapter lists just the items you should address when installing the features for
high availability.

Choose Licensed Feature Set dialog:

Make sure that you select High Availability in addition to Business Suite. You can also
select Professional Suite and / or Password Management, but neither one of these
packages is needed for High Availability.

Choose Install Set dialog:

If you selected High Availability in the previous step, you can now select High Availability
here, which allows you to select from this item:

- Server Admin - select this item to install the Server Admin Web application (and Java-
based supervisor) that can be deployed with each IdS-J server. You should always select
this item because it gives you an overview of the state of all Java- and C++-based
servers.

2.2. Initial Configuration

After installation, you need to configure your deployment using the Initial Configuration
wizard. This section just mentions the parts relevant for High Availability. For complete
details on this task, see the DirX Identity Installation Guide, chapter Configuration.

System-wide Configuration dialog:
Enable High Availability for the system by checking the appropriate check box.
Configuration Options dialog:

Server Admin (including Supervisor-J) Configuration - select this item to deploy the
Server Admin Web application to the IdS-J server you select in a subsequent step. Make
sure that the Server Admin is deployed for each deployed |dS-J server.

Java-based Server:

For High Availability, set the message repository for the embedded message broker to a
network device that can be accessed by the other Java-based servers — at least the one that
is monitoring it.

In this case, the server typically needs to run as a domain account that has enough access
rights to create files. The local system account is typically not sufficient. For Windows

12

platforms you have to set that account in the Windows Services application.

As an alternative, you can set the repository with DirX Identity Manager: select the server in
the Configuration folder and enter the correct path. Then re-start the services of both this
server and the monitoring one to activate this.

To deploy additional Java-based servers, run the Configuration wizard again.

In the dialog Java based Server create a new server by selecting <Create a new Java
server> in the field Server to update or create.

Select the host on which you run the wizard and in the Java-based Server Ports and SSL
dialog especially set appropriate values for the ports and port ranges: Make sure they do
not overlap with the settings of the other servers on the same host.

In case you need to connect using SSL, provide the necessary key and trust stores. For
simplicity, you can re-use the certificate and key of the other servers: In the configuration
wizard set the location to the sub-folder private of this server and copy them afterwards.

2.3. Documentation
To understand this issue, we recommend reading the following chapters:

- DirX Identity Installation Guide, especially chapters 3 (installation) and 4 (configuration).

13

3. Configuration

As a pre-requisite for high availability, you need to deploy at least two Java-based servers.

3.1. Java-based Servers

To set up a new Java-based server, use the Configuration Wizard as described in the
chapter "Installation and Initial Configuration".

3.1.1. Assign Scheduler, Request WorkflowTimeout Check and Adaptors

As soon as you have deployed more than one Java server, you have a choice as to where
run scheduler, request workflows and selected adaptors. Scheduler and request workflows
can only be deployed on one server per domain. Most of the adaptors can run on all Java
servers in parallel. If you want, you can disable one or more on selected servers. But if you
run the associated type of workflows, make sure that at least one adaptor of this type is
active. Using Server Admin you can move these components at runtime without re-starting
the servers. See the chapter "Supervisor Customization" for instructions.

To support running all workflows on all IdS-J servers, make sure you configure all |dS-J
servers so that they provide the same resource families. Keep in mind that workflow
activities — in both provisioning and request workflows — require a resource family that the
hosting |dS-J server must provide.

DirX Identity Manager can give you an overview of the adaptors, the scheduler and the
timeout check deployment: open the Connectivity view and go to the Expert View. In the
Connectivity Configuration Data tree, go to Configuration -» DirX Identity Servers -» Java
Servers. Right-click on a Java-based server and then select Manage 1dS-J Configuration
from the context menu. This opens a dialog that gives you an overview of the adaptors, the
scheduler, the request workflow timeout check responsibility and the supervisors in
respective tabs.

The Adaptors tab presents a two-dimensional list: each Java-based server is listed
horizontally, and each adaptor is listed vertically. Click the appropriate radio or check
button(s) to deactivate adaptors that you don't need. This action instructs the
corresponding Java-based server not to start the adaptor, which saves threads and sockets
resources in both the Java-based server and the messaging service.

The Request Workflow Timeout Check tab also presents the list of Java servers and radio
buttons for the request workflow timeout check. This component should run on only one
server.

