=VID&N

Identity and Access Management

DirX Identity

Connectivity Reference
Version 8.10.12, Edition August 2025

All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.

Table of Contents

Copyright

Preface

DirX Identity Documentation Set
Notation Conventions

1. DirX Identity Connectivity Overview
2. Identity Connectors

2.1. ADS Connector
2.1.1. Setting a User Password
2.1.2. Creating a Mailbox-Enabled User
2.1.3. Getting Delta and Deleted Objects
2.1.3.1. Handling Range Attributes
2.2. Citrix Share File Connector
2.2.1. Overview
2.2.2. Limitations
2.2.2.1. DirX Identity Manager Limitations
2.2.2.2. Known lIssues
2.2.3. Request and Response Handling
2.2.3.1. Add Request
2.2.3.1.1. Groups
2.2.31.2. Users
2.2.3.2. Modify Request
2.2.3.3. Delete Request
2.2.3.4. Search Request
2.2.4. Configuration
2.2.4.1. Supported Connection Parameters
2.3. CSV Connector
2.3.1. Overview
2.3.2. Limitations
2.3.3. Request and Response Handling
2.3.3.1. AddRequest
2.3.3.2. Search Request
2.3.4. Configuration
2.3.4.1. Supported Connection Parameters
2.4. Evidian ESSO Connector
2.4.1. Prerequisites and Limitations
2.4.2. Request and Response Handling
2.4.2.1. Add Request
2.4.2.2. Modify Request
2.4.2.3. Delete Request

O 00 0 0 W Ul N N —

NN NN NNDNNNDNDDNDNDNDNDN o o oo — o o o o, =2 =
Lo o000 NN WNMOOOOO W OUWNNOoOOPNH" ANNMNMD =Z DO OO0

2.4.2.4. Search Request
2.4.3. Configuration
2.5. Google Apps Connector
2.5.]1. Prerequisites and Limitations
2.5.2. Request and Response Handling
2.5.2.1. Add Request
2.5.2.2. Modify Request
2.5.2.3. Delete Request
2.5.2.4. Search Request
2.5.3. Configuration
2.5.3.1. Supported Connection Parameters
2.5.3.2. Additional Notes
2.6. ldentity Domain Connector
2.6.1. Prerequisites and Limitations
2.6.2. Request and Response Handling
2.6.2.1. Object Description
2.6.2.2. Object Class
2.6.2.3. Parent Entry
2.6.2.4. Approval
2.6.2.5. Password
2.6.2.6. Renaming
2.6.2.7. Delete
2.6.2.8. Search
2.6.2.9. References to other LDAP Entries
2.6.2.10. Privilege Assignments
2.6.2.11. Example Add Request
2.6.3. Configuration
2.7. Imprivata One Sign Connector
2.7.1. Prerequisites
2.7.2. Configuration
2.8.JDBC Connector
2.8.1. Overview
2.8.2. Prerequisites
2.8.3. Configuration
2.8.3.1. General Notes
2.8.3.1.1. JDBC Connector Element Form of the Connector
2.8.3.1.2. Description Attributes
2.8.3.2. Connector Element
2.8.3.3. Connection Element
2.8.3.3.1. Attributes
2.8.3.3.2. Sub-elements
2.8.3.4. JDBC-Connection Element

27
28
29
29
30
30
32
32
32
33
33
34
34
34
35
35
35
35
36
36
36
36
36
36
37
38
39
39
39
39
40
40
40

41
42
42
45
45
45
46
47
47

2.8.3.4.1. Attributes
2.8.3.4.2. Sub-elements
2.8.3.5. Logging Element
2.8.3.5.1. Attributes
2.8.3.6. Schema Names
2.8.3.7. Table-and-Views Element
2.8.3.7.1. Attributes
2.8.3.7.2. Sub-elements
2.8.3.8. Table Element
2.8.3.8.1. Attributes
2.8.3.8.2. Sub-elements
2.8.3.9. View Element
2.8.3.9.1. Attributes
2.8.3.9.2. Sub-elements
2.8.3.10. Abbreviation
2.8.3.10.1. Attributes
2.8.3.10.2. Format Codes
2.8.3.10.3. Abbreviations and Data Types
2.8.3.11. Relationship Element
2.8.3.11.1. Attributes
2.8.3.12. Functions-and-Procedures Element
2.8.3.12.1. Attributes
2.8.3.12.2. Sub-elements
2.8.3.12.3. Returned Values
2.8.3.13. Function Element
2.8.3.13.1. Attributes
2.8.3.13.2. Sub-elements
2.8.3.14. Procedure Element
2.8.3.14.1. Attributes
2.8.3.14.2. Sub-elements
2.8.3.15. Argument Element
2.8.3.15.1. Attributes
2.8.3.16. Return Element
2.8.3.16.1. Attributes
2.8.3.16.2. Sub-elements
2.8.3.17. Range Element
2.8.3.17.1. Attributes
2.8.4. Input and Output Data File Formats
2.8.4.1. Add, Modify, Delete and Search Requests
2.8.4.2. Sorting
2.8.4.3. Paging
2.8.4.4. Names within Identifier and Search-base Elements

47
48
48
48
49
50
50
50
50

51

51

51
52
52
53
54
55
56
58
58
58
59
59
59
59
59
59
60
60
60
60
60

61

61

61

61

61
62
63
66
67
67

2.8.4.5. Add, Modify, Delete, and Search Responses
2.8.4.6. Stored Functions and Procedures
2.8.4.6.1. extendedRequest Elements
2.8.4.6.2. extendedResponse Element
2.8.5. Error Handling
2.8.5.1. Error Log Files (JDBC Connector)
2.8.5.2. Error-Handling Procedures
2.9. LDAP Connector
2.9.1. Overview
2.9.2. Request and Response Handling
2.9.2.1. AddRequest
2.9.2.2. ModifyRequest
2.9.2.3. DeleteRequest
2.9.2.4. SearchRequest
2.9.3. Configuration
2.9.31. Supported Connection Parameters
2.9.4. LDAP SSL Setup
2.9.4.1. Setting up a Server-side SSL Connection to an LDAP Directory
2.9.4.2. Setting up a Client-side SSL Connection to an LDAP Directory
2.9.4.3. Setting up an SSL Connection to the Active Directory Domain Controller
(DC)
2.9.4.3.1.1. Install a Certificate Authority on your Windows domain controller
29.432.2. Import the certificate into your truststore
2.9.5. Binary Attributes
2.9.6. Non-Leaf Objects
2.9.7. LDAP Session Tracking
2.10. LDIF Connector
2.10.1. Overview
2.10.2. Limitations
2.10.3. Request and Response Handling
2.10.3.1. AddRequest
2.10.3.2. Search Request
2.10.4. Configuration
2.10.4.1. Supported Connection Parameters
2.11. IBM Notes Connector
2.11.1. Overview
2.11.2. Prerequisites and Limitations
2.11.3. Static Configuration Parameters
2.11.3.1. Connected Directory
2.11.3.2. Services
2.11.3.3. Bind Profile
2.11.3.4. Dynamic Configuration Parameters

Vi

69

71

71
72
74
74
74
75
75
75
75
76
78
78
80
80

81

81

81

81
82
82
84
85
85
86
86
86
86
87
88
89
89
90
90

91
92
92
93
93
94

2.11.4. Attributes at IBM Notes
2.11.5. Attributes at Identity Store
2.11.6. Feature Details
2.11.6.1. General Aspects
2.11.6.1.1. SPMLV1 Identifier
2.11.6.1.2. Deny Groups
2.11.6.1.3. Register User
2.11.6.2. Add Request
2.11.6.3. Add Response
2.11.6.4. Delete Request
2.11.6.5. Delete Response
2.11.6.6. Modify Request
2.11.6.7. Modify Response
2.11.6.8. Search Request
2.11.6.9. Search Response
2.12. Microsoft 365 Connector
2.12.1. Prerequisites
2.12.2. Configuration
2.12.3. Creating Azure AD Groups
2.12.3.1. Properties Request Body for Creating Groups
2.12.3.2. groupTypes Property Options
2.12.3.3. DirX ldentity dxrType Values
2.12.3.3.1. Filtering Azure AD Objects
212.3.4. Using the $filter Parameter on User and Group Resources
212.3.5. Using the $filter Parameter on directoryRole Resources
2.12.3.6. Escaping Single Quotes
2.12.4. Paging
2.13. OpenlICF Connector
2.13.1. Prerequisites
2.13.2. Configuration
2.14. OpenlCF Windows Local Accounts Connector
2.14.1. Overview
2.14.2. Prerequisites
2.14.3. Limitations
2.14.4. Deployment
214.4.1. One .NET Connector Server/One Windows Domain
2.14.4.2. One .NET Connector Server per Windows Target Machine
214.4.3. One .NET Connector Server/Several Windows Domains
2.14.5. Request and Response Handling
2.14.5.1. AddRequest
2.14.5.2. ModifyRequest
2.14.5.3. DeleteRequest

95
104
105
105
105
106
106
107
107
107
107
108
108
108
108
108
109
109

1

n2

n3

N4

N4

ns

n7
n7
n7

18

19

19

121

121

122
124
124
124
125
125
125
125
127
128

Vii

2.14.5.4. SearchRequest
2.14.6. Configuration
2.15. RACF Connector
2.15.1. Prerequisites
2.15.2. Limitations
2.15.3. Limitations of RACF via LDAP (SDBM)
2.15.4. Sample Requests
2.15.4.1. Search Request

2.15.4.2. Modify Membership and Enable a RACF User

2.15.4.3. Change a Password
2.16. Remote AD Connector
2.16.1. Security Considerations
2.16.2. Requirements and Limitations
2.16.3. Remote AD Agent
2.16.3.1. Activities
2.16.3.1.1. The Export-AD-to-File Job
2.16.3.2. Installation
2.16.3.3. Configuration
2.16.4. File Upload Web Service
2.16.4.1. Activities
2.16.4.2. Installation
2.16.4.3. Configuration
2.16.4.3.1. Configuring SSL on Tomcat

2.16.4.3.2. Configuring Authorization Based on Group

2.17. Request Workflow Connector
2.17.1. Prerequisites
2.17.2. Configuration
2.18. Salesforce Connector
2.18.1. Overview
2.18.2. Prerequisites and Limitations
2.18.3. Request and Response Handling
2.18.3.1. Supported Account Attributes
2.18.3.2. Supported Contact Attributes
2.18.3.3. Supported Permission Set Attributes
2.18.3.4. Supported Profile Attributes
2.18.3.5. Supported User Attributes
2.18.3.6. Operational Attributes
2.18.3.7. AddRequest
2.18.3.8. ModifyRequest
2.18.3.9. DeleteRequest
2.18.3.10. SearchRequest
2.18.4. Configuration

viii

129
130

131
132
132
132
132
133
133
134
134
135
135
136
136
136
137
137
137
137
138
138
138
139
139
140
140
142
142
142
143
143
144
145
145
145
146
147
149
149
150
152

2.19. SAP ECC UM Connector

2.19.1. Overview
2.19.2. Request and Response Handling

2.19.2.1. Example Filter Implementation for JCo Version 3

2.19.3. Configuration

2.20. SharePoint Connector

2.20.1. Overview
2.20.2. Limitations
2.20.3. Request and Response Handling
2.20.3.1. AddRequest
2.20.3.2. ModifyRequest
2.20.3.3. DeleteRequest
2.20.3.4. SearchRequest
2.20.4. Configuration
2.20.4.1. Supported Connection Parameters

2.21. SPMLv1 Connector

2.21.1. Prerequisites
2.21.2. Configuration

2.22. SPMLV1ToV2 Connector

2.22.1. Overview
2.22.2. Prerequisites
2.22.3. Request and Response Handling
2.22.3.1. General Aspects
2.22.31.1. SPMLV1 Identifier
2.22.3.2. AddRequest
2.22.3.3. ModifyRequest
2.22.3.4. DeleteRequest
2.22.3.5. SearchRequest
2.22.3.51. Processing a lookupRequest
2.22.3.52. Processing a searchRequest
2.22.4. Configuration
2.22.4.1. Connection Options
2.22.4.2. Connector Options

2.22.4.3. Overriding Connector Options per Request

2.22.5. Custom Capabilities
2.22.51. Interface Spmlv2HandlerOptions
2.22.52. Interface Spmlv2ReferenceHandler
2.22.53. Interface Spmlv2CapabilityHandler
2.22.5.4. Interface Spmlv2PasswordHandler
2.2255. Sample Handlers
2.22.5.51. DefaultPasswordHandler. java
2.22.55.2. SimpleReferenceHandler java

154
154
154
154
157
158
158
159
159
159
161
163
163
165
165
166
166
167
169
169
170
170
170
170
170

171
172
172
172
172
172
173
175
176
177
177
178
179
179
180
180
180

2.22.5.53. RoleParamHandler.java
2.22.5.5.4, TargetSystemCapabilityHandler java
2.23. Unify Office Connector
2.23.1. Prerequisites
2.23.2. Configuration
2.23.3.SCIM
3. ldentity Agents
3.1. Identity Agent Architecture
3.1.1. Framework-based Agents
3.1.2. Non Framework-based Agents
3.2. Framework-based Agents
3.2.). Command Line Format
3.2.2. Exit Codes
3.2.3. Configuration File Formats
3.2.3.1. General Structure of a Configuration File

3.2.31.1. Example of an Import Configuration File

3.2.4. Search Request File Format
3.3. Non Framework-based Agents
3.3.1. Agent Configuration Files
3.3.2. Import and Export Data Files
3.4.JDBC Agent
3.4.1. Configuration File
3.4.2. Input and Output Data File Formats
3.4.3. CLASSPATH Environment Variable
3.4.4. Error Handling
3.5.IBM Notes Agent
3.5.1. Password Handling
3.52. Command Line Format
3.5.2.1. Parameters
3.5.3. Configuration File Formats
3.5.3.1. General Structure of a Configuration File
3.5.3.2. Export Configuration File Format
3.5.3.2.1. The Version Section
3.5.3.2.2. The Export Section
3.5.3.2.3. The Password (Password) Section
3.5.3.2.4. The Export Items Section
3.5.3.3. Import Configuration File Format
3.5.3.3.1. The Version Section
3.5.3.3.2. The Import Section
3.5.3.3.3. The Registered User (RegUser) Section
3.5.3.3.4. The Password (Password) Section

3.5.3.3.5. The EncryptedAttributes (EncryptedAttributes) Section

181
181
182
182
183
185
186
186
187
187
187
187
188
188
188
190
191
193
194
194
195
196
196
196
197
197
199
200
200
201
201
202
202
202
210
211
212
212
212
223
235
237

3.5.3.4. Password Configuration File Formats

3.53.4.1. Notes Password Pathname Configuration File

3.53.4.2. Password Configuration File
3.5.4. Export and Import Data File Format
3.5.4.1. General Data File Format
3.5.4.2. Delta Export Data File Format
3.5.4.3. Import Data File Format
3.5.5. Import Error File Format
3.5.6. Notes Agent Import Procedure
3.6. Microsoft ADS Agent
3.6.1. Command Line Format
3.6.1.1. Parameters
3.6.2. Configuration File Formats
3.6.2.1. General Structure of a Configuration File
3.6.2.2. Export Configuration File Format
3.6.2.2.1. The Version Section
3.6.2.2.2. The Connection Section
3.6.2.2.3. The SearchPreferences Section
3.6.2.2.4. The SearchFilter Section
3.6.2.2.5. The SelAttributes Section
3.6.2.2.6. The Attributes Section
3.6.2.2.7. The Configuration Section
3.6.2.2.8. The DeltaExport Section
3.6.2.3. Import Configuration File Format
3.6.2.3.1. The Version Section
3.6.2.3.2. The Connection Section
3.6.2.3.3. The Configuration Section
3.6.2.3.4. The Ignore Empty Attributes Section
3.6.2.3.5. The Encrypted Attributes Section
3.6.2.3.6. The Attribute Types Section
3.6.3. Export and Import Data File Format
3.6.3.1. General Data File Format
3.6.3.2. Import Data File Format
3.6.4. Import Error File Format

3.6.5. Creating Mail- and Mailbox-Enabled Users in Active Directory

3.6.5.1. Provisioning Exchange 2007 and Newer
3.6.6. Deleting Non-Leaf Objects
3.7. Microsoft Exchange Agent
3.71.Command Line Format
3.7.1.1. Parameters
3.7.2. Configuration File Formats
3.7.2.1. General Structure of a Configuration File