The Scheduler tab lets you assign the scheduler to one of the Java servers of the domain.

For changing most of the settings however, you have to open the Java server configuration
objects individually. To activate your changes, you must stop and then start all the Java-
based servers in the proper sequence.

14

3.1.2. Configure Monitoring Circle

For Automatic Fail-over you have to configure a monitoring circle: each Java server should
monitor another one and should in turn also be monitored by another one. See the section
"Automatic Fail-over with Circular Monitoring" for an overview.

You must use the Identity Manager for the configuration task. In the HA tab of each Java-
based server activate Automatic Monitoring, select the server to be monitored and
reference the link to the supervisor configuration.

For checking your circle and obtain an overview, right-click a Java-based server object and
then select Manage IdS-J Configuration from the context menu.

The Supervision tab shows whether automatic monitoring is set for all servers and how
Java servers monitor each other.

3.1.3. Backup Adaptors

For enabling recovery of adaptor messages, you don't have to configure anything special.
The backup adaptors start automatically when the Automatic Monitoring Flag is set.

3.1.4. Secure Connections — SSL/TLS

If you use SSL to secure the connections to the Java-based servers, you need to generate a
private key for the Java-based server and then put the corresponding certificate into the
trust store of each client. To keep things simple, we recommend using the same private
key for all Java-based servers. For more details, see the section "Establishing Secure
Connections with SSL" in the chapter "Managing the Connectivity System" in the DirX
Identity Connectivity Administration Guide.

If you operate Web Center in single sign-on mode, you must generate a private key for
Web Center and then put the corresponding certificate into each Java-based server's trust
store. For details, see the section "Deployment Descriptor web.xml" in the chapter "Web
Center Configuration" of the DirX Identity Web Center Reference. We recommend using
the same private key for all deployed Web Center instances.

3.2. C++-based Servers

With regard to High Availability nothing special has to be configured for the C++-based
servers except for the Status path.

It is recommmended to have the Status path on a shared network (for Windows: Should be
an UNC path and the service must run under an account which has write access to this
UNC path). In that case, status files can be accessed even if the machine where the IdS-C is
located is down.

Just keep in mind that the Status Tracker is automatically started in the IdS-C with
attribute dxmRunStatusTracker set to true. The Configuration Wizard on initial installation
sets this value for the first installed C++-based server.

15

3.3. Supervisor Configuration

The configuration entries for the Java-based supervisor are located in the Connectivity
database (see DirX Identity Manager's Expert View) in Configuration » Java Supervisors.
Each subfolder here defines a supervisor configuration.

In the "circular monitoring" automatic fail-over scenario, the configuration for the
supervisor embedded in an IdS-J server is identified by a reference from the 1dS-J
configuration to the subfolder in Java Supervisors.

To configure the supervisor for the circular monitoring scenario, follow these guidelines:
- In the Supervisor section of the Java Server configuration entry (see the Java-based
Server tab) of each Java-based server that should be part of the monitoring process:
- Check Automatic Monitoring to enable it.
- Select the Java-based server to be monitored.

- Select the supervisor configuration entry. We recommend using the same supervisor
configuration for all supervisors; that is, reference the same supervisor entry from all
Java server configuration entries.

- Make sure that Automatic Monitoring is enabled for all the Java-based servers in the
monitoring cycle and that the server-to-server monitoring circle is closed. Verify this by
viewing the Supervision tab in the Manage IdS-J Configuration dialog.

- In exactly one Java-based server configuration entry, check Monitor C++-based Servers
(see the Java-based Server tab, Supervisor section).

3.4. Documentation
To understand this issue, we recommend reading the following chapters:

- DirX Identity Web Center Reference, chapter "Web Center Configuration".

- DirX Identity Connectivity Administration Guide, chapter "Managing the Connectivity
System".

16

4. Supervisor Customization

The Java-based supervisor is deployed with the Web application Server Admin in the
embedded Tomcat Web container of each IdS-J.

The main component in the supervisor is a Groovy script. The script contains the control
logic for monitoring the server(s), moving functionality and sending email notifications. It
uses Java classes in the module Admin Client. The most important class is
AdminClientController. It provides methods to

- Read configuration data from and change in the Connectivity database.
- Obtain the state of Java-based and C++-based servers.
- Move adaptors between Java-based servers.

- Move request workflow processing and scheduler between Java-based servers.

- Move workflows between C++-based servers.
The Sendmail class allows for sending an e-mail.

Adapting the Groovy script requires Java knowledge. Only a few simple Groovy-specific
syntaxes are used within the script. Editing and running the script is possible even with a
normal text editor. You don't need a compiler. For more convenience, we recommend
using Eclipse with the Groovy plug-in. For more details on Groovy, check the Groovy web
page: http://groovy.codehaus.org/.

The following sections help you to understand the logic of the supervisor script to help you
adapt it to your needs. The first sections describe the script, a special section explains how
to adapt e-mail texts and the last sections describe the most important Java utility classes.

Find the script and properties files in the following sub-folders of each respective Java
server:

- Start script and properties for mails in subfolder tomcat/webapps/serverAdmin/WEB-
INF/scripts/sv.

- Other common scripts in subfolder tomcat/webapps/serverAdmin/WEB-
INF/classes/sv.

4.1. Supervisor in Server Admin

The control logic of the supervisor deployed in Server Admin is contained in the
InsideGroovySupervisor.groovy script. This script is called from the Supervisor servilet on
start-up only when the configuration in the Connectivity database requests automatic
monitoring.

The startMonitoring method contains the script's control logic. After reading its
configuration it starts the monitoring loop. The method isJavaServerUp returns false if the
Java server with the given name is not considered active. If this supervisor is also the one to
monitor the C++ servers, it performs this in the method monitorCServer.

17

http://groovy.codehaus.org/

If a Java server is considered to be down, the supervisor, in its handlelnactiveServer
method, takes over all the features of the failed servers. These are especially the following
items:

- The scheduler, if the failed server hosted it.

- The request workflow processing, if the failed server was responsible for request
workflows.

- The server's movable adaptors. If one of the other IMS adaptors was active in the failed
server, but not in the local one, then the supervisor activates it also on its embedding
server.

- The server’'s monitoring tasks; that is, it also checks the state of those servers that should
be monitored by the failed one.

The monitorCServer method monitors the registered C++-based servers. It calls the
isCServerUp method to check the state of a given C++-based server. If the C++-based server
is registered as active but fails to respond, the supervisor:

- Sends an e-mail informing about the fail state.

- Moves the Tcl-based workflows controlled by the failed server to another running C++-
based server.

- Sends an email informing about the move.

- Requests the affected C++-based servers to reload.

The sendmail method sends an e-mail using the Sendmail class of the
ClientAdminController component. The method obtains the mail configuration from the
supervisor configuration, especially: from, to, subject, body and the name of the mail server.
If a subject is passed to the method, it adds it to the configured subject. If a body is passed
to the method, it adds it to the configured body.

4.2. Changing Mails in Supervisor Scripts

The supervisor scripts take the basic mail parameters from the supervisor configuration in
the Connectivity database: see the section Supervisor Configuration above. These
parameters specify mail parameters such as the recipients (to, cc, bcc), the subject and the
body of the mail as well as the mail service.

The scripts send e-mails in various situations, especially when they move functionality from
a failed server to an active one. All of these mails use the same mail configuration. To
identify the actual situation, the scripts add specific information to the subject and the
body:

- Subject: the configured subject is extended with ": " followed by a string.

- Body: the configured body is extended with a new line followed by a string.

The strings are taken from the file mail.properties in the sub-folder
tomcat/webapps/serverAdmin/WEB-INF/scripts/sv of each affected Java server. Note that
is has to be deployed for each server. They can be customized by adapting this file. The

18

supervisor scripts find the appropriate texts via a key that identifies the situation. The
currently evaluated keys are:

start: subject of the mail immediately before starting the monitor loop.
startbody: body of the mail immediately before starting the monitor loop.
j_down: subject of the mail after a Java-based server becomes inactive.
j_down_body: body of the mail after a Java-based server becomes inactive.
c_down: subject of the mail after a C++-based server becomes inactive.
c_down_body: body of the mail after a C++-based server becomes inactive.

INF_MOVE_ATS: body of the mail after workflows have been moved between C++-based
servers.

c_ats_move: subject of the mail after the messaging service has been moved.
c_ats_move_body: body of the mail after the messaging service has been moved.