237
238
238
241
241
243
243
246
247
247
249
249
251

251
252
252
253
258
260
262
262
263
264
265
265
266
268
269
270
270

271

271
272
276
277
278
278
278
280
280
282
283

Xi

3.7.2.2. Export Configuration File Format 283

3.7.2.2.1. The Version Section 284
3.7.2.2.2. The Connection Section 284
3.7.2.2.3. The SearchPreferences Section 287
3.7.2.2.4. The SearchFilter Section 289
3.7.2.2.5. The SelAttributes Section 290
3.7.2.2.6. The Attributes Section 291
3.7.2.2.7. The Configuration Section 291
3.7.2.2.8. The DeltaExport Section 293
3.7.2.3. Import Configuration File Format 294
3.7.2.3.1. The Version Section 294
3.7.2.3.2. The Connection Section 295
3.7.2.3.3. The Configuration Section 296
3.7.2.3.4. The Ignore Empty Attributes Section 299
3.7.2.3.5. The Encrypted Attributes Section 299
3.7.2.3.6. The Attribute Types Section 299
3.7.3. Export and Import Data File Format 300
3.7.3.1. General Data File Format 300
3.7.3.2. Import Data File Format 301
3.7.4. Import Error File Format 304
3.7.5. ExchangeAgent Import Notes 305
3.7.6. Exchange Server Administration 306
3.7.6.1. Managing the Exchange Server's LDAP Interface 307
3.7.6.2. Exporting Deleted Entries 307
3.7.6.3. Setting the Tombstone Lifetime for Deleted Entries 308
3.7.6.4. Monitoring LDAP Operations on the Exchange Server 308
3.7.6.5. Enabling NT Account Management during Import Operations 309
3.8.0DBC Agent 309
3.8.1. ODBCAgentimp Command Line Format 3N
3.8.1.1. Parameters 3N
3.8.1.2. Command Line Description 312
3.8.2. ODBCAgentExp Command Line Format 313
3.8.2.1. Parameters 314
3.8.2.2. Command Line Description 315
3.8.3. Configuration File Format 316
3.8.3.1. General Structure of a Configuration File 317
3.8.3.2. Configuration File Sections 318
3.8.3.2.1. The Version Section 318
3.8.3.2.2. The Attributes Section 319
3.8.3.2.3. The Database Section 321
3.8.3.2.4. The Export Section 322

3.8.3.2.5. The Import Section 329

3.8.3.2.6. The Procedures Section 338

3.8.3.2.7. The EncryptedAttributes Section 34]
3.8.3.2.8. The Control Section 342
3.8.3.3. Configuration File Error Reporting 354
3.8.4. Import and Export Data File Format 355
3.8.5. Import Error File Format 356
3.8.6. Import Procedure 358
3.8.7. Export Procedure 360
3.8.8. Delta Export Procedure 361
3.8.8.1. ODBCAgentExp Delta Export Process 361
3.8.8.2. Configuration File Fields and Command Line Parameters for Delta Export 363
3.9. SAP ERP HR Agent 364
3.9.1. SAP ERP HR Agent Prerequisites 366
3.9.2. Installing the SAP ERP HR Agent 366
3.9.2.1. SAPAgent Installation Checklist 366
3.9.2.2. Preparing the Installation (before Importing the Application Files) 366
3.9.2.2.1. Checking the ERP System 367
3.9.2.2.2. Checking the Name Space 367
3.9.3. Backing up the System 367
3.9.3.1. Importing the Application Files 367
3.9.311. Import Workbench 367
3.9.3.1.2. Import Customizing 367
3.9.3.1.3. Executing the Import 368
3.9.3.2. Finishing the Installation (after Importing the Application Files) 368
3.9.3.2.1. Maintaining Users 368
3.9.3.3. Checking the Installation 369
3.9.3.4. Testing the Installation 369
3.9.3.5. Upgrading Existing Configurations 369
3.9.3.6. Initializing the Application 370
3.9.3.7. Hints for Integrating Test and Production Systems 370
3.9.3.8. Transferring SAPAgent Configurations to another ERP System 370
3.9.39. Upgrading the Installation 371
3.9.3.10. Uninstalling SAPAgent 371
3.9.4. Predefined Roles 371
3.9.5. Command Format 372
3.9.6. Configuration 372
3.9.6.1. Vertical Selection (PA) 374
3.9.6.1.1. The Multiple Selection Area 374
3.9.6.1.2. The Other Attributes Area 375
3.9.6.2. Vertical Selection (OM) 379
3.9.6.2.1. Selection via LDB 380

3.9.6.3. Horizontal (Attribute) Selection 381

Xiii

3.9.6.4. Job Definition
3.9.6.5. Change Configuration
3.9.6.6. Default Configuration
3.9.7. Transport from Customizing to Production
3.9.8. Configuration Activation and Immediate (ad-hoc) Execution
3.9.9. Job Scheduling
3.9.10. Export Procedure
3.9.10.1. Delta Export Procedure
3.9.10.2. Security Features
3.9.10.3. Customer Exits
3.9.10.3.1. Exits to modify/disable the processing of a person or an OM object
3.9.10.3.2. Exits to compute the value of a user-defined tag
3.9.10.3.3. Export of multiple virtual employees
3.910.3.4. Case study 1: Creating an exit for a person selection
3.9.10.3.5. Case study 2: Creating an exit for user defined tag evaluation (here
OM)
3.9.10.3.6. Case study 3: Defining a tag to report a user’s "hire" date
3.9.10.4. Configuring OM Extracts
3.9.10.4.1. Objects Related to an Employee
3.910.4.2. Objects Selected Directly from PD
3.9.11. Export File Formats
3.9.11.1. CSV Format
3.9.1.2. LDIF Content and Change Formats
3.9.12. Logging
3.9.13. Manually Inspecting and Maintaining Attributes

3.10. SAP ECC UM Agent

Xiv

3.10.1. Command Line Format
3.10.1.1. Parameters
3.10.2. Configuration File Formats
3.10.2.1. General Structure of a Configuration File
3.10.2.2. Export Configuration File Format
3.10.2.3. Search Request File Format
3.10.2.4. Filter Expression in BAPI USER GETLIST
3.10.2.5. Import Configuration File Format
3.10.3. Export Data File Format
3.10.4. Import Data File Format
3.10.5. Installing and Configuring SNC Connections
3.10.6. General Notes
3.10.6.1. Distinguished Names
3.10.6.2. Attribute Configuration File
3.10.6.3. Import/Export Date Values
3.10.6.4. Distribution in a CUA Environment

387
389
389
391
392
393
395
397
398
399
399
401
403
409

410
411
413
413
414
417
418
418
420
423
426
430
430
431
431
435
441
441
443
445
445
446
449
450
450
450
450

3.10.6.5. Lock/Unlock
3.10.6.6. Export Lock Status
3.10.6.7. Export Users
3.10.6.8. Export User to Child System Relationship
3.10.6.9. Password Synchronization
3.10.6.10. Password Reset
3.10.6.11. Role or Profile Assignments in CUA Environment
3.10.6.12. Setting Additional Options in Realtime Workflows
3.10.6.13. Special Cases When Changing Data
3.11. SAP NetWeaver UM Agent
3.11.1. Configuration File Formats
3.11.1.1. Configuration File Extensions
3.11.1.2. Search Request Format
3.11.2. Data File Formats
31.2.1. Import Data File Format
3.11.2.2. Export Data File Format
3.11.3. Setting Up a Secure Connection to SAP NetWeaver
3.11.4. Password Synchronization
3.11.5. Password Reset
3.12. SiPass Agent
3.12.1. General Notes
3.12.2. Command Line Format
3.12.2.1. Parameters
3.12.3. Exit Codes
3.12.4. Configuration Files
3.12.4.1. General Structure of a Configuration File
3.12.4.1.1. Tags
312.4.1.2. Attributes
3.12.4.2. Example of an Export Configuration File
3.12.4.3. Specific Parameters of the SiPass Export Configuration File
312.4.4. Example of an Import Configuration File
3.12.4.5. Specific Parameters of the SiPass Import Configuration File
3.12.5. Data File Formats
3.12.5.1. Import Data File Format
3.12.51.1. Examples
3.12.6. Search Request File
3.12.6.1. Example of a Search Request File Format
4. Event Listeners and Triggers
4.1. Microsoft Windows Password Listener
4.1.1. Architecture
4.1.1.1. Windows Password Listener Plug-In
4.1.1.2. Windows Password Listener Service

450
451
451
45]1
452
453
453

454

454
455
457
457

458

458

458
459

460
463
463

464
466
466
466
466
467
467
467
467

468
469
469
470
471
471
471
472
472
474
474
474
475
475

XV

4.1.2. Configuration File Format
4.1.2.1. Windows Password Listener Plug-In Configuration File
4.1.2.2. Windows Password Listener Service Configuration File
4.1.3. Error Handling
4.2. Web Event Trigger
4.21. Web Event Trigger Java Classes
4.2.1.1. Java Classes for Encryption
4.2.1.2. Java Classes for Event Management
4.2.1.2.1. Java Class SharedEventPublisher
4.2.1.2.2. Java Class CumulativeEventPublisher
4.2.1.2.3. Java Class PasswordSupport
4.21.3. Jar File Deployment

4.2.1.3.1. Jar files to be placed in the web application (i.e. tomcat)
4.21.3.2. Jars to be placed into the endorsed directory (i.e. tomcat:

common/endorsed)
4.2.2. Web Event Trigger Test Clients
4.2.2.1. The Data Encryption Client
4.2.2.2. The Stress Test Client
4.2.2.3. The WET Password Generator client
4.2.2.4. The WPL Simulator client

Legal Remarks

XVi

476
476
478
480

48]
483
483
483
483
484
484
484
484

485
485
485
487
488
489
493

Preface

This manual is reference for the DirX Identity Connectivity. It describes the different ways
DirX ldentity accesses target systemes. It consists of the following chapters:

- Chapter 1 provides an overview of DirX Identity Connectivity and the connectors, agents,
event listeners and triggers that comprise Connectivity.

- Chapter 2 introduces the Identity connectors and provides a detailed description of
each connector.

- Chapter 3 introduces the Identity agents and provides a detailed description of each
agent.

- Chapter 4 describes event listeners and triggers.

ch1_overview.pdf
ch2-0_connectors.pdf
ch3-0_agentintro.pdf
ch4-0_eventintro.pdf

DirX Identity Documentation Set

The DirX Identity document set consists of the following manuals:

- DirX Identity Introduction. Use this book to obtain a description of DirX ldentity
architecture and components.

- DirX Identity Release Notes. Use this book to understand the features and limitations of
the current release. This document is shipped with the DirX Identity installation as the
file release-notes.pdf.

- DirX Identity History of Changes. Use this book to understand the features of previous
releases. This document is shipped with the DirX Identity installation as the file history-
of-changes.pdf.

- DirX Identity Tutorial. Use this book to get familiar quickly with your DirX Identity
installation.

- DirX Identity Provisioning Administration Guide. Use this book to obtain a description of
DirX ldentity provisioning architecture and components and to understand the basic
tasks of DirX Identity provisioning administration using DirX ldentity Manager.

- DirX Identity Connectivity Administration Guide. Use this book to obtain a description of
DirX Identity connectivity architecture and components and to understand the basic
tasks of DirX ldentity connectivity administration using DirX Identity Manager.

- DirX Identity User Interfaces Guide. Use this book to obtain a description of the user
interfaces provided with DirX Identity.

- DirX Identity Application Development Guide. Use this book to obtain information how
to extend DirX Ildentity and to use the default applications.

- DirX Identity Customization Guide. Use this book to customize your DirX Identity
environment.

- DirX Identity Integration Framework. Use this book to understand the DirX Identity
framework and to obtain a description how to extend DirX Identity.

- DirX Identity Web Center Reference. Use this book to obtain reference information
about the DirX Identity Web Center.

- DirX Identity Web Center Customization Guide. Use this book to obtain information
how to customize the DirX Identity Web Center.

- DirX Identity Meta Controller Reference. Use this book to obtain reference information
about the DirX Identity meta controller and its associated command-line programs and
files.

- DirX Identity Connectivity Reference. Use this book to obtain reference information
about the DirX Identity agent programs, scripts, and files.

- DirX Identity Troubleshooting Guide. Use this book to track down and solve problems in
your DirX Identity installation.

- DirX Identity Installation Guide. Use this book to install DirX Identity.

- DirX Identity Migration Guide. Use this book to migrate from previous versions.

introduction:prf_identintroduction.pdf
release-notes:ReleaseNotes.pdf
release-notes:HistoryOfChanges.pdf
tutorial:prf_identtutorial.pdf
prov-admin-guide:prf_identprovadm.pdf
conn-admin-guide:prf_connectivity.pdf
user-interfaces-guide:prf_identgui.pdf
appl-dev-guide:prf_appldevgd.pdf
custom-guide:prf_identprovcustom.pdf
integration-framework:prf_identframework.pdf
web-center-ref:prf_identwebref.pdf
web-center-custom-guide:prf_identwebcustom.pdf
metacp-ref:prf_identcontref.pdf
conn-ref:prf_identagent.pdf
troubleshooting-guide:prf_identtrouble.pdf
install-guide:prf_install.pdf
migration-guide:prf_identmig.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

userlD_home_directory

The exact name of the home directory. The default home directory is the home directory of
the specified UNIX user, who is logged in on UNIX systems. In this manual, the home
pathname is represented by the notation user/D_home_directory.

install_path

The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userlD_home_directory/DirX Identity on UNIX
systems and C:\Program Files\DirX\Identity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

dirx_install_path

The exact name of the root of the directory where DirX programs and files are installed. The
default installation directory is userlD_home_directory/DirX on UNIX systems and
C:\Program Files\DirX on Windows systems. During installation the installation directory
can be specified. In this manual, the installation-specific portion of pathname is
represented by the notation dirx_install_path.

dxi_java_home

The exact name of the root directory of the Java environment for DirX Identity. This location
is specified while installing the product. For details see the sections "Installation" and "The
Java for DirX |dentity".

tmp_path

The exact name of the tmp directory. The default tmp directory is /tmp on UNIX systems. In
this manual, the tmp pathname is represented by the notation tmp_path.

tomcat_install_path
The exact name of the root of the directory where Apache Tomcat programs and files are
installed. This location is defined during product installation.

mount_point
The mount point for DVD device (for example, /cdrom/cdromO).

1. DirX Identity Connectivity Overview

This manual describes the different ways in which DirX Identity accesses target systems.

DirX Ildentity provides:

- DirX Identity connectors - software packages that allow event-based workflows to
interface directly with the specialized native API of target systems (connected

directories).

- DirX Identity agents - executables that allow accessing target systems (connected
directories) via the specialized native API. Batch workflows use agents to synchronize
data between the Identity Store and target systems.

- Event listeners and triggers - software packages that generate events and send them

to the event manager.

The following tables list the Identity Connectivity components available in each different
Connectivity package. Each table lists the component name, its type, the language in
which it is written and whether or not it supports realtime (event-driven) processing:

Default Connectivity Package

Connected System

SPMLv] Connector
SPMLvVITov2 Connector

CSV Connector

LDIF Connector

Identity Domain Connector

UNIX PAM

Meta Controller

Type

Connector
Connector
Connector
Connector
Connector
Connector

Agent

Connectivity Package for Microsoft AD

Connected System

Microsoft ADS Agent

Microsoft Exchange Agent

ADS (Exchange, Lync) Connector
SharePoint Connector

Windows Password Listener

Type

Agent
Agent
Connector
Connector

Stand-alone

Connectivity Package for Database Systems

Implementation

Java
Java
Java
Java
Java
Java

C

Implementation

C++
C++
Java
Java

C++

Realtime
Component?

Yes
Yes
No
No
Yes
No
No

Realtime
Component?

No
No
Yes
Yes

Yes

Connected System Type Implementation Realtime
Component?

ODBC Agent Agent C No

JDBC Agent Agent Java No

JDBC Connector Connector Java Yes

Connectivity Package for Siemens HiPath

Connected System Type Implementation Realtime

Component?

HiPath 4000 Manager/Hicom DMS Agent C++ (Tcl) No

Connectivity Package for Healthcare Systems

Connected System Type Implementation Realtime
Component?

medico//s Connector Java Yes

Connectivity Package for Physical Security Systems

Connected System Type Implementation Realtime

Component?