The texts contain string placeholders of the form %*n$s* where n is an integer that
indicates the nth passed parameter; for example, %1$s. These parameters are the dynamic
values depending on the context, typically identifying a server name.

If you want to suppress mails, find the location by scanning for the string "sendmail" in the
appropriate script. Just uncomment the lines by prefixing them with "//" or remove them.

If you want to send additional mails: copy the lines for generating the subject and body
strings and for sending the mail and paste them into the appropriate location. Replace the
keys with your own names and extend the mail.properties file with the appropriate lines.

You can also replace the pre-configured mail parameters and set your own ones by using
your own sendmail method. Just copy and paste the default sendmail method to define a
new method (for example, myCustomSendmail) and adapt it to your needs.

4.3. Java Classes

The supervisor script uses a set of Java classes. The following sections give an overview on
them.

4.3.1. AdminClientController

The net.atos.dirx.dxi.admin.client.controller. AdminClientController class provides a
number of useful methods to read and update the configuration entries of the Java- and
C++-based servers, to obtain the state of these servers and to move functionality between
servers. The most important methods are:

getSupervisionConfigurationByName

Reads the supervisor configuration with the given name from the Connectivity database

19

and returns it as a map with the option names as the index.

getServers

Reads the configuration of all Java-based servers from the Connectivity database and
returns them in a map that is indexed by the display name of the server. The
configuration for a server is provided as a Java bean with the configuration options
available as a map.

getCServers

Reads the configuration of all C++-based servers from the Connectivity database and
returns them in a map that is indexed by the display name of the server. The
configuration for a server is provided as a Java bean with the configuration options
available as a map.

getStateOfJavaServer

Sends a JMX operation to obtain the state of the indicated Java-based server. The state is
given as an integer in the range from 0O (bad) to 10 (good).

getStateOfCServer

Sends a JIMX/SOAP operation to obtain the state of the indicated C++-based server. The
state is given as an integer in the range from 0O (bad) to 10 (good).

moveAdaptors

Moves the JMS adaptors and also the responsibility for request workflows from one
server to another one.

moveReqWFType

Moves the responsibility for processing the request workflows from one server to
another. It first changes the settings in the connectivity database and then requests the
affected Java-based servers to reload their configuration and thus start the processing.

moveTclWorkflowAndActivities

Moves the workflows and activities that are controlled by a given C++-based server to
another one given by name. It first changes the settings in the connectivity database
and then requests the affected Java-based servers to reload their configuration and thus
start the processing.

4.3.2. Sendmail

The net.atos.dirx.dxi.admin.client.controller.Sendmail class can send a mail. It sets the
mail content type to either "text/html", if the body matches the HTML pattern or to "UTF-8"
otherwise.

20

5. Switching between Active and Passive

Configurations

DirX Identity high availability supports an “active/passive” scenario (sometimes called a
“warm standby"” configuration), in which a secondary node or system—the “passive”
configuration—acts as the backup for an identical primary system—the “active”
configuration. The secondary system is completely installed and configured, but the

software components are not running. If a failure occurs on the primary node, the software

components are started on the secondary node. The switch is handled manually or is

automated by using a failover component. Data is regularly replicated to the secondary

system or stored on a shared disk.

DirX Identity high availability provides a tool for switching between active and passive DirX

Identity configurations. If you have selected High Availability in the Choose Licensed
Feature Set dialog during installation, you will find this tool installed in the directory:

dxi_install_path/ha/tools/switchConfiguration/

This directory contains the following files:

- activatePassiveConfiguration.bat — the tool for activating the passive configuration.

- activatePassiveConfigurationOnSampleOl.bat - an example of how to call the tool.

- Sample tool configuration files
The activatePassiveConfiguration.bat tool performs the following tasks:

- Sets the Scheduler flag in LDAP for the target Java-based Server (active/not active)

- Sets the RequestWorkflow TimoutCheck flag in LDAP for the target Java-based server

(active/not active)
- Switches Tcl scripts from one C++-based Server to the other

- Sets the Java-based / C++-based Server as inactive (active/not active)

- Moves the configuration handler from one Java-based Server to the other (active/not

active)
- Adjusts associated servers at connected directories
. Sets the Status Tracker flag on the C++-based Server (active/not active)

- Sets the Notes connector on the C++-based Server (active/not active)

- Start the services C++-based Server, Java-based Server, Message Broker and Tomcat

server (optional)

5.1. Prerequisites

The tool requires a setup with one active and one passive DirX Identity configuration. The

tool must be installed on the host where the passive part of DirX Identity is running, which
implies that it must be installed on both systems, since the active configuration will change

21

to a passive configuration when the tool is used.

5.2. Command-line Interface

To use the tool, specify the command:

activatePassiveConfiguration.bat parameters

Where parameters are all of the following:

-host hostname - the LDAP server that holds the Connectivity/Provisioning store
-port port —the port number on which the LDAP server is listening

-user Idap_user_dn —the user DN (domain admin)

-pass password - the password for the user DN

-ssl true | false — whether (true) or not (false) an SSL connection is in use
-domain domain - the domain name; for example, My-Company

-c configuration_file — the path and file name of the switching configuration file to use
Always call the tool on the host where you want to activate the configuration.
Here is an example command line:

activatePassiveConfiguration.bat -host jupiter.my-company.com
-port 389 -user cn=domainAdmin,cn=My-Company -pass ****
-domain My-Company -ssl false -c switchHAConfigFromTo.xml

5.3. Switching Configuration File

The activatePassiveConfiguration.bat tool uses a switching configuration file to control its
operation. Switching configuration file samples are provided in the tool's installation
directory; these files can be changed and/or copied, renamed and relocated according to
on-site requirements.

The switching configuration file contains configuration, logging, and process elements.
The next sections describe these elements and their attributes.

5.3.1. configuration Element

The configuration element has the following attributes

. startServices - if set to true, the tool starts the services C++-based Server, Java-based
Server, Message Broker and Tomcat server on this host.

- moveNotesConnector - if set to true, the tool activates the Notes Connector(s) on the
new active configuration. If false, Notes connectors are ignored.

22

5.3.2. logging Element

The attributes of the logging element are similar to the corresponding parameters of
Identity Manager in the DirX Identity configuration file dxi.cfg. They are:

- fileName - the name of the trace file. The absolute or relative path is allowed.

- level - possible values are:
0 - no trace, no error
1-error
2-4 —warnings
5-8 — flow trace
9 - debug

Higher levels include the content of lower levels. For example, if you specify 5, errors and
warnings are also written.

- timestampformat - a format string to enable time stamp information to be included
before each log entry in the trace file. For example:

timestampformat="EEE MMM d HH:mm:ss.SSS yyyy:"

If the timestampformat attribute is not specified, timestamps are not written into the trace
file.

5.3.3. process Element and its mode Attribute

Note: in the descriptions in this section, the server to be activated is called the “to server”.
The other server is called the “from server”.

The mode attribute of the process element in the switching configuration file specifies the
method the tool is to use to determine the active configuration and which configuration
should be activated. The following values are available:

- auto - the “to server” name is determined by the local hostname.

- fromto - the “from server” name and the “to server” name are specified explicitly.

- state - the configuration to be switched to is evaluated by the state/registered attribute

of the Java-based and C++-based Servers.

These values are described in more detail in the next sections. The sample configuration
files delivered with the tool include examples of all three modes.

5.3.3.1. auto

When the process mode attribute value is auto, the tool assumes the host where it's
running must become the active configuration. The hostname is determined via the Java
method InetAddress.getLocalHost().getHostName() and the fully qualified hostname read

23

from the registry.

The tool looks for Java-based and C++-based servers that run on these hosts (one of the
hostnames must match). Java-based/C++-based Server found is treated as the “to server”.
The other Java-based / C++-based Server is treated as the “from server”. If exactly two Java-
based /C++-based Servers are not found, an error is generated.

The file switchHAConfig.xml is a sample configuration file for auto mode.

5.3.3.2. fromto

When the mode attribute value is fromto, the hostnames for “from server” and “to server”
servers are explicitly specified as follows:

<process mode="fromto" >
<from>fromHostname</from>
<to>toHostname</to>

</process>

The specified hostnames must match the names stored in LDAP for the Java-based and
C++-based Servers. The file switchHAConfigFromTo.xml is a sample configuration file for
the fromto mode.

5.3.3.3. state

When the mode attribute value is state, the tool treats the Java-based Server with the state
STOPPED as the “to server” Java-based Server and treats the C++-based Server with an
unchecked registered flag as the “to server” C++-based Server.