SiPass Agent Agent CH# No

Connectivity Package for SAP Systems

Connected System Type Implementation Realtime
Component?

SAP ECC UM Agent Agent Java No

SAP ECC UM Connector Connector Java Yes

SAP ERP HR Agent Agent ABAP No

SAP NetWeaver UM Agent Agent Java No

Connectivity Package for IBM Systems

Connected System Type Implementation Realtime
Component?

IBM Notes Agent Agent C++ No

IBM Notes Connector Connector C++ Yes

RACF Connector Connector Java Yes

Connectivity Package for Enterprise Single Sign-on Systems

Connected System

Evidian ESSO Connector

Imprivata OneSign Connector

Type

Connector

Connector

Connectivity Package for Cloud Systems

Connected System

Google Apps Connector
Citrix ShareFile Connector
Office 365 Connector

Salesforce Connector
Proxy Connectivity Package

Connected System

Remote AD Upload Connector
Request Workflow Connector
OpenlICF Connector

OpenlICF Windows Local Accounts
Connector

Type

Connector
Connector
Connector

Connector

Type

Connector
Connector
Connector

Connector

Implementation

Java

Java

Implementation

Java
Java
Java

Java

Implementation

Java
Java
Java

Java

Realtime
Component?

Yes

Yes

Realtime
Component?

Yes
Yes
Yes

Yes

Realtime
Component?

Yes
Yes
Yes

Yes

2. Identity Connectors

DirX Identity connectors run in the Identity Integration Framework. Java-based connectors
can only run in the Java-based Identity Server, C++- or C-based connectors can only run in
the C++-based Identity Server.

See the DirX Identity Connectivity Administration Guide to learn more about event-based
concepts and applications.

See the DirX Identity Application Development Guide for information about corresponding
workflow applications.

See the DirX Identity Integration Framework Guide to learn about creating your own
connectors.

2.1. ADS Connector

The Java-based ADS connector is built with the Identity Java Connector Integration
Framework and is derived from the Java-based LDAP connector. It implements only
functionality that is not already covered by the LDAP connector. Like all framework based
agents, it gets SPML requests from the Identity side and converts them to the appropriate
LDAP requests on the Active Directory side and vice versa.

The add-on functionality compared to the LDAP connector is described in the following
sections.

2.1.1. Setting a User Password

While setting a user password is supported in the LDAP connector for compatibility
reasons, it is a basic feature of the ADS connector because it implements a special Active
Directory operation.

If the attribute unicodePwd is contained in the attribute list of an SPML Add or Modify
request, the ADS connector updates the user’'s password in Active Directory. Microsoft
Active Directory enforces SSL for password changes.

To set up an SSL connection to an Active Directory Server, see the section "LDAP SSL
Setup".

2.1.2. Creating a Mailbox-Enabled User

If an SPML Add or Modify request contains the attribute msExchHomeServerName, the
ADS connector creates a mailbox enabled user by extending the request with the mailbox
security descriptor attribute msExchMailboxSecurityDescriptor. This descriptor contains
default rights. It assigns the user as the owner of his mailbox and gives him the permissions
to send and receive mails and the right to modify mailbox attributes.

If the request also contains the attribute msExchRecipientTypeDetails, it is assumed that
an Exchange mailbox of Exchange Server 2007 version or higher is supposed to be created

or modified. The ADS connector then generates a random globally unique mailbox
identifier and extends the request with the msExchMailboxGuid attribute set to this
generated identifier if the user's msExchMailboxGuid attribute is not already set. The
msExchMailboxGuid attribute of the Active Directory user is the link to the mailbox object
in the Exchange Server Mailbox database and should not be overwritten.

All other mail or mailbox enabling attributes are expected to be contained in the SPML
request and are passed by the ADS connector to the super class of the LDAP connector. It
adds or modifies the object in Active Directory by calling the appropriate LDAP interface
functions.

2.1.3. Getting Delta and Deleted Objects

Getting objects that have changed since a previous search is performed with the Active
Directory synchronization control DirSync, which is an LDAP server extension control.

When performing a DirSync search, a provider-specific data element (cookie) is passed that
identifies the directory state at the time of the previous DirSync search. For the first search,
a null cookie is passed and a valid cookie is returned. It is stored on the Identity side and
used for the next search request.

The cookie is passed to the ADS connector in the operational attribute dxm.delta of an
SPML search request. For a full search, the dxm.delta attribute must be of dsml value type
string (default) no matter what value it contains:

<spml:operationalAttributes>
<dsml:attr name="dxm.delta">
<dsml:value>FULL</dsml:value>
</dsml:attr>

</spml:operationalAttributes>

For a search of objects changed after the previous search, the dsml value type is
base64Binary and the value contains the basetc4-encoded binary cookie of the previous
search:

<spml:operationalAttributes>
<dsml:attr name="dxm.delta">
<dsml:value
type="xsd:base64Binary" >D0Zdo/XFAAAAAIPrhqlS MgFCmOL1icEhBSU=</ds
ml:value>
</dsml:attr>

</spml:operationalAttributes>

Delta searches can also be performed together with paged searches (pageSize is set
greater than O in the operational attributes of the search request).

Deleted objects are automatically included in a delta search. You can also pass any filter in
a delta search request. For example, if you want to retrieve only the deleted user
objects,you can specify the filter:

<spml:filter>
<dsml:and>
<dsml:equalityMatch name="objectClass">
<dsml:value>user</dsml:value>
</dsml:equalityMatch>
<dsml:equalityMatch name="1isDeleted">
<dsml:value>TRUE</dsml:value>
</dsml:equalityMatch>
</dsml:and>
</spml:filter>

2.1.3.1. Handling Range Attributes

You can retrieve Active Directory attributes with more than 1000 values only by performing
multiple searches with specified ranges. Use values from O to 999 for the first search, values
from 1000 to 1999 for the second search and so on.

The ADS connector implements this method transparently for the user. If the attribute
member is contained in an SPML search request, the ADS connector automatically
performs multiple range searches for this attribute. It extends the search result retrieved
from the LDAP connector by filling in all values of the member attribute.

Ranging also works with paging (pageSize is configured in the operational attributes of the
search request).

In the import direction, the Active Directory LDAP server accepts more than 1000 values
and stores them itself in separate range attributes.

2.2. Citrix Share File Connector

The Citrix ShareFile connector implements the Identity Java Connector Integration
Framework’'s DxmConnector interface and connects to a Citrix ShareFile through the HTTP
interface. It can be used for real-time workflows in the Java-based (IdS-J) Server. Like all
framework-based agents, it gets SPML requests from the Identity side and converts them
to the appropriate Citrix ShareFile calls and vice versa. The Citrix ShareFile connectivity is
based on HTTP protocol. The connector supports membership stored on groups.

2.2.1. Overview

The connector implements the APl methods "add(...)", "modify(..)", "delete(..)" and "search(...
)". They represent the corresponding SPML requests "AddRequest", "ModifyRequest",
"DeleteRequest" and "SearchRequest".

10

add(...) - internally uses addUser(...) and addGroup(...)
modify(...) - internally uses modifyUser(..) and modifyGroup(...)

search(...) - internally uses searchUser(...), searchAllUsers(...), searchGroup(...),
searchAllGroups(...)

The connector uses the open() method to open a connection to the Citrix ShareFile service.
Because communication with the Citrix ShareFile service is through the HTTP protocol
(stateless calls), no activities are performed on the close() method.

2.2.2. Limitations

By default, the isemployee attribute is set to true in the workflow mapping, so the default
workflow only creates employees. To change it, create a custom Java mapping for the
isemployee attribute.

Depending on the type of Citrix subscription, limitations related to the maximum number
of employees that can be managed by DirX Identity are possible.

2.2.2.1. DirX Identity Manager Limitations

It is not possible to change a group’s name using the GUI in the DirX Identity Manager.

2.2.2.2. Known Issues

Due to a constraint in the DirX Identity workflow engine, the user’'s e-mail address is used
instead of the Citrix ID to identify the user inside an SPML modify or add request when
handling membership for a user without an existing account in Citrix. For example:

<modifications>

<modification name="member" operation="add">
<value type="string">john.doe@dirx.de</value>

</modification>

</modifications>

If there is already a Citrix account for the user, the Citrix ID is used to identify the user inside
an SPML modify or add request. For example:

<modifications>
<modification name="member" operation="add">

<value type="string">7blfc236-8d5b-44dc-92bc-44b5757c3cde</value>
</modification>

</modifications>

The Citrix ShareFile APl does not allow creating a user with the same e-mail address as an

n

existing user. Such an attempt fails. The Citrix ShareFile connector returns the ID of the
existing user with the specified e-mail address in the error SPML response.

On the other hand, the Citrix ShareFile APl allows creating a group with the same name as
an existing group. This action is handled by the Citrix ShareFile connector itself. It does not
forward this type of request to the Citrix API, but returns an error.

2.2.3. Request and Response Handling

This section describes the supported requests and attributes for the Citrix ShareFile
connector. All attributes allowed by the Citrix ShareFile APl can be added.

The connector supports the following attributes of users and groups:
Users:

- email

- firstname

- lastname

- company

- isemployee (true or false)

- state (ENABLED or DISABLED)
Groups:

+ Name

- isShared (true or false)
Membership:
- member - the membership attribute
The connector supports following operational attributes:

- objtype - mandatory, the value can be user or group. It specifies for all request types
(add, modify, delete, search) whether it is a user or group request.

If a user who belongs to two groups should be deleted from one of them, a modify request
is performed for the membership change. If a user belongs to only one group and should
be deleted from it, a modify request for deleting the user from the group and a modify
request for suspending the user is performed.

2.2.3.1. Add Request

In the add request for user or group, the identifier must not be specified. Citrix generates
the identifier automatically and returns it in the response.

12

2.2.3.1.1. Groups

For groups, the name attribute is mandatory and represents the name of the group to be
created. The following example request creates the group TestGroup.

<?xml version="1.0" encoding="UTF-8"?>
<addRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<value type="string">group</value>
</attr>
</operationalAttributes>
<attributes>
<attr name="name">
<va'lue type="string">TestGroup</value>
</attr>
</attributes>
</addRequest>

2.2.3.1.2. Users

The attributes firstname, lastname, email and isemployee are mandatory. The state
attribute is optional. If not present, the Citrix connector creates the user in the ENABLED
state.

The following example request creates a user object for John Doe. His e-mail address is also
specified for the id attribute:

<?xml version="1.0" encoding="UTF-8"7?>
<addRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<va'lue type="string">user</value>
</attr>
</operationalAttributes>
<attributes>
<attr name="lastname">
<value type="string">Doe</value>
</attr>
<attr name="firstname">
<value type="string">John</value>
</attr>

<attr name="email">

13

<value type="string">john.doe@dirx.com</value>
</attr>
<attr name="isemployee">
<value type="string">true</value>
</attr>
<attr name="state">
<value type="string">ENABLED</value>
</attr>
</attributes>
</addRequest>

2.2.3.2. Modify Request

A modify request allows for changing attributes of a user or a group. At the group level, it
allows for changing the membership.

The attributes firstname, lastname, email, company and state can be changed for users.
The attributes name and isshared can be changed for groups.

When changing an attribute, a mandatory parameter in the SPML request is the Citrix ID of
the user / group returned by the SPML add response.

In the following example request, the e-mail address of the user John Doe is changed:

<modifyRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<value type="string">user</value>
</attr>
</operationalAttributes>
<identifier type="urn:oasis:names:tc:SPML:1:0#GUID">
<1d>g9163393-df09-42d9-b19d-d62e9468a83e</1d>
</identifier>
<modifications>
<modification name="1d" operation="replace">
<value type="string">52cc6788-efd0-4647-a269-6784a92a425e</value>
</modification>
<modification name="email" operation="replace">
<va'lue type="string">john.doe@dirx.de</value>
</modification>
<modification name="isemployee" operation="replace">
<va'lue type="string">true</value>

</modification>

14

</modifications>

</modifyRequest>

The following example request changes the name of the group TestGroup to
TestGroup.changed:

<modifyRequest requestID="modify-01">
<operationalAttributes>
<attr name="objType">
<value type="string">group</ value>
</attr>
</operationalAttributes>
<identifier type="urn:oasis:names:tc:SPML:1:0#GUID">
<1d>g9163393-df09-42d9-b19d-d62e9468a83e</1d>
</identifier>
<modifications>
<modification name="name" operation="replace">
<va'lue>TestGroup.changed</value>
</modification>
</modifications>

</modifyRequest>

The following example request performs a membership change. It adds a user who does
not have a Citrix account to a group. The user’'s e-mail address is specified in the
modification tag under modifications » add. These fields are both mandatory:

<modifyRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<value type="string">group</value>
</attr>
</operationalAttributes>
<identifier type="urn:oasis:names:tc:SPML:1:0#GUID">
<1d>g9163393-df09-42d9-b19d-d62e9468a83e</1d>
</identifier>
<modifications>
<modification name="member" operation="add">
<value type="string">test.user@dirx.com</value>
</modification>

</modifications>

15

</modifyRequest>

The following example request performs a membership change. It adds a user who has a
Citrix account to a group. The Citrix group ID is specified in the request identifier and the
user ID is specified in the modification tag under modifications - add. These fields are both
mandatory:

<modifyRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<va'lue type="string">group</value>
</attr>
</operationalAttributes>
<identifier type="urn:oasis:names:tc:SPML:1:0#GUID">
<1d>g9163393-df09-42d9-b19d-d62e9468a83e</1d>
</identifier>
<modifications>
<modification name="member" operation="add">
<value type="string">2fc7f4e9-2d5a-41c4-bde®-818f9373944b</value>
</modification>
</modifications>

</modifyRequest>

2.2.3.3. Delete Request

IN

a delete request, the identifier is mandatory and represents the ID received from Citrix

when creating the user or the group.

The following example request deletes a user:

16

<deleteRequest requestID="delete-01">
<operationalAttributes>

<attr name="objType">

<va'lue type="string">user</value>

</attr>
</operationalAttributes>
<identifier type="urn:oasis:names:tc:SPML:1:Q#DN">

<1d>f58688fa-1e36-4514-b506-e0fd0dc@7541</id>
</identifier>

</deleteRequest>

The following example request deletes a group:

<de'leteRequest requestID="delete-01">
<operationalAttributes>

<attr name="objType">

<va'lue type="string">group</value>

</attr>
</operationalAttributes>
<identifier type="urn:oasis:names:tc:SPML:1:Q#DN">

<1d>glaf88a7-4311-418c-a969-e0759e535f2e</1d>
</identifier>

</deleteRequest>

2.2.3.4. Search Request

In the search request, the Citrix ShareFile connector supports the standard element
searchBase and the operational attribute scope.

The following table shows valid searchBase / scope combinations in a search request:

searchBase / scope BASE ONELEVEL SUBTREE
object ID OK INVALID INVALID
"all" INVALID INVALID OK

In a search request, searchBase is a mandatory parameter that specifies the Citrix ID for
the user or the group or the "all" string to list all users/ groups. The attributes contained
under the attributes tag are returned with their values in the response if available.

Example request for group:

<searchRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<value type="string">group</value>
</attr>
<attr name="scope">
<va'lue type="string">Base</value>
</attr>
</operationalAttributes>
<searchBase type="urn:oasis:names:tc:SPML:1:Q#DN">
<1d>g80ab8d5-da94-4360-b159-952f2561e5ee</1d>

</searchBase>

17

<attributes>
<attribute name="name"/>
<attribute name="member"/>
</attributes>

</searchRequest>

Example request for user:

<searchRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<value type="string">user</value>
</attr>
<attr name="scope">
<value type="string">Base</value>
</attr>
</operationalAttributes>
<searchBase type="urn:oasis:names:tc:SPML:1:0#DN">
<id>2fc7f4e9-2d5a-41c4-bde@-818f9373944b< /1d>
</searchBase>
<attributes>
<attribute name="Tlastname"/>
<attribute name="firstname"/>
<attribute name="email"/>
<attribute name="1isemployee"/>
<attribute name="state"/>
</attributes>

</searchRequest>

Specify the value all in the searchBase if you search for all users or all groups.