5.3.3.4. How the Tool Determines Hostnames from LDAP

The tool determines the hostnames from LDAP as follows:
- Java-based Server — the last part of the name is used as the hostname (LDAP attribute
dxmDisplayname)

. C++-based Server —the name is used as the hostname (LDAP attribute
dxmDisplayname)

5.4. Sample Activation

This section shows a sample trace of an activation. The activation occurs on dxi-sampleO1
(the “to server”). The other host (the “from server”) is dxi-sample03. The domain suffix is
iam.sampledomain.net. Before calling the tool, the active configuration is on sample03.
The following figure illustrates this configuration:

24

Active / Passive Configuration
passive active
1dS-J 1dS-J
[~St-dxi-sample0 | --S1-dxi-sampled3
dxmStatus: dxmStatus:
STOPPED STARTED
Id5-C
= -
dxmmg’:md: “”“ﬁr‘lg‘fé““:
Notes
Nates dxmactive
Dx:ﬁ;ﬂ;n. TRUE

Figure 5. Active / Passive Configuration

Here is the sample trace:

LOG(STG200) : SwitchConfiguration called at 18.12.19, 13:48:42 MEZ

with the following Parameters:

LOG(STG200) : tracefile: ./testMove.txt
LOG(STG200) : tracelevel: 5

LOG(STG200) : mode: automatic by local hostname
LOG(STG200) : move Notes Connector: true
LOG(STG200) : start Services: true

LOG(STG200) :

LOG(STG200) : host: localhost

LOG(STG200) : port: 636

LOG(STG200) : user: cn=admin,dxmc=dirxmetahub
LOG(STG200) : ssl: true

LOG(STG200) : domain: My-Company

LOG(STG200) : -------- - —mmm oo oo oo oo
LOG(STG200) :

LOG(STG200): hostname from getHostname: dxi-sample@l
LOG(STG200): fgn hostname from registry: dxi-

25

sample@l.iam.
LOG(STG200) :

sample@3.1iam.

sampledomain.net
Moving from My-Company-S2-dxi-
sampledomain.net to My-Company-S1-dxi-

sample@l.iam.sampledomain.net

LOG(STG200): Moving CServer from dxi-sample@3.iam.sampledomain.net to
dxi-sample®@l.iam.sampledomain.net

LOG(STG200) :

OB TEAT f memmmmmmmmmmmm e e s oo e e m oo — oo oo oo
LOG(STG200) :

INF(ADC215): Moving dxmRunsScheduler flag from Server 'My-Company-S2-
dxi-sample.iam.sampledomain.net' to Server 'My-Company-S1-dxi-
sample@l.iam.sampledomain.net'.

INF(ADC216): Moving 'Monitor C++-based Servers' flag from Server 'My-
Company-S2-dxi-sample@3.iam.sampledomain.net' to Server 'My-Company-
Sl-dxi-sample@l.iam.sampledomain.net’.

INF (ADC200) :
sample@3.iam.

Moving Primary from Server 'dxi-
sampledoamin.net' to Server 'dxi-

sample®@l.iam.sampledomain.net’

LOG(STG200): Moving ConfigurationHandler.
LOG(STG200) : Adjust associated servers at connected directories
INF(ADC214): Moving Tcl workflows from Server 'dxi-

sample@3.iam.sampledomain.net' to Server 'dxi-

sample@l.iam.sampledomain.net'.
INF (ADC200) :

sample@3.iam.

Moving StatusTracker from Server 'dxi-

sampledomain.net' to Server 'dxi-

26

sample@l.iam.

sampledoamin.

net

INF (ADC200): Moving Notes connector active flag from Server 'dxi-
sample@3.iam.sampledoamin.net’' to Server 'dxi-
sample@l.iam.sampledomain.net’

I R e i e DS T
LOG(STG200): starting the services

LOG(STG200) :

LOG(STG200): starting MessageBroker service :

Broker 1 returned: @

DirX Identity Message

LOG(STG200): starting ids-j service : DirX Identity IdS-J-My-Company-
S1 returned: 0

LOG(STG200): starting ids-c service returned: 0

LOG(STG200): starting TOMCAT service : Tomcat9 returned: 0
LOG(STG200): Ended with rc: @

DirX Product Suite

The DirX product suite provides the basis for fully integrated identity and access
management; it includes the following products, which can be ordered separately.