The following sample request searches for all groups that contain a user with a specific
Citrix ID. The Citrix ID of the user is specified in the filter tag and the value all is specified in
the id of the searchBase tag:

<searchRequest requestID="req-id">
<operationalAttributes>
<attr name="objType">
<value type="string">group</value>
</attr>
<attr name="scope">

18

<value type="string">subtree</value>
</attr>
<attr name="noattrs">
<value type="string">true</value>
</attr>
</operationalAttributes>
<searchBase type="urn:oasis:names:tc:SPML:1:0@#GenericString">
<id>all</id>
</searchBase>
<filter>
<equalityMatch name="member">
<value type="string">7blfc236-8d5b-44dc-92bc-44b5757c3c4e</value>
</equalityMatch>
</filter>

</searchRequest>

2.2.4. Configuration

Here is a sample job configuration snippet for the Citrix ShareFile connector:

<connector
role="connector"
className="net.atos.dirx.dxi.connector.citrix.sharefile.ShareFileCon
nector"”
name="Citrix ShareFile Connector">
<connection type="CitrixShareFile"
user="user@mycompany.com"
password="dirx"
server="mycompany.sharefile.com">
<property name="useSystemProxy" value="false"/>
<property name="proxy" value="myproxy.domain.com:8080"/>
</connection>

</connector>

2.2.4.1. Supported Connection Parameters

The connector supports the following standard properties of the <connection> element of
the XML configuration file:

server - name of the Citrix ShareFile server. It is used to build the Citrix ShareFile Access
URL in form https://server/.

19

user - user e-mail address for authentication.
password - password for authentication to the Citrix ShareFile server.
It also supports the following properties:

useSystemProxy - (optional) boolean (default is false). If configured, the connector uses the
operating system’s default proxy. This parameter is supported only on some Microsoft
operating systems.

proxy - (optional) string. If configured, the connector uses an HTTP proxy for connections to
Citrix ShareFile. The format is host:[port].

2.3. CSV Connector

The CSV connector implements the Identity Java Connector Integration Framework's
DxmConnectorCore, DxmRequestor and DxmContext interfaces and writes and reads CSV
files using the SuperCsv classes. Like all framework-based agents, it gets SPML requests
from the Identity side by the join engine as part of the workflow engine hosted by the Java-
based Server. It converts the SPML requests in order to read from and write to CSV files.

The CSV connector provides the functionality to:
- Add any kind of object - especially user, account or group - to a CSV file.

- Perform searches on a CSV file to import the objects to Identity.

2.3.1. Overview

The connector implements the APl methods "add(...)" and "search(..)". They represent the
corresponding SPML requests "AddRequest" and "SearchRequest".

2.3.2. Limitations

No handling for binary data and no handling for multi-value attributes is implemented.

2.3.3. Request and Response Handling

This section describes the supported requests and attributes for the CSV connector.

2.3.3.1. AddRequest

In an add request, the identifier is mandatory. The identifier is mapped to the column
specified by the connection property namingAttribute. The connection property
csvAttributes specifies the columns of the CSV file. The CSV connector writes to the CSV file.
The export_file property of the connector specifies the CSV file name. If not specified, the
file name is read from the framework context variable ts.channelName.env.export_file
where channelName is retrieved from the operational attributes of the AddRequest.

Example request:

20

<?xml version="1.0" encoding="UTF-8" ?>
<spml:batchRequest xmlns="urn:oasis:names:tc:SPML:1:Q"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="batch-1"
processing="urn:oasis:names:tc:SPML:1:0@#sequential"”
execution="urn:oasis:names:tc:SPML:1:@#synchronous"”
onError="urn:oasis:names:tc:SPML:1:Q#exit">
<spml:addRequest requestID="add-1">
<spml:identifier type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>cn=Tymchuk Antonio,ou=Product Testing, o=My-
Company,cn=Users,cn=My-Company</spml:id>
</spml:identifier>
<spml:attributes>
<dsml:attr name="c" xmlns=
"urn:oasis:names:tc:DSML:2:Q:core">
<dsml:value>DE</dsml:value>
</dsml:attr>
<dsml:attr name="o0" xmlns=
"urn:oasis:names:tc:DSML:2:Q:core">
<dsml:value>My-Company</dsml:value>
</dsml:attr>
<dsml:attr name="ou"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>Product Testing</dsml:value>
</dsml:attr>
<dsml:attr name="1" xmlns=
"urn:oasis:names:tc:DSML:2:Q:core">
<dsml:value>My-Company Berlin</dsml:value>
</dsml:attr>
<dsml:attr name="employeeNumber"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>4873</dsml:value>
</dsml:attr>
<dsml:attr name="sn"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>Tymchuk</dsml:value>
</dsml:attr>
<dsml:attr name="givenName"
xmlns="urn:oasis:names:tc:DSML:2:0:core">

21

<dsml:value>Antonio</dsml:value>
</dsml:attr>
<dsml:attr name="cn"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>Tymchuk Antonio</dsml:value>
</dsml:attr>
</spml:attributes>
</spml:addRequest>
</spml:batchRequest>

2.3.3.2. Search Request

In a SPML search request, the CSV connector supports the elements searchBase and filter,
and the operational attributes scope, pageSize, noattrs (if set to FALSE or not existing all
attributes are retrieved) and channelName.

The join engine sets the operational attribute channelName only in a Java server workflow
context. channelName is used to get the name of the source file for the SearchRequest if
no file name was specified in the CSV connector's <connection> filename property. The file
name is then obtained from the framework context variable ts.*
channelName.env.import_file*.

If the join engine calls the CSV connector's search method in the context of a workflow
running from ldentity to the connected system (export mode), the CSV connector returns
an empty search result to make the join engine produce an AddRequest resulting in
writing a CSV row.

Example request:

<?xml version="1.0" encoding="UTF-8" ?>
<spml:searchRequest xmlns="urn:oasis:names:tc:SPML:1:0Q"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:@:core"
requestID="search_01"
>
<spml:searchBase type = "urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>cn=users,cn=My-Company</spml:id>
</spml:searchBase>
<spml:filter>
<dsml:and>
<dsml:equalityMatch name="ou">
<dsml:value>Sales</dsml:value>
</dsml:equalityMatch>
<dsml:not>

22

<dsml:present name="assistant" />
</dsml:not>
</dsml:and>
</spml:filter>

<spml:operationalAttributes>
<dsml:attr name="scope">
<value>subtree</value>
</dsml:attr>
<dsml:attr name="pageSize">
<value>@</value>
</dsml:attr>
<dsml:attr name="channelName">
<value>users</value>
</dsml:attr>
</spml:operationalAttributes>
<spml:attributes>
</spml:attributes>
</spml:searchRequest>

2.3.4. Configuration

Here is a sample configuration snippet for the CSV connector:

<connector
role="connector"”
className=" siemens.dxm.connector.framework.csv.CsvConnector "
name="CSV Connector" version="1.00">
<connection type="file"
filename="filename="C:/MetahubData/data.csv""
<property name="csvAttributes" value="c, o, ou, DDN, 1,
employeeNumber, cn, title, salutation, sn, givenName, description"/>
<property name=" export_file"
value="C:/MetahubData/mydataConnector.csv"/>
<property name="separator" value="|"/>
<property name="hasHeader" value="true"/>
<property name="namingAttribute" value="DDN"/>
</connection>

</connector>

23

2.3.4.1. Supported Connection Parameters

The following standard properties of the XML configuration file's <connection> element are
supported:

filename - (optional); one or more comma-separated file names used as the source file(s)
for the search request (import file). In a Java-based workflow context, the framework
context variable ts.channe/Name.env.import_file specifies the import file name if the
filename property is not specified.

Non-standard supported properties:

csvAttributes - (optional); the columns of the CSV file. In a Java-based workflow context,
the csvAttributes are taken from the mapped attributes.

export_file - (optional); the name of the file to which the CSV records are written. If not
specified in a Java-based Server export workflow context, the framework context variable
ts.channelName.env.export_file specifies the file name.

namingAttribute - The attribute that defines the identifier in the CSV file. For searches, this
value identifies which column is used for matching the base node part of the filter and is
used as the SPML identifier in the result. For Add request, it identifies the column to which
the mapped identifier is written. Like the other parameters in a Java-based workflow
context, it is retrieved from the framework context.

separator - The attribute that defines the separator of the CSV file. If not specified, a
comma is assumed. Like the other parameters in a Java-based workflow context, it is
retrieved from the framework context.

hasHeader - The attribute that defines whether the CSV file contains a header line. If not
specified, no header line is assumed. Like the other parameters in a Java-based workflow
context, it is retrieved from the framework context.

comment - If set, the given value is used to identify a comment line. Lines beginning with
this value are skipped during read. This is not part of the CSV specification.

Parameters in a Java-based workflow context:

Here you can specify the parameters for every channel. You can have channels for different
subtrees, different object types and so on. At a specific channel, you define the parameters
needed for this channel. The parameters are configured as specific attributes. They have
the same names as they do in the connection section. The join engine always treats these
names as lowercase.

2.4. Evidian ESSO Connector

The Evidian Enterprise Single SignOn (ESSO) connector is a Java-based connector that is
built with the Identity Java Connector Integration Framework and uses the Evidian Web
API.

The Evidian ESSO connector implements the APl methods "add(...)", "modify(...)", "delete(...)"

24

and "search(..)". These methods represent the corresponding SPML requests "AddRequest",
"ModifyRequest", "DeleteRequest" and "SearchRequest".

The connector currently only supports accounts in Evidian ESSO. One account represents
the tuple user - application - role.

The SPML identifier consists of the user(DN), application and role: userDN
,application=appname,role=rolename. The role part is optional; if it is omitted, the role “
"(empty string) is assumed.

Every account has the fixed attributes login and secret. An account represents the
possibility for the Active Directory user with the given userDN to log in to the given
application automatically as the user specified in login with the password specified by
secret. The role is necessary to specify access to the same application as a different login
user.

The Evidian ESSO connector offers the following functionality:

- Add an account to Evidian ESSO
- Delete an account from Evidian ESSO
- Modify accounts and profiles

- Search for accounts in the Evidian ESSO system

2.4.1. Prerequisites and Limitations

The Evidian ESSO connector has the following limitations:
- You can only search for accounts of a given Active Directory user.
- Filters and scopes are not supported in searches.

2.4.2. Request and Response Handling

This section describes the supported requests and attributes for the Evidian ESSO
connector.

Parameters are handled as extra attributes: every attribute that is not in the list of fixed

attributes is treated as a parameter Sample:

Id: userdn,application=SAPGUI
Login=testuser

Secret=test

Mandant=1122

In this example, Mandant is treated as a parameter Mandant with the value 1122.

25

2.4.2.1. Add Request

The (account) add request creates a new account in Evidian ESSO. The following attributes
are supported:

- The complete SPML identifier
- role
- login

- secret
All other attribute names are treated as parameters.

Here is an example request:

<spml:addRequest requestID="add-1">
<spml:identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>cn=Ben Hamm,cn=users,dc=esso,dc=1am,dc=my-it-
solutions,dc=net,application=ANW
ServerAdmin, role=DirXIdentity</spml:id>
</spml:identifier>
<spml:attributes>
<dsml:attr name="role" xmlns="urn:oasis:names:tc:DSML:2:@:core">
<dsml:value></dsml:value>
</dsml:attr>
<dsml:attr name="login" xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value >DomainAdmin</dsml:value>
</dsml:attr>
<dsml:attr name="secret" xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value >dirx</dsml:value>
</dsml:attr>
</spml:attributes>
</spml:addRequest>

2.4.2.2. Modify Request

The (account) modify request modifies a Evidian ESSO account. The same attributes as in
Add Request are supported.

Here is an example request:

<!l-- Modify login name for user Ben Hamm, Role DirXIdentity and
ServerAdmin application -->

<spml:modifyRequest requestID="mod-1">

26

<spml:identifier
type = "urn:oasis:names:tc:SPML:1:@#DN">
<spml:id>cn=Ben Hamm,cn=users,dc=esso,dc=1am,dc=my-it-
solutions,dc=net,application=ANW
ServerAdmin, role=DirXIdentity</spml:id>
</spml:identifier>
<spml:modifications>
<spml:modification name="login" operation="replace">
<dsml:value>Taspatch Nik</dsml:value>
</spml:modification>
</spml:modifications>

</spml:modifyRequest>

2.4.2.3. Delete Request

The delete request is used to delete an account. Here is an example request:

<!-- delete ServerAdmin for Ben Hamm with role DirXIdentity -->
<spml:deleteRequest requestID="del-1">
<spml:identifier
type = "urn:oasis:names:tc:SPML:1:@#DN">
<spml:id>cn=Ben Hamm,cn=users,dc=esso,dc=1am,dc=my-it-
solutions,dc=net,application=ANW
ServerAdmin, role=DirXIdentity</spml:id>
</spml:identifier>
</spml:deleteRequest>

2.4.2.4. Search Request

The search request is used to retrieve group data such as owner information, members and
roles. The search can either be restricted to one specific group or return all groups in the
current site. Only searches per user are supported

The base node is the user DN or identifier as in Add Request. The available attributes are:

- userDN

- application
- role

- log

- secret encrypted value

All other names are treated as parameter names.

27

The search filter is not evaluated. The userDN gives all accounts for this user. The complete
identifier filters for application and role of the given user.

Here is an example request:

<!-- search entry for ad user Ben Hamm app Web Center no role given
-->
<spml:searchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core" requestID="search_003">
<spml:searchBase type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>cn=Ben Hamm,cn=users,dc=esso,dc=1am,dc=my-it-
solutions,dc=net,application=ANW WebCenter</spml:id>
</spml:searchBase>
<spml:attributes>
<dsml:attribute name="userDN"/>
<dsml:attribute name="application"/>
<dsml:attribute name="role"/>
<dsml:attribute name="login"/>
<dsml:attribute name="secret"/>
</spml:attributes>

</spml:searchRequest>

2.4.3. Configuration

Here is a sample configuration snippet for the Evidian ESSO connector:

<connector name="ESSO connector"
role="connector"

version="1.02"

className="net.atos.dirx.dxi.connector.evd.esso.EvidianEssoConnector"”
>
<connection name="ESSOconnector"
url="https://<essohost>:9765/soap"
user="<Administrator>"
password="<pw>">
</connection>

</connector>

The Evidian ESSO connector supports the following standard properties of the XML

28

configuration file’s <connection> element:
url (mandatory) - the URL for the Evidian User Access Web Service port - not used.
user (mandatory) - the user name to access the Web service.

password (mandatory) - the password.

2.5. Google Apps Connector

The Google Apps connector implements the Identity Java Connector Integration
Framework’'s DxmConnector interface and connects to a Google Apps server through the
Google Apps APL. It can be used for real-time workflows in the Java-based (IdS-J) Server.
Like all framework-based connectors, it gets SPML requests from the DirX Identity side and
then converts them to the appropriate Google Apps API calls and vice versa. The Google
Apps connectivity is based on HTTP protocol. The connector supports membership stored
on the accounts level.

The connector is implemented in the GoogleAppsConnector class in the package
net.atos.dirx.dxi.connector.googleapps.

The connector implements the common methods for the DirX Identity Connector API: add,
modify, delete and search.

The operations are simply converted to the Google Apps Admin Directory API requests. The
corresponding responses are again translated to SPMLVI1 responses.

The Google Apps Admin Directory APl is a RESTful service comprised of endpoints that are
accessed using standard HTTP requests. The connector uses JavaScript Object Notation
(JSON) content types for requests and responses.

The connector communicates using SSL/TLS only.

2.5.1. Prerequisites and Limitations

The connector is based on Admin Directory API version 1.19.0 available at
https://developers.google.com/admin-sdk/directory/v1/libraries. The connector
functionality is limited by the functionality of the API version in use. Compatibility with
other API versions is not guaranteed.

To communicate with the Google servers, the connector needs to authenticate using a
Service Account Private Key, a Service Account User and a Service Account Email provided
by Google on account creation.

The operations are authorized by an OAuth server, so the privileges and scope need to be
set in the Google Admin Console; they cannot be modified at the connector level.

The connector supports common Google Apps user objects (common attributes and
navigation properties like memberOf, manager and secretary) and Google Apps group
objects (common attributes only).

29

https://developers.google.com/admin-sdk/directory/v1/libraries

The connector does not support nested group assignment. Nested group assignments
cannot be read or written.

2.5.2. Request and Response Handling

This section describes the supported requests and attributes for the Google Apps
connector. All attributes allowed by the Google Apps API can be added.