DirX Identity

DirX Identity provides a comprehensive,
process-driven, customizable, cloud-
enabled, scalable, and highly available
identity management solution for
businesses and organizations. It provides
overarching, risk-based identity and access
governance functionality seamlessly
integrated with automated provisioning.
Functionality includes lifecycle
management for users and roles, cross-
platform and rule-based real-time
provisioning, web-based self-service
functions for users, delegated
administration, request workflows, access
certification, password management,
metadirectory as well as auditing and
reporting functionality.

DirX Access

DirX Access is a comprehensive, cloud-ready,
scalable, and highly available access
management solution providing policy- and
risk-based authentication, authorization
based on XACML and federation for Web
applications and services. DirX Access
delivers single sign-on, versatile
authentication including FIDO, identity
federation based on SAML, OAuth and
OpenlD Connect, just-in-time provisioning,
entitlement management and policy
enforcement for applications and services in
the cloud or on-premises.

DirX Directory

DirX Directory provides a standards-
compliant, high-performance, highly
available, highly reliable, highly scalable, and
secure LDAP and X.500 Directory Server and
LDAP Proxy with very high linear scalability.
DirX Directory can serve as an identity store
for employees, customers, partners,
subscribers, and other 10T entities. It can also
serve as a provisioning, access management
and metadirectory repository, to provide a
single point of access to the information
within disparate and heterogeneous
directories available in an enterprise
network or cloud environment for user
management and provisioning.

o nva

DirX Audit provides auditors, security
compliance officers and audit
administrators with analytical insight and
transparency for identity and access. Based
on historical identity data and recorded
events from the identity and access
management processes, DirX Audit allows
answering the “what, when, where, who and
why" questions of user access and
entitlements. DirX Audit features historical
views and reports on identity data, a
graphical dashboard with drill-down into
individual events, an analysis view for
filtering, evaluating, correlating, and
reviewing of identity-related events and job
management for report generation.

For more information: support.dirx.solutions/about

27

https://support.dirx.solutions/about

=VIDEN

Eviden is a registered trademark © Copyright 2025, Eviden SAS - All rights reserved.

28

Legal remarks

On the account of certain regional limitations of sales rights and service availability,
we cannot guarantee that all products included in this document are available
through the Eviden sales organization worldwide. Availability and packaging may
vary by country and is subject to change without prior notice. Some/All of the features
and products described herein may not be available locally. The information in this
document contains general technical descriptions of specifications and options as
well as standard and optional features which do not always have to be present in
individual cases. Eviden reserves the right to modify the design, packaging,
specifications and options described herein without prior notice. Please contact your
local Eviden sales representative for the most current information. Note: Any
technical data contained in this document may vary within defined tolerances.
Original images always lose a certain amount of detail when reproduced.

	High Availability
	Copyright
	Table of Contents
	Preface
	DirX Identity Documentation Set
	Notation Conventions
	1. Overview
	1.1. Relevant Server Components
	1.2. Administrative Fail-over
	1.2.1. Documentation

	1.3. Automatic Fail-over with Circular Monitoring
	1.3.1. Documentation

	2. Installation and Initial Configuration
	2.1. Installation
	2.2. Initial Configuration
	2.3. Documentation

	3. Configuration
	3.1. Java-based Servers
	3.1.1. Assign Scheduler, Request WorkflowTimeout Check and Adaptors
	3.1.2. Configure Monitoring Circle
	3.1.3. Backup Adaptors
	3.1.4. Secure Connections – SSL/TLS

	3.2. C++-based Servers
	3.3. Supervisor Configuration
	3.4. Documentation

	4. Supervisor Customization
	4.1. Supervisor in Server Admin
	4.2. Changing Mails in Supervisor Scripts
	4.3. Java Classes
	4.3.1. AdminClientController
	4.3.2. Sendmail

	5. Switching between Active and Passive Configurations
	5.1. Prerequisites
	5.2. Command-line Interface
	5.3. Switching Configuration File
	5.3.1. configuration Element
	5.3.2. logging Element
	5.3.3. process Element and its mode Attribute
	5.3.3.1. auto
	5.3.3.2. fromto
	5.3.3.3. state
	5.3.3.4. How the Tool Determines Hostnames from LDAP

	5.4. Sample Activation

	Legal Remarks