2.5.2.1. Add Request

The (user) add request creates a new user in Google Apps. The following attributes are
supported:

- primaryEmail - mandatory, unique

- givenName - mandatory

- familyName - mandatory

- password - mandatory

- suspended

- changePasswordAtNextLogin

- ipWhitelisted

- externallds - for type "work"

- relations - for type "manager" and "assistant"

- addresses [poBox] - for "primary"

- addresses [extendedAddress] - for "primary"

- addresses [streetAddress] - for "primary"

- addresses [locality] - for "primary"

- addresses [region] - for "primary"

- addresses [postalCode] - for "primary"

- addresses [countryCode] - for "primary"

- organizations [name] - for "primary"

- phones [work]

- phones [work_mobile]

- phones [home]

- orgUnitPath

- includelnGlobalAddressList

- memberOf

Here is an example request:

<spml:addRequest returnData="identifier"

30

requestID="add-user-01" targetID="users"
xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">

<spml:identifier type="urn:oasis:names:tc:SPML:1:0#GenericString">

<spml:1d>1234</spml:id>
</spml:identifier>
<spml:attributes>
<dsml:attrname="userName"><dsml:value> Miller
Tom</dsml:value></dsml:attr>
<dsml:attr
name="givenName"><dsml:value>Miller</dsml:value></dsml:attr>
<dsml:attr
name="familyName"><dsml:value>Tom</dsml:value></dsml:attr>
<dsml:attr
name="password"><dsml:value>password</dsml:value></dsml:attr>
<dsml:attr
name="state"><dsml:value>ENABLED</dsml:value></dsml:attr>
<dsml:attr name="primaryMail"><dsml:value>
Miller@domain</dsml:value></dsml:attr>
<dsml:attr name="phones">

<dsml:value type="string">

{"value":"0724553207", "type" : "work_mobile", "primary":true?
</dsml:value>
<dsml:value type="string">
{"value":"0724553207", "type" : "home"?}
</dsml:value>
</dsml:attr>
<dsml:attr name="externallds">
<dsml:value
type="string">{"value":"123", "type":"organization"t</dsml:value>
</dsml:attr>
<dsml:attr name="relations">
<dsml:value type="string">
{"value":"Razvan", "type":"manager"?
</dsml:value>
<dsml:value type="string">
{"value":"Rudi", "type":"assistant"?
</dsml:value>
</dsml:attr>

31

<dsml:attr name="addresses">

<dsml:value type="string">

{"type":"work", "poBox":"21", "extendedAddress": "Griviteinr.77", "street
Address":"Grivitei", "locality":"Brasov", "region":"Brasov",
"postalCode”:"1111", "countryCode":"US", "primary" :truet
</dsml:value>
</dsml:attr>
</spml:attributes>
<spml:operationalAttributes>
<spml:attr name="objType">
<dsml:value type="string">user</dsml:value>
</spml:attr>
</spml:operationalAttributes>
</spml:addRequest>

The (group) add request creates a new group in Google Apps. The following attributes are
supported:

- email - mandatory, unique
- name
- description

2.5.2.2. Modify Request

In the modify request, the identifier is mandatory. All attributes allowed by the Google Apps
APl can be modified.

Note that users may experience issues when trying to delete everything under a multiple-
valued attribute like "phones" or "addresses". This is a Google API problem: it doesn't allow
you to delete everything at once, just one entry at a time.

2.5.2.3. Delete Request

In the delete request, the identifier is mandatory. The delete request does not require
additional attributes.

2.5.2.4. Search Request

In the search request, the Google Apps connector supports the standard element
searchBase and the operational attributes scope and objType.

To search for all users or groups, the searchBase needs to be empty.

32

2.5.3. Configuration

Here is a sample configuration snippet for the Google Apps connector:

<connector
className="net.atos.dirx.dxi.connector.googleapps.GoogleAppsConnector
name="TS" role="connector">
<connection user="admin@dirx-interop.com">
<property name="proxyHost" value="proxy-emea.my-it-
solutions.net"/>
<property name="proxyPort" value="84"/>
<property name="domain" value="dirx-interop.com"/>
<property name="applicationName" value="identity"/>
<property name="clientId"
value="developerIDedeveloper.gserviceaccount.com"/>
<property name="clientSecret"
value="###a@dxrConnectionLink@dxmClientSecret###" />
</connection>

</connector>

2.5.3.1. Supported Connection Parameters

The connector supports the following standard properties of the <connection> element of
the XML configuration file:

user - the user identifier to be used for authentication in the format: name@domain.
It also supports the following properties:

proxyHost: optional. This property provides information about the host name or IP address
of the HTTP proxy server. Do not use authenticated proxy servers. If the access to the proxy
server requires authentication, deploy another local transparent proxy server that can
access to the authenticated one. Use only local proxy server instead.

proxyPort: optional. This property provides information about the port number of the HTTP
proxy server. Do not use authenticated proxy servers. See description for proxyHost for
more details.

clientld: mandatory. This property provides the Service Account Email Key of your
registered remote application, used for authenticating to Google Apps.

clientSecret: mandatory. This property provides the Service Account Private of your
registered remote application, used for authenticating to Google Apps.

domain: mandatory. This property is the domain of your registered remote application.

33

applicationName: mandatory. This property is the name you selected for your application.
(The value can be anything you want; the name is used by the Google servers to monitor
the source of authentication).

2.5.3.2. Additional Notes

Access to the Google Apps API must be activated using the Google Apps administration
web site. (See the online Google Apps documentation.)

The Google Apps Provisioning API has been officially deprecated as of May 15, 2013. It has
been replaced by the Admin SDK'’s Directory API. The Google Apps Provisioning API will
continue to work according to the Deprecation Policy.

2.6. Identity Domain Connector

The Identity Domain connector (sometimes called the Service Layer connector)
implements the DirX Identity Java Connector Integration Framework’s DxmConnector
interface and connects to an Identity domain.

The Identity Domain connector implements all of the functionality to create, update, delete
and search all entries in a DirX Identity domain. It also allows the assignment of roles,
groups and permissions to users. The assignments can be attributed, where they can have
an end date and one or more role parameters. Rather than communicating on the low-
level LDAP protocol, the Identity Domain connector uses the DirX Identity service layer
component. This design allows the connector to use the service layer features: the object
descriptions, and user resolution.

The Identity Domain connector supports all entry types in a domain: users, roles, groups,
business objects, and more. The Identity Domain connector evaluates the object
description for the creation of an entry. The object description name can be given explicitly
or is determined from other attributes, normally from the type and object class. When an
entry is to be created, a client needs to provide only a minimum set of attributes; no DN or
naming attribute is required. The connector applies the object description rules for initial
values and attributes dependencies.

The Identity Domain connector supports password changes; passwords can be part of both
add and modify requests.

The following sections describe how the Identity Domain connector handles requests and
responses as well as the connector’s configuration.

2.6.1. Prerequisites and Limitations

The Identity Domain connector is contained in the library dxmSvcLayerConnector.jar. It is
based on the DirX Identity Java Connector Integration Framework and uses the DirX
Identity service layer for access to the DirX Identity domain and for searching and
mMaintaining the domain entries. The service layer is contained in the library dxrServices.jar
and in turn depends on a number of other DirX Identity and external libraries.

The Identity Domain connector supports only one role parameter value per assignment

34

and role parameter. An assignment can have multiple role parameters, but each parameter
can have only one value. If you need more values, then you need to create more
assignments. For example, if a user is a member of two projects, create two assignments,
one for each project.

2.6.2. Request and Response Handling

This section describes how the connector handles requests and responses.

2.6.2.1. Object Description

The service layer requires an object description name for creating an entry, so the request
needs to contain attributes that allow the connector to select an object description. The
best way to satisfy this requirement is to pass the object description name in the virtual
attribute odName. For example, to create a functional user, take the odName
dxrFunctionalUser. You'll find the object descriptions with their names in the domain
configuration tree.

As an alternative, you can provide the LDAP attributes that are sufficient to identify an
object description. Normally, these attributes are objectclass and optionally dxrType.
Check the <mapping> section of the object descriptions to determine the attributes that
are evaluated by the service layer. For a functional user, you only need to provide the
objectclass value dxrFunctionalUser.

If the given values are not sufficient to identify an object description, the connector checks
whether the new entry should become a container. If an object class value contains the
string container, the connector uses the object description name dxrContainer.

2.6.2.2. Object Class

Only the object classes that are necessary to identify an object description need to be
provided. If the request already contains an object description name, no object classes
need to be provided; the service layer takes the missing object classes from the object
description.

2.6.2.3. Parent Entry

An entry must be created under another existing entry, the parent. The easiest way to
satisfy this requirement is to provide the DN of the parent in the virtual attribute parentDN.
If the add request contains an identifier DN, the Identity Domain connector extracts the
parent DN from this attribute.

If a parent cannot be identified this way, the connector inspects the found object
description and its parent descriptions. If the new entry is a user, role or permission, the
connector takes the corresponding root entry.

If a parent still cannot be identified, the connector places the new entry under the business
objects container.

35

2.6.2.4. Approval

If the creation of a new entry requires approval, the service layer starts the approval
workflow. If the workflow is still in progress, the Identity Domain connector returns the
result code PENDING and takes the entry identifier from the workflow’s subject identifier.
Note that the entry DN may be changed in the remainder of the workflow.

2.6.2.5. Password

The Identity Domain connector expects the password in the userPassword attribute. If the
user or account is not in approval, it sets the password for the entry using the normal
password support. Otherwise, it's the workflow's responsibility to define and set a password
for a new user or account. With password support, the passwords are handled in the same
way as, for example, with Web Center. Password support sends a password change event
with the encrypted password. The workflow UserPasswordEventManager will process
them in the standard way and update also corresponding accounts.

The connector does not use password support only if the suppressPwdEvent option is set
to true; it simply stores the password in the entry’'s user password attribute. In this case, in
the object description the property type must be declared as “[B” (binary array).

2.6.2.6. Renaming

A modify request should contain the DN of the entry in its ID and the old DN in the
dxrprimarykeyold attribute; this configuration should be standard for all Provisioning
workflows. This configuration allows the connector to detect a requested move of the entry.
In this case, it asks the service layer to perform the rename and then applies other
modifications.

2.6.2.7. Delete

Before the Identity Domain connector deletes an entry, it asks the service layer to delete all
of its children. Typically, an entry will not be physically deleted, but set to state TBDEL (to be
deleted).

2.6.2.8. Search

The Identity Domain connector follows the standard rules for search requests:

- It reads an entry, if the operational attributes in the request specify a scope of base.

- It performs a paged search, if the operational attribute pagesize has a value greater
than O. In the other cases, it performs a normal search, evaluating search base, filter,
requested attributes, sizelimit, timelimit, sortattribute and sortorder; except for search
base and filter, all of these are operational attributes. If the operational attribute noattrs
is given with a value of true, it doesn’t request any attribute.

2.6.2.9. References to other LDAP Entries

References to other LDAP entries in attributes such as owner or dxrLocationLink must be
given as LDAP DNs. Typically, the source databases will not recognize these DNs. Instead,
they have a unique value, often something like a primary key. A mapping function needs to

36

search the entry based on this unique value. An example of how to do this is given in the
source for the role mapping function.

2.6.2.10. Privilege Assighnments

The Identity Domain connector provides special handling for privilege assignments.

For simple assignments, which do not have an end date or role parameters, it is sufficient
to put the DN of the assigned role, permission or group into the respective attribute
dxrRoleLink, dxrPermissionLink or dxrGroupLink.

For attributed assignments, the virtual attributes rolesassigned, permissionsassigned and
groupsassigned must be used; they can also be used for simple assignments. The content
of these attributes is a structured JSON object. Here is an example:

{

"privilegelLink”: "cn=Project Member,cn=Project Specific,cn=Corporate
Roles,cn=RoleCatalogue,cn=My-Company",

"dxrEndDate": "20181231230000.000Z",

"params": [

d
"paramDN": "cn=Project,cn=My-Company,cn=RoleParams,cn=Customer
Extensions,cn=Configuration,cn=My-Company",
"paramUid": "uld-7f00l-cee271-fed935aabd--7eb4",
"paramKey": "MoreCustomers",
"paramValue":

"cn=MoreCustomers,cn=Projects,cn=BusinessObjects,cn=My-Company"

§

The example above contains new lines, tabs and blanks for better reading. Note that before
you pass this value to the join engine of a Provisioning workflow, you should trim it; that is,
remove all white spaces (blanks and tabs). This would matter if you provided the value in an
LDIF or CSV file. Otherwise, the value would not exactly match the value that is returned
from the connector and the join engine would always request the connector to modify the
entry in LDAP. So, the better way is to have some channel filter component between the
source connector and the join engine as in the sample workflow. This filter component
should use the provided class PrivilegeAssignedDTO to generate the attribute value. For an
example of how to do this, see the sources of the method addAssignmentAttribute(...) in
the filter class JdbcRoleAsgFilter; you'll find it in the Additions folder of the product media.

In the request to the connector, the JSON object needs to contain the privilegeLink
property with the DN of the privilege to assign. This is the minimum content and
represents a simple assignment. An end date is expected in the dxrEndDate property; no
start date is evaluated.

37

Role parameters are represented in the params array. They can have the DN of the
parameter, its dxrUid and the key and value for the parameter value. A request must
contain either the parameter UID or its DN in addition to the parameter value and value
key.

The Identity Domain connector supports only one value per role parameter because the
sequence of values cannot be determined in JSON. As a result, comparing mapped and
actual existing values in the workflow might easily return the wrong result even when
logically they are the same.

The Identity Domain connector returns only direct assignments in a search response; it
does not return inherited and rule-based assignments. The result also contains
assignments in approval. This helps to prevent duplicate request workflows, where an
assignment is still in approval and the Provisioning workflow runs again.

The DN values of the privilege, a role parameter or even role parameter values are not
usually present in a source database; instead, the source database contains only unique IDs.
It's the responsibility of filter and/or mapping functions in the Provisioning workflow to
supply these DNs. For more information, see the section "Relational Database User Import
Workflow" in the chapter "Using the Source Workflows" in the DirX Identity Application
Development Guide.

2.6.2.1. Example Add Request

The following add request contains the minimum set of attributes that are necessary for
creating a user:

<spml:addRequest
xmlns:spml=urn:oasis:names:tc:SPML:1:0

xmlns:dsml=urn:oasis:names:tc:DSML:2:0@:core

<spml:attributes>
<spml:attr name=sn>
<dsml:value>UserWithJustObjectDescriptionName</dsml:value>
</spml:attr>
<spml:attr name=givenname>
<dsml:value>new</dsml:value>
</spml:attr>
<spml:attr name=parentDN>
<dsml:value>cn=Users,cn=My-Company</dsml:value>
</spml:attr>
<spml:attr name=odName>
<dsml:value>dxrUser</dsml:value>
</spml:attr>
</spml:attributes>

38

</spml:addRequest>

2.6.3. Configuration

The Identity Domain connector is configured according to the DirX Identity Java Connector
Integration Framework. Its class is
net.atos.dirx.dxi.connector.svclayer.ServiceLayerConnector.

The connector evaluates the following options:

- server - the host name or IP address of the LDAP server.
- port - the port number of the LDAP server.

- user - the DN of the LDAP user for binding.

- password - the password for binding.

- ssl - true if TLS is to be used.

- domain - the name of the Identity domain, including the prefix cn=. If it is missing, the
top-level RDN of the user DN is used.

- suppressPwdEvent - whether (true) or not (false) the connector stores the user
password as is in the userpassword attribute or sends a password change event to the
UserPasswordEventManager workflow.

2.7. Imprivata One Sign Connector

The Java-based Imprivata OneSign connector runs inside the Identity Connector
Integration Framework. It extends the standard SPML vl SOAP Connector. It sends SPML
SOAP requests over HTTP to the configured Imprivata OneSign endpoint and receives
SPML SOAP responses from Imprivata OneSign provisioning service.

The connector supports only specific SPMLv1 requests those are necessary for provisioning
of Imprivata OneSign: addRequest, modifyRequest, deleteRequest, searchRequest.

The connector supports basic authentication as well as server-side SSL/TLS authentication.
It does not support WS-Security protocols yet.

2.7.1. Prerequisites

The deployment of the connector is the same as for the standard SPMLv1 Connector. See
"Prerequisites" in "SPMLv1 Connector" for details.

2.7.2. Configuration

The connector uses mostly the same configuration as the standard SPMLv1 Connector. (See
"Configuration" in "SPMLv1 Connector" for details.) Additionally it uses a special
configuration parameter:

externalSystemName: mandatory; this property is equal to the name of the configured

39

Provisioning System Adaptor in the Imprivata OneSign appliance. Set this value in the
connector port according to the values configured in the Imprivata OneSign system.

The following is a sample configuration for Imprivata OneSign connector:

<connector
className="siemens.dxm.connector.framework.soap.ImprivataSpmlSoapProx
y" name="TS" role="connector">
<connection password="{SCRAMBLEDaG5WPw==" port="443"
server="imprivata" ss1="TRUE" type="Imprivata OneSign"
user="dummy" >
<property name="externalSystemName" value="My-Company"/>
<property name="includePrefixesForXsdPrimitiveTypes"
value="FALSE" />
<property name="timeout" value=""/>
<property name="path" value="sso/provision/spmlrouter”/>
</connection>

</connector>

2.8. JDBC Connector

The JDBC connector is the DirX Identity connector that handles the import and export of
information into and out of relational databases. It is based on the DirX Identity Connector
Integration Framework. The connector implements the DxmConnectorExtended interface
of the Java Connector Integration Framework.

2.8.1. Overview

and "extendedRequest(..)". They represent the corresponding JDBC SQL statements
INSERT, UPDATE, DELETE, SELECT and CALL stored Procedure.

The connector implements the APl methods "add(..)", "modify(..)", "delete(...)", "search(...)"

2.8.2. Prerequisites
The JDBC connector is contained in
dxmJDBCConnector.jar.

The connector is based on the Java Connector Integration Framework. The framework is
contained in the library

dxmcConnector jar.

Depending on the JDBC driver used, the appropriate jar file for the driver is also a
prerequisite. For use in a Tcl workflow or standalone, follow the instructions given by the
provider of the driver. If you use the driver in the Java-based Server (IdS-J), you need to put

40

the jar file in the server's install_path\ids-j-domain-Sn*confdb\common\lib* directory.

2.8.3. Configuration

The agent is composed of multiple sub-units (connectors), each configured within the
configuration file. Here is the top-most level structure:

<?xml version="1.0" encoding="UTF-8" ?>
<job>

<connector

className="s1emens.dxm.connector.framework.DefaultControllerStandalon

e
name="Default Controller" role="controller" version="0.1">
</connector>
<connector name="JDBC connector” role="connector"
className="siemens.dxm.connector.jdbc.JDBCConnector" >
<!-- additional JDBC connector material -->
</connector>
<connector

className="siemens.dxm.connector.framework.SpmlFileReader"
name="SPML file reader" role="reader">
<connection filename="examples\\TestReq.xml" type="SPML" />
</connector>
<connector
className="siemens.dxm.connector.framework.SpmlFileWriter"
name="SPML File writer" role="responseWriter">
<connection filename="examples\\TestRsp.xml" type="SPML" />
</connector>
</Jjob>

This top-level structure conforms to the generic structure of the DirX Identity Agent
Integration Framework, as shown in the following figure:

41

connector
/|_role=responseWriter |

/ . connector \
/ /' role=reader \\~

4 connector | /_‘ logging
/" role=controlier)
job KT connection \‘
N connector L~ operation
NS role=connector /j
K

\\\' requestTransformer 4

\ /
1 responseTransformer

Figure 1. IDBC Connector Top-Level Structure
The readers and writers can also be configured to receive and accept LDIF.
Here, the only variable material (assuming the readers /writers specified here) is:

- The line marked <!-- additional JDBCConnector material -», which is described in the
next sections.

- The connector sections for the roles “reader” and “responseWriter”. They contain the
input and output filenames (in bold) and the classes for the reader / writer. Use
“siemens.dxm.connector.framework. LdifChangeReader”
for LDIF change input format and
“siemens.dxm.connector.framework. LdifFileWriter”
for LDIF content output.

2.8.3.1. General Notes

This section provides general information about JDBC connector configuration.

2.8.3.1.1. IDBC Connector Element Form of the Connector

Here is an example of the contents of the two elements that form the sub-elements of the
connector element, for the connector role within a JDBC connector. It is followed by a brief
summary of key components. Further details and explanations are given later.

This is an example of the XML used in:
<!-- additional JIDBCConnector material -»

as indicated above.

1l:<connection

type="com.microsoft.jdbc.sqlserver.SQLServerDriver"

url="jdbc:microsoft:sqlserver://TIGGER2:1433;databasename=NorthWind"
user="sa"

42

driverDBType="siemens.dxm.connector. jdbc.SQLServerOverMicrosoftDriver

O 0O N O U1 A W N

[y
S

driver_{propertyl}="valuel"
driver_§property2}="value2"

driver_{propertyN}="valueN"
>

<jdbc-connection always-follow-references="false">

<tables-and-views>

<table>
<name>employees</name>
</table>
<!-- more tables -->
<view>

<name>employees</name>
<from>employees INNER JOIN Employees AS employeesAsBoss ON

employees.ReportsTo =

employeesAsBoss.EmployeeID</from>

11:

<where>employees.ReportsTo =

employeesAsBoss.EmployeeID</where>

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:

<table description="Employees">
<name>employees</name>
</table>
<table>
<name>employeesAsBoss</name>
</table>
</view>
</tables-and-views>
<abbreviation name="order-id">orders.OrderId</abbreviation>
<abbreviation name="boss">employeesAsBoss.FirstName + ' ' +
employeesAsBoss.LastName AS Boss</abbreviation>
<!-- more abbreviations -->
<relationship from="bossid" referring-to="id" />
<!-- more relationships -->
<functions-and-procedures>
<function name="ADD_FUNC">
<return>

<range exact="0" />

43

29: <range min="1" max="6" />]

30: <!-- more ranges -->

31: </return>

32: <argument name="base" in-out="1in" preset="2"
dataType="INTEGER" />

33: <I-- more arguments -->

34: </function>

35: <!-- more functions -->

36: <procedure name="add_proc">

37: <return name="result">

38: <range exact="0Q" />

39: <range min="1" max="6" />]

40: <!-- more ranges -->

41: </return>

42: <argument name="base" in-out="in" preset="2"
dataType="DECIMAL" />

43: <argument name="addend" in-out="in" preset="5"
dataType="INTEGER" />

44: <argument name="result" in-out="out" dataType="INTEGER" />
45: <!-- more arguments -->

46: </procedure>

47 <!-- more procedures -->

48: </functions-and-procedures>

49: </jdbc-connection>
50:</connection>

51:<logging filename="trace" level="5" logger="JDBCLogger"/>

Line 1 - specifies the details of the connection to the database. The attributes starting with
the prefix driver_ are passed directly to the JDBC driver. This action allows additional
configuration of user properties of the driver within the connector configuration. For
example, a connection attribute driver_selectTimeout="10" would be passed to the driver
as a user property selectTimeout with the value 10. Check the supported properties of the
particular JDBC drivers and see the Java JDBC API for details.

Line 2 - jdbc-connection element - specifies general properties of the JDBC functionality
Line 3 - groups tables and views

Line 8 - table definitions,

Line 8 - view definitions, including table components

Line 20 - abbreviations - normally short-form names for DSML-stype attributes.

44

Line 23 - referential integrity definitions (called relationships)
Line 25 - groups function-and-procedure definitions

Line 26 - defines all stored functions

Line 36 - defines all stored procedures

Line 51 - <logging> - specifies IDBC connector-specific logging

2.8.3.1.2. Description Attributes

In the interests of legibility, description attributes have been omitted from the example.
They are permitted as attributes of elements with the following tags:

- tables-and-views

- table

- view

- abbreviation

- functions-and-procedures
- function

- procedure

- FPReturn

- range

- argument

For descriptions of these elements, see the next sections.

2.8.3.2. Connector Element

The connector element with the attribute values name="JDBC connector" role="connector"
is concerned with the detailed configuration of the JDBC connector.

The following sections describe the part of the XML that goes into the line marked <!--
additional JDBCConnector material -» above. Two tags, connection and logging, are
relevant.

connection

Defines the basic connection of the database and the means needed to support it.
logging

Defines the logging that will be available for the connection and its operation.

2.8.3.3. Connection Element

This section describes the attributes and sub-elements of the JDBC connector connection

45

element.

2.8.3.3.1. Attributes

Configure the following required attributes:

type
The class of the JDBC driver that you are using to access a database (normally a
relational database).

Currently, the following are available:

- For Microsoft SQL-Server 2000: com.microsoft.jdbc.sqlserver.SQLServerDriver

- For Microsoft SQL-Server 2005 and newer:
com.microsoft.jdbc.sqlserver.SQLServerDriver

- For MS-Access (JDBC-ODBC Bridge): sun.jdbc.odbc.JdbcOdbcDriver

- For MS-Access: net.ucanaccess.jdbc.UcanaccessDriver

- For Oracle JDBC versions lower than 9.0.1: odbc.jdbc.driver.OracleDriver
- For Oracle JDBC version 9.0.1 and higher: odbc.jdbc.OracleDriver

- For PostgreSQL 9: org.postgresql.Driver

url

The URL of the specific database to be accessed. The form of the URL will be described
in the documentation for the JDBC driver.

user

The name of the JDBC user: this user must be empowered to access the data (read and
write) within the limits of planned use for the JDBC connector.

password
The user’s password. May be omitted if it is just "

driverDBType

The Java class representing data-type capabilities and conversions for the combination
of the selected database and the JDBC driver. If not supplied, a default capability is
provided that should handle common eventualities.

Currently, the following are available:
- siemens.dxm.connector.jdbc.AccessOverJddbcOdbcDriver representing

sun.jdbc.odbc.JdbcOdbcDriver accessing Microsoft Access databases

- siemens.dxm.connector.jdbc.SQLServerOverMicrosoftDriver representing
com.microsoft.jdbc.sqglserver.SQLServerDriver accessing Microsoft SQL Server
databases

- siemens.dxm.connector.jdbc.OracleOverOracleDriver representing ORACLE drivers

- siemens.dxm.connector.jdbc.DB20verIBMDriver representing IBM DB2 drivers

46

- siemens.dxm.connector.jdbc.PostgreSQLOverddbcOdbcDriver representing
PostgreSQL

2.8.3.3.2. Sub-elements

The following are the sub-elements of connection:

jdbc-connection

Configures the connection to the database.

Property debugfile

Set this property to enable the DriverManager logging. Logging goes to the specified
prefix followed by some suffixes.

Example:
<property name="debugfile" value="JDBCTrace." />

will result in a log file named like:

JDBCTrace._71_Wed_Oct_22_17.36.42_CEST_2008. log

Property noSPcheck

Set this property to avoid check calls for configured Stored Procedures (SPs) during
open. If you don't specify this property or set it to false during open, every configured
Stored Procedure is called with default values to check the configuration .(does the SP
exist? Have you configured the right arguments? and so on.). Use this property to avoid
these calls after successfully testing the Stored Procedure configuration.

Example:

<property name="noSPcheck" value="true" />

2.8.3.4. JIDBC-Connection Element

This section describes the attributes and sub-elements for the JDBC-Connection element.

2.8.3.4.1. Attributes

The JDBC-Connection element has the following attribute:

always-follow-references

Set this to "true" if it is required that the references supplied by relationship elements be
followed and the pointing column value be set to null. Doing this may be a good idea to
prevent pointers pointing "into thin air" when a pointed-to row is removed. It will not be
necessary when all relationships are policed for relational integrity: in that case, the
failure to carry out a delete operation triggers the following of references, and trying
again to do the original deletion.

47

2.8.3.4.2. Sub-elements

The JDBC-Connection element has the following sub-elements:

tables-and-views

Provides a general container for table and view specifications.

abbreviation (multiple instances)

At least one of these must be present.

Provides a means to label columns of a particular table. Abbreviations can also represent
expressions, such as can be used in an SQL SELECT statement:

SELECT RTRIM(x) AS xWithoutTrailingBlanks FROM ...

However, such expressions cannot in general be used for adds (INSERTSs) or modifies
(UPDATEsS).

See the section "Abbreviation" for details.

relationship (zero or more instances)

A relationship specifies an abbreviation that corresponds to a column in some table that
used to point to a row in a table; the two tables can be the same, but usually they are
different. The pointed-to table must have a single primary key that is configured as an
abbreviation.

functions-and-procedures (optional)
Provides a general container for function and procedure specifications.

2.8.3.5. Logging Element

This element is optional. If absent, the controller log is used, with the level of logging set for
it. The JDBC connector log has a default trace level of 3.

This element can contain just a level, which controls the catching of data as described in
the following section. Whatever level of information is captured, the data is presented to
the controller log, and is then passed to the user depending on the level of setting.

2.8.3.5.1. Attributes
The logging element has the following attributes:

level

Controls the detail that is provided in trace-files. The following values apply:
35 operation are reported, tagged with the request-id;

55 Operation SQL is logged (i.e. SQL generated as a direct consequence of a user-
requested operation);

7 » Causes calls to main functions in JIDBC to be logged.

48

8 » Causes schema SQL to be logged (i.e. SQL generated as a result of IDBC functions to
investigate schema matters);

9 » Causes table/column details to be logged.

For all information to be made available in the system log, the value of 9
or higher must be set for it.

logger
Provides a root filename for the log-file. If this is XXX, a typical output log-file is
XXX.000.log.

2.8.3.6. Schema Names

At a more detailed level, several definitions require specification of schema objects, such as
tables and columns. For this reason, the nature of names for these objects needs to be
introduced. Such names are called "schema names".

There are two forms of names usable within the connector:

- Unguoted names, which are case-insensitive, start with an alphabetic character and can
contain alphanumerics or underscores '_' after the first character.

- Double-quoted name, which are case-sensitive, cannot contain double quotes but are
otherwise unrestricted.

Not all databases use double quotes for the construction of generalized
names: the JDBC connector identifies the native form for its own purposes.

example, in the construction of views), the SQL must comply with the
standards for the database and double quotes may not be appropriate.

0 In some elements where the SQL for access to a database is exposed (for

The following is a synopsis of the rules:
Schema-names must be from 1to 30 bytes long. They can be in one of two forms:

Unqguoted
Double-quoted

Unguoted names are case-insensitive. They must begin with an alphabetic character (A-Z,
a-z, no more) followed by one or more of:

Alphanumeric (A-Z, a-z, 0-9, no more)

underscore (_)
0 Spaces and hyphens are not permitted.

Double-quoted names are always enclosed in double quotation marks “...". Such names can

49

contain any combination of characters, including spaces.

In referring to a double-quoted name, you must always use double quotation marks
whenever referring to the object. Enclosing a name in double quotes enables it to:
Contain spaces
Be case sensitive
Begin with a character other than an alphabetic character, such as a numeric character
Contain characters other than alphanumeric characters and _, $, and #

Be a reserved word

An uppercase unguoted name is taken as identical to the same name with double quotes

2.8.3.7. Table-and-Views Element

This section describes the attributes and sub-elements for the table-and-views element.

2.8.3.7.1. Attributes

Only an optional description attribute is defined.

2.8.3.7.2. Sub-elements

The table-and-views element has the following sub-elements:

table (1 or more instances)

The database table(s) to which the JDBC connector requires direct access. The first table
specified is taken as the default table, and will be used when no other table can be
deduced as relevant. Note that using an abbreviation does imply an associated table,
except when the abbreviation specifies an expression that uses column values from
more than one table.

view (O or more instances)

A view represents a join of tables. It is like a table in most respects, but it is unavailable
for adds, modifies or deletes. In some regimes, a view can be specified directly in the
view definition; in others (for example, Oracle9i), a view must be pre-configured into the
database.

2.8.3.8. Table Element

A table always relates to a specific table in the underlying relational database.

Normally, a table has a defined column that supplies a primary key (usually auto-
incrementing, for example, a steadily increasing row-id, but sometimes user-defined);
sometimes multiple keys are used (for example, surname and given-name). This
configuration provides a unique internal reference (the database may be able to police
uniqueness of user-supplied keys). A user of the agent can still specify primary keys
independent of the table configuration, provided that this is indeed guaranteed to provide
a unique reference. If it does not, the specific rows in the sets that share a key cannot be

50

modified individually using this key or set of keys.

Abbreviations recorded in "keys" (and primary-keys) are not alternatives,
but must normally be used together. In other words, if the abbreviations
0 are "cn" and "gn", then both values should be supplied: cn=fred+gn=jones.
Rows can sometimes be accessed by means of a subset of the keys, but
sometimes they cannot (depending on whether the result is unique).

For external purposes, specifying a different key is sometimes useful. For example, an entry
from an LDAP directory system may be required to have a name corresponding to
surname/given-name, while the primary key may be a number that is meaningless outside
the database. For this reason, two forms of key are configurable - one for use with the
database, and one for external use.

In some systems, the identity of the primary key can be obtained by the JDBC connector by
accessing the table metadata. However, this is not always provided as a facility within the
JDBC access to the database. If not available from configuration information, the agent
assumes that the auto-incrementing columns of the table are the primary keys. If this is not
possible, there is an error.

2.8.3.8.1. Attributes

The configured element has the following attributes:

keys
An optional space-delimited list of abbreviations to be used as names useful to external
resources. If absent, configured or evaluated primary keys are used.

primary-keys
An optional space-limited list of abbreviations that correspond to primary keys as
defined within the database. This is not required if (A) the Agent can obtain the
information from schema metadata or (B) the table's primary key(s) is/are auto-
incrementing, and schema metadata can identify auto-incrementing columns.

The Agent will report an error if it is unable to determine a primary key.
2.8.3.8.2. Sub-elements
The configured element has the following sub-elements:

name (always one)

This is pure text. It must be unique for all tables, but can be shared with a view. It must
comply with the rules for schema names. (See section "Schema Names" for details.)

2.8.3.9. View Element

A view represents a join of two or more tables. Joins can only be accessed by the JDBC
connector for search operations. The first table within a view is referred to as the primary
table.

51

In some environments (for example, Oracle9i), a view is a database object that is configured
in by the database manager. In this case, "from" and "where" information is unneeded and
must not be provided. In others (for example, Microsoft ACCESS or SQL Server), the join is
explicitly generated in the calling SQL statement. In this case, "from" and "where"
information is needed in exactly the same form as required by a manually-generated
SELECT for two or more joined tables.

2.8.3.9.1. Attributes

The view element has the following attributes in addition to an optional description
attribute:

keys
An optional space-limited list of abbreviations to be used as names. These must
represent columns of the first constituent table. If absent, the primary key(s) of the first
table listed are used. (This must exist - see notes on "keys" and "primary-keys" under
table-elements.)

2.8.3.9.2. Sub-elements

The view element has the following sub-elements:

name (always one)

This is pure text. It must be unique for all views, but can be shared with its primary table.
It must comply with the rules for schema names. (See section "Schema Names" for
details.)

from

Gives the FROM text needed for explicit views, in SQL. Mandatory when views are
explicit. Absent otherwise.

If present, it must be exactly as the database would use it in a SQL statement. Note
particularly that conventions for schema names containing spaces or other characters not
permitted in basic schema names may apply. In this case, use as would be required for
normal SQL when accessing the database with a coommand-line tool.

where

Gives the WHERE text needed for explicit views, in SQL. Mandatory when views are
explicit. Absent otherwise.

If present, it must be exactly as the database would use it in an SQL statement.. Note
particularly that conventions for schema names containing spaces or other characters
not permitted in basic schema names may apply. In this case, use as would be required
for the normal SQL that would be used when accessing the database with a command-
line tool. For example, double quotes may need to be replaced by square brackets for
Access databases.

table

Required to record all the tables specified in the Join. The first table must be the primary
table.

52

In the case where the join is a self-join, the second instance of table must have been
declared with a new name in an AS substatement in the WHERE clause used to define
the join; this table must also be declared here.

For example:

<from>employees INNER JOIN Employees AS employeesAsBoss ON

employees.ReportsTo = employeesAsBoss.EmployeeID</from>
requires also:

<table> <name>employeesAsBoss</name></table>
This permits the table to be used in an abbreviation definition, even though not

specified with the main collection of tables.

This table element must contain a subordinate name element, which is text only.

2.8.3.10. Abbreviation

An abbreviation binds a simple externally-accessible name to a column or function defining
information from a table or view. Simple abbreviations correspond to a single column.
Functional abbreviations represent an expression based zero or more columns, perhaps
from multiple tables. Thus the standard LDAP attribute name "sn" (meaning surname)
could be bound in an abbreviation to the column:

Employees.LastName
meaning the column LastName in the table Employees.

Column values are only accessible when specified by an abbreviation that has been
configured in the configuration file.

Abbreviations are checked when the agent is started, and should normally resolve to a
table/column combination (except when an expression is specified).

"Abbreviation" is a term that corresponds closely to a textual DSML attribute descriptor (or
an LDAP attribute identifier). Note that the latter two can be used in dotted-integer OID
notation (for example, "2.5.5.1"); however, this facility is not supported by the IDBC
connector.

DSML specifies a syntax for names; the textual form (as opposed to dotted decimal form is
used for abbreviations.

Thus, an abbreviation has a name that must start with an ordinary alphabetic; thereafter,
each letter in the name must be:

An alphabetic

53

A numeric

A hyphen
Abbreviation names are case-insensitive.

An abbreviation is more restrictive than a DSML attribute descriptor in corresponds to a
unique column or expression in a database. Thus, in the case given earlier, "sn" cannot be
used to represent a LastName column in any other table than Employees. This specific
nature is exploited in the agent in that, since the abbreviation definition often identifies the
holding table, it is often not necessary to specify the required table explicitly.

The abbreviation maps to a value defined by the text content of the element, initial and
trailing spaces being discarded. This value could be:

A column name (when the table-name is unambiguous, because only one table has
been declared)

A table and column name;

An SQL value expression identified as a quasi-column by an “.. AS name” suffix.

<abbreviation name="exp">RTRIM(dbo.accounts.dxrAccountName) AS

exp</abbreviation>

Defines that the RTRIM function is used to eliminate trailing blanks of the column
dxrAccountName

2.8.3.10.1. Attributes

Abbreviation elements can have the following attributes in addition to an optional
description attribute:

format

This attribute is in a form that specifies the inner syntax of a string value (for example, for
timestamps). Further details are given under section "Format Codes".

max-size

An optional integer attribute that specifies the maximum size of a textual attribute
value. The objective of this is to cause truncation when outgoing data is longer then the
specified value. It applies only to string or text attributes.

min-size

An optional integer attribute that specifies the minimum size of a textual attribute value.
The objective of this is to cause an error when data intended for the database is shorter
then the specified value. It applies only to string or text attributes.

name

The name of the abbreviation. Mandatory, and must be unique for all abbreviations. It
must comply with the rules for textual DSML Attribute Descriptors.

54

Abbreviations have pure text content. This text specifies the definition of the abbreviation
in SQL terms. The recommended form for ordinary column-value abbreviations is:

<table-name>.<column-name>

where double quotes are used as necessary.

2.8.3.10.2. Format Codes

The format parameter is available to assist in the parsing of incoming values that are
potentially cultural or locale dependent. At present, date-time is affected

Date-Time Formats

The abbreviation format field general date format which can then be used for parsing or
string synthesis. Incoming dates are parsed in accordance with the format, and passed to
the database (if appropriate) in a form compliant with JIDBC standards. Similarly, outgoing
dates are used to synthesize information in a defined manner.

Default format is "YYYYMMDDhhmmssZ". If running in lite mode only this format is
supported.

ACCESS over the ODBC/IDBC bridge does not apparently support date
comparison in predicates.

An example of the format string is:
"dd/MM of YYYY (hh:mm:ss GMT)"
In the string, the following are considered special:

"yvy" or "YY" - indicates a two-digit year,

"yyyy" or "YYYY" - indicates a four-digit year,

"M" - indicates a one- or two-digit month,

"MM" - indicates a two-digit month,

"d" or "D" - indicates a one- or two-digit day,

"Mh" or "HH" - indicates a two-digit hour,

"mm" - indicates a two-digit minute,

"ss" or "SS" - indicates a two-digit second,

e, L T indicates fractions (number of decimal precision) of a TIMESTAMP
They mark the expected position of the indicated field. All other combinations are ignored.
Care should be taken when additional characters contain any of the characters used in the
special string. Thus, the word "Immediate" will not work as desired, since the two ms
indicate an expected minute field. Year, month and day fields must be provided, and no
field can be provided more than once. Fields can be adjacent, but if "D" "d" or "M" are

immediately followed by another field, they are taken as the same as "DD", "dd" or "MM",
Future extensions may give non-numerical (locale-dependent) dates.

55

For TIMESTAMP columns also fractions are allowed. Define the fractions in the format
string of the abbreviation. Use f for fractions.

fff means 3 fractions (milliseconds format="YYYY-MM-DD hh:mmm:ss.fff"). Up to 9 fractions
are supported (9 decimal places of precision - nanoseconds).

The input data values must match the format string. Output data values are presented as
defined in the format string.

You may use less fractions in format string as defined in the DDL of your column. During
add / modify missing fractions are handled as O.

If you have defined 6 fractions in your database column (microseconds), but you are using a
format with fff (milliseconds), passing 123 as a fraction will be handled as 123000
microseconds.

2.8.3.10.3. Abbreviations and Data Types

Data types are at the heart of relational databases. Each database will define a range of
data types that it is prepared to accept. To store any other kind of value, it would be
necessary to map it into an existing data type (for example, a string), but, generally, the rule
is that a column (represented by an abbreviation) has a predefined data type, and will only
accept values of that data type (with minor variances, such as date-format). There could
also be truncation (for example, of places in a floating-point format).

JDBC provides access to all normal data types (and to some unusual ones as well).
However, the JDBC connector (while supporting the normal datatypes), does not support
every JDBC-supported data type. The following list indicates the datatypes not supported.

Types.ARRAY

Types.BLOB *)

Types.CLOB

Types.DATALINK

Types.DISTINCT

Types.JAVA_OBIJECT

Types.OTHER

Types.REF

Types.STRUCT

*) BLOB:

OracleOverOracleDriver supports BLOB in the following way:
BLOB input data must be of type binary.

BLOB data is returned as binary data. The length is limited to
2,147,483,647 bytes(MAXINT). BLOB data exceeding this size is ignored

56

(no value for this column is returned). A warning is generated.

As BLOB data is handled as binary data it is transferred in SPML
requests/responses as byte array. This may lead to high memory

usage.

The following table indicates the standard data types and their standard mappings to Java

classes:
ARRAY BIGINT BINARY BIT
BLOB *) BOOLEAN CHAR CLOB
DATALINK DATE - deprecated DECIMAL DISTINCT
DOUBLE FLOAT INTEGER JAVA_OBJECT
LONGVARBINARY LONGVARCHAR NUMERIC OTHER
REAL REF SMALLINT STRUCT
TIME - deprecated TIMESTAMP TINYINT VARBINARY
VARCHAR NCHAR NULL NVARCHAR

To determine whether a particular database requires a particular JIDBC data type, an

empirical approach usually suffices.

Each database defines its own data type names, but a table of mappings can sometimes be
valuable. Here, for example, is a list of all the SQL Server data type names and the
corresponding JDBC data type names. As you can see, all data types accessible to the

server are supported:

SQL Server Data Type Typename
bigint
binary
bit

char
datetime
decimal
float
image
int
money
nchar
numeric

nvarchar

JDBC Data Type Value

BIGINT

BINARY

BIT

CHAR

DATETIME

DECIMAL

FLOAT

LONGVARBINARY

INTEGER

DECIMAL

CHAR NCHAR (2008 and higher)
NUMERIC

VARCHAR NVARCHAR (2008 and higher)

57

SQL Server Data Type Typename

JDBC Data Type Value

real REAL
smalldatetime TIMESTAMP
smallint SMALLINT
smallmoney DECIMAL
sqgl_variant VARCHAR
text LONGVARCHAR
timestamp BINARY
tinyint TINYINT
unique-identifier CHAR
varbinary VARBINARY
varchar VARCHAR

2.8.3.11. Relationship Element

A relationship element specifies references from one table to another for which referential
integrity enforcement (if implemented) can be handled by nullifying the reference. Use this
element field to permit entries to be deleted when entries in other tables affected by
referential integrity point to them. It is used in conjunction with the "always-follow-
references" flag in the JDBC-Conection element (see section "JDBC-Connection Element"),
each time a relevant row is deleted, the Agent attempts to null all configured pointers that
would otherwise no longer point to a row.

In order for the JDBC connector to make use of this function:

- The reference that points to the entry to be removed must be nullifiable

- The access control that permits the JDBC connector to nullify the reference must be in
force.

2.8.3.11.1. Attributes

The relationship element has the following attributes:

from

An abbreviation that specifies the column in the table that contains a reference; this is
the table that is affected by referential integrity. It is never a primary key

referring-to

An abbreviation that specifies the column in the table that supplies the value of the
reference. It is always a primary key - in fact, it must correspond to the single primary key
for the referenced table.

2.8.3.12. Functions-and-Procedures Element

Functions and procedures are similar, except that a function returns a value and a

58

procedure does not. Both functions and procedures theoretically have arguments that are
IN, OUT, or IN-OUT. However, some regimes may be more restrictive (e.g. to forbid function
arguments to be OUT or IN-OUT).

Functions and procedures have distinct names, so that a function and a procedure cannot
share a name.

2.8.3.12.1. Attributes

A functions-and-procedures element has an optional description attribute.

2.8.3.12.2. Sub-elements

A functions-and-procedures element has the following sub-elements:

function
An optional declaration of a stored procedure that returns a value;

procedure
An optional declaration of a stored procedure that does not return a value;

2.8.3.12.3. Returned Values

The JDBC connector requires that the function or procedure must return an integer result,
representing status. This status is then converted in a customized way into either an
indication of success, or an indication of failure.

Although this seems restrictive, functions and procedures can be nested inside each other,
so that an arbitrary function or procedure (or a whole set of functions/procedures) can be
encapsulated in a function or procedure that has the required characteristic.

Stored procedures cannot at present be actually created by the JDBC connector. They
must be defined within the database by an appropriate graphic or commmand-line tool.

2.8.3.13. Function Element

This section describes the attributes and sub-elements of the function element.
2.8.3.13.1. Attributes
Functions can have the following attributes (other than an optional description):

name

The name of the function, as presented to the JDBC interface. Mandatory, and must be
unique for all functions and procedures

2.8.3.13.2. Sub-elements

Functions can have the following sub-elements:

59

argument

Optional. Defines incoming (and potentially outgoing) data.

return

Mandatory. Controls the processing of the returned information, but does not specify
which argument is involved.

2.8.3.14. Procedure Element

This section describes the attributes and sub-elements of the procedure element.

2.8.3.14.1. Attributes

Procedures can have the following attributes (other than an optional description):

name

The name of the procedure, as presented to the JDBC interface. Mandatory, and must
be unique for all functions and procedures

2.8.3.14.2. Sub-elements

Procedures can have the following sub-elements:

argument

Mandatory. Defines incoming (and potentially outgoing) data - one must be an OUT or
IN-OUT

return

Mandatory. Controls the processing of the returned information, selecting the argument
which is to provide the returned value.

2.8.3.15. Argument Element

This section describes the attributes of the argument element.

2.8.3.15.1. Attributes

The argument element for the JDBC connector has the following attributes, as well as an
optional description:

in-out
Text of form "IN" "OUT" or "IN-OUT". Default: IN, if not specified.

data-type
Defines the way in which the argument is to be interpreted.

format

This attribute is in a form that specifies the inner syntax of a string value (for example, for
timestamps). (See "Format Codes" in "Abbreviation" for details.) This is mandatory for all
time-related data types like TIMESTAMP.

60

2.8.3.16. Return Element

Functions and procedures that are used by the JDBC connector must return an integer
value that indicates success, failure, or other outcome. The return elements enable this
value to be translated into:

The category of error
Text corresponding to the detailed value.
2.8.3.16.1. Attributes

The return element can have the following attribute:

name

For a procedure, this must be the configured name of an argument. It is always absent
for functions.

2.8.3.16.2. Sub-elements

A return element contains the following sub-elements:

range

These sub-elements are used to map the returned integer value into a category and a
report string.

The returned value is matched against each range in order of configuration, and the
indications provided by the range are taken as the basis for the response made by the
JDBC connector.

There is an error response if no range matches.

2.8.3.17. Range Element

This section describes the attributes of the range element.
2.8.3.17.1. Attributes
The applicability of a specific range to an integer return is determined by:

max + min

These occur in pairs; if present, the integer return is matched if not exceeding max and
not less than min.

exact

Present if and only if max and min are absent. If present, the integer return is matched if
equal to this value.

The translation of a return value is made in terms of the following attributes:

value
The optional string return for a value within the specified range (default ")

61

category

The severity of the return: If present, this must take one of the following values (ignoring
case):

TOK"

"INFO

"WARNING

"ERROR

The default is "ERROR" if a value attribute is present, otherwise "OK".

2.8.4. Input and Output Data File Formats
The JDBC connector accepts different file formats for input data:

- SPML request
- LDIF change

Similarly, the agent produces the following different output formats:

- SPML response

- LDIF content

The format must be configured in the connector sections, which refer to the reader and the
responseWriter.

The following sample configuration snippet defines LDIF-change input and SPML response
output:

<connector
className="siemens.dxm.connector.framework.LdifChangeReader"
name="LDIF change file reader" role="reader">
<connection filename="datain.ldif" type="LDIF change" />
</connector>
<connector className="siemens.dxm.connector.framework.SpmlFileWriter"
name="SPML File writer" role="responseWriter">
<connection filename="dataout.xml" type="SPML" />
</connector>

For an export, the agent waits for the search request definition in an SPML file. Here is a
sample:

<?xml version="1.0" encoding="UTF-8"?>
<l-- Created on Tue Jul 06 10:35:10 BST 2004-->

62

<searchRequest requestID="search8"
xmlns="urn:oasis:names:tc:SPML:1:0">
<searchBase type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>table=employees</spml:id>
</searchBase>
<filter>
<greaterOrEqual name="bd">
<va'lue>1/1/1963</value>
</greaterOrEqual>
</filter>
<attributes>
<attribute name="sn"/>
<attribute name="bd"/>
/attributes>

</searchRequest>

The search results are output in LDIF content format. Here is a sample for the appropriate
connector section in the configuration file:

<connector className="siemens.dxm.connector.framework.LdifFileWriter"
name="LDIF File writer" role="responseWriter">
<connection filename="dataout.ldif" type="LDIF" />

</connector>

Even if the input or output is of LDIF format, the agent internally works with SPML.
Transformation is done automatically by the LDIF reader and writer.

The following subsections describe the content of the internally-handled input requests
and output responses, which are in strict compliance with SPML requirements. You also
need to know this format if you include transformation in your job: use a
requestTransformer or responseTransformer section in your configuration.

The four main SPML operations are add, modify, delete, and select. The action is based on
the supply of an identification, with the exception of add, which can optionally create a new
entry based on new contents.

In addition, the extended-request SPML operation is used for function/procedure calls.

In all cases, the agent determines on which table to operate and then applies the supplied
SPML information appropriately.

2.8.4.1. Add, Modify, Delete and Search Requests

The four defined operations add, modify, delete and search are extensions of SPMLRequest.
Here are some simple examples. The first is for a database that maintains JDBC connector

63

characteristics:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created on Mon Jun 21 09:45:07 BST 2004-->
<addRequest requestID="addl" xmlns="urn:oasis:names:tc:SPML:1:0">
<attributes>
<attr name="abbname">
<value>boss</value>
</attr>
<attr name="abbmap">

<va'lue>employeesAsBoss.FirstName & & ;

emp loyeesAsBoss.LastName AS Boss</value>

</attr>

<attr name="abbprice">
<value>1</value>

</attr>

<attr name="abbimp">
<value>false</value>
</attr>
</attributes>

</addRequest>

This is a modify for a personnel-style database:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created on Mon Jun 21 09:45:11 BST 2004-->
<modifyRequest requestID="modify4"
xmlns="urn:oasis:names:tc:SPML:1:0">
<identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>sn=davolio</spml:id>
</identifier>
<modifications>
<modification name="1d" operation="delete"/>
</modifications>

</modifyRequest>
This relates to the same database as for the add:
<?xml version="1.0" encoding="UTF-8"?>

<l-- Created on Mon Jun 21 ©9:45:09 BST 2004-->

64

<deleteRequest requestID="delete2"
xmlns="urn:oasis:names:tc:SPML:1:0">
<identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>abbprice=2,table="abbreviation data and price"</spml:id>
</identifier>
</deleteRequest>
<?xml version="1.0" encoding="UTF-8"?>
<!-- Created on Mon Jun 21 09:45:13 BST 2004-->
<searchRequest requestID="search2"
xmlns="urn:oasis:names:tc:SPML:1:0">
<searchBase type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>table=employees</spml:id>
</searchBase>
<attributes>
<attribute name="1d"/>
<attribute name="gn"/>
<attribute name="sn"/>
</attributes>

</searchRequest>

All operations have an optional regestID. The reqgestID is always repeated in any response.

Possible sub-elements for these operations are:

identifier (applicable to add, modify, delete only)
searchBase (applicable to search only)
modifications (applicable to modify only)

filter (applicable to search only) - specifies the search filter in SPML syntax.
ApproximateMatch and ExtensibleMatch are not supported.

attributes - as types and values (applicable to add only)

attributes - as a list of types (applicable to search only)

operationalAttributes - sortAttribute, sortOrder and pageSize are supported for searches
any - unused

requested - unused

execution - unused

The usage of the protocol is as follows:

65

add modify delete search

identifier Optional. If Mandatory. Mandatory.
present, pointsto Defines the entry Defines the entry
the name of the to be modified. to be deleted
new entry,
supplying
attribute values
searchBase Optional. If
present,

defines what is
to be searched.

Defaults to
definition by
attribute
selection
modifications Mandatory.
Supplies
modifications to
be applied
filter Optional.
Defines the
entries of
interest.
attributes Optional. Supplies
(types and the main
values) attributes to be
added
attributes Optional. List

of attribute
descriptors
that are to be
returned -
default all

2.8.4.2. Sorting

Sorting can be specified with the operational attributes sortAttribute and sortOrder. If no
sortOrder is given, ASCENDING is assumed. Multiple sortAttributes are supported.

In the following example, sorting is specified first ASCENDING for attribute JOB and second
DESCENDING for attribute ENAME:

<spml:searchBase type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>table=SCOTT.EMP</spml:id>
</spml:searchBase>

<spml:operationalAttributes>

66

<dsml:attr name="sortAttribute">
<value>JOB</value>
<value>ENAME</value>
</dsml:attr>
<dsml:attr name="sortOrder">
<value>ASCENDING</value>
<value>DESCENDING</value>
</dsml:attr>

</spml:operationalAttributes>

2.8.4.3. Paging

Paging can be configured with the operational attribute pageSize. The given pageSize is
used for setting the "fetchSize" of the SelectStatement. If paging is configured, the SPML
response does not include the whole result set to minimize memory consumption. For
database-specific optimization, see the DB /JDBC documentation. (For example, SQL
Servers offers responseBuffering=adaptive.)

In the following example, paging is specified with pagesize 5:

<spml:searchBase type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>table=SCOTT.EMP</spml:id>
</spml:searchBase>
<spml:operationalAttributes>
<dsml:attr name="pageSize">
<value>5</value>
</dsml:attr>

</spml:operationalAttributes>

2.8.4.4. Names within Identifier and Search-base Elements

Names as used by the connector within identifier and search-base elements are always
represented in XML as follows:

<identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>dn</spml:id>
</identifier>

where dn represents the LDAP DN form specified in RFC2253. This is the only SPML-
specified type that is supported.

The name used for a search operation is known as the "search-base", and can correspond to
a table or to a specific entry (row).

67

Four DN forms are recognized by the connector:

No. Description Signifying Example(s)

2 Empty string (the Default table empty or blanks
"root" name)

3 A name A row matching sn=Doe,gn=John
comprising a these values

single RDN built
out of keys (one or
more attributes).

4 A name A table matching view=employees
comprising a the name table="external contractors"
single DN built (including double
from the quasi- guotes)
attributes: table
and view
5 A two-RDN name A row matching sn=Hodson,table=suppliers
combining keys these values gn=Anthony+sn=Hodson,table=suppliers

with table or view.

The quasi-attributes table and view are used with values that are exactly as required for the
table or view. For these, values without double-quotes are case-insensitive and are very
restricted in the characters that they can use, and values with double-quotes are taken as
case-sensitive, and can include spaces and other characters.

These restrictions do not apply to other attributes.

The following table defines the use of the four forms described above by JIDBC connector
operations:

add delete modify search
1- forbidden forbidden forbidden OK (default table
empty implied)
2-keys OK OK OK OK
3 -table tableis OK Forbidden (this Forbidden (you can OK
orview view is not OK would drop a table only modify a row,
or view, which is not a table or view).
forbidden).
4 - keys OK OK OK OK
and
table

The name itself must be compatible with any other attributes defined within the specific
operation (i.e. represent a table, view, row or join of rows), within which the required
attributes can be found. The following additional rules exist for identification purposes:

68

add

1-
empty

2 -atts Must not define any Must define a single Must define a single

delete modify

existing row row row

3 -table Must define a
orview configured table

4 - atts Must not define any Must define a single Must define a single

and existing row row row

table

2.8.4.5. Add, Modify, Delete, and Search Responses

The following table defines responses with success:

result:

requestiD

identifier

attributes
modifications

searchResultEntry

operational
attributes

error Message

any

add modify delete

"'urn:oasis:names:
tc:SPML:1:0#succ
ess"

returned if
supplied

Always returned
based on
primary key

unused

unused

unused

unused

The following table defines responses with failure:

result:

add modify delete

"urn:oasis:na
mes:tc:SPML:
1:.0#failure"

search

May define one
or more rows

Must define a
configured table
or view

May define one
or more rows

search

Returns
names and
values for
matching
entries

search

69

requestiD

error

operational
attributes

error Message

any

Examples:

<AddResponse result="urn:oasis:names:tc:SPML:1:0Q#success”
requestID="add7" xmlns="urn:oasis:names:tc:SPML:1:0">

<identifier type="urn:oasis:names:tc:SPML:1:Q#DN">

<i1d>

add modify delete

returned if
supplied

absent OR
"'urn:oasis:na
mes:tc:SPML:
1.0#unsuppor
tedldentifierT
ype" OR
"'urn:oasis:na
mes:tc:SPML:
1:.0#noSuchld
entifier"

unused

absent OR
synthesized
using
Reports
substitutions

unused

search

abbid=7,table=\"abbreviation data and price\"

</id>

</identifier>

</AddResponse>

<DeleteResponse result="urn:oasis:names:tc:SPML:1:0Q#success”

requestID="deletel" xmlns="urn:oasis:names:tc:SPML:1:0"/>

<SearchResponse result="urn:oasis:names:tc:SPML:1:0#failure"

requestID="search99" xmlns="urn:oasis:names:tc:SPML:1:0">

<errorMessage>

search error:entry not found; dn=sn=davo\+lio+gn=nancy),

</errorMessage>

</SearchResponse>

70

2.8.4.6. Stored Functions and Procedures

This section describes the operations for stored functions and procedures.

2.8.4.6.1. extendedRequest Elements

Stored functions and procedures are mapped to extendedRequest SPML operations. The
form of these items differs from the other operations described earlier in this document.

The components of an extendedRequest as used by a functions and procedures are
illustrated in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created on Mon Jun 21 09:45:15 BST 2004-->
<extendedRequest requestID="spin@@_3"
xmlns="urn:oasis:names:tc:SPML:1:0">
<providerIdentifier
providerIDType="urn:oasis:names:tc:SPML:1:0#URN">
<providerID>SP</providerID>
</providerIdentifier>
<operationIdentifier
operationIDType="urn:oasis:names:tc:SPML:1:0#GenericString">
<operationID>sp_benutzerrolle</operationID>
</operationIdentifier>
<attributes>
<attr name="operation">
<value>2</value>
</attr>
<attr name="rollenname">
<value>fred</value>
</attr>
<attr name="mitarbeiter">
<value>tom</value>
</attr>
</attributes>

</extendedRequest>

Iltems which are in bold represent user-supplied information:

text value of operationID as the name of the function
attributes elements
value of name attribute

text value of value sub-element

71

The attributes are used to map to the arguments of a pre-stored procedure definition. The
names of the arguments are used in the same way that abbreviations are used for normal
operations. Normal abbreviations are unused.

The return value can either be success or a failure with diagnostics, or could take a
processed value; and the "attributes" element of the extendedResponse (part of the
extension of the SPML response) could provide the other return values.

The process for stored functions and procedures is:

- The values supplied as attributes are applied to the appropriate arguments, if present. If
absent, NULL values are used.

- On successful return of a function, the returned value is matched to a range provided by
conversion. On successful return of a procedure with a defined return, the returned
value is similarly handled.

- If the return is empty, or is designated as OK, info, or warning, the extendedResponse
indicates success.

- Otherwise, the extendedResponse indicates failure

- All values of OUT or IN/OUT arguments including the returned value are returned as
attribute values.

The returned value for the function or procedure must always be an integer.

2.8.4.6.2. extendedResponse Element

An example of a successful response is:

<ExtendedResponse result="urn:oasis:names:tc:SPML:1:0@#success”
requestID="spin@@_1" xmlns="urn:oasis:names:tc:SPML:1:0">
<attributes>

....<attr name="return-message">

...... <nsl:value xmlns:nsl="urn:oasis:names:tc:DSML:2:0:core">
OK

...... </nsl:value>

....</attr>

....<attr name="return-value">

...... <ns2:value xmlns:ns2="urn:oasis:names:tc:DSML:2:0Q:core">
...... </ns2:value>
....</attr>

..</attributes>

</ExtendedResponse>

Elements of successful responses are given in the following table:

72

Stored Functions and Procedures

result: "urn:oasis:names:tc:SPML:1:0#succ
ess"

requestiD returned if supplied

attributes Contains return values, encoded in

terms of attribute names. There
will always be at least one of these.
For a function, the return value
will have a name "function-return-
value"

"return-message"

return-value

argument-names

operational attributes unused
error Message

any unused

present if supplied as a result
of range in one of the
following forms:

OK: message
INFO: message
WARNING: message

always supplied - always an
integer

argument-values

Elements of failed responses are given in the following table:

Stored Functions and Procedures

result "urn:oasis:names:tc:SPML:1:0#failur
o

requestiD returned if supplied

error absent

attributes Contains return values, encoded in

terms of attribute names. Only
supplied if the function or
procedure successfully executed,
but detected an error within its
own processing.

"return-message"

present if supplied as a result
of range in this form

Error: message

73

Stored Functions and Procedures

"return-value" always supplied - always an
integer
argument-names argument-values

operational attributes unused

error Message Present if no attributes are
available. Synthesized using
Reports substitutions

any unused

2.8.5. Error Handling
This section describes JDBC connector error handling, including:

- Generated error log files

- Error-handling procedures

2.8.5.1. Error Log Files (JDBC Connector)
Errors are logged in a system log file provided outside the scope of the JDBC connector.

Errors are also optionally logged in a local log file whose name is derived from the
configuration file attribute:

job.connector.logging.filename
For example, with a value "JDBCLogger", the file name may be:
JDBCLogger.000.log

The level of logging is set by the levels set for each of the log files. But note that the
information provided by the system log file is no more extensive than that made available
by the level set for local logging (whether or not a local log file is provided).

2.8.5.2. Error-Handling Procedures
Configuration errors are normally fatal.
Operation errors usually cause the operation to fail, but do not stop the connector.

Failed operations cause an error response, which carries a single message representing a
failure. Logged messages can contain indications of multiple error events.

The language of errors depends on resource files, which change the language of textual
messages but do not affect tags that represent the name of XML elements.

74

2.9. LDAP Connector

The LDAP connector implements the DirX Identity Java Connector Integration
Framework’'s DxmConnector interface and connects to an LDAP server through the
Netscape LDAP interface. It can be used for Tcl-based workflows in the C++-based Server
and realtime workflows in the Java-based (IdS-J) Server. Like all framework-based agents, it
gets SPML requests from the Identity side and converts them to the appropriate Netscape
LDAP interfaces on the LDAP server side and vice versa.

2.9.1. Overview

The connector implements the APl methods "add(...)", "modify(..)", "delete(..)" and
"search(..)". They represent the corresponding SPML requests "AddRequest",
"ModifyRequest", "DeleteRequest" and "SearchRequest".

2.9.2. Request and Response Handling

This section describes the supported requests and attributes for the LDAP connector.

2.9.2.1. AddRequest

In an add request, the identifier, which is always expected to be a DN, is mandatory. All
object classes and all attributes contained in the schema of the LDAP server can be passed
in the add request.

Example request:

<?xml version="1.0" encoding="UTF-8" ?>
<spml:batchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="batch-1"
processing="urn:oasis:names:tc:SPML:1:0#sequential”
execution="urn:oasis:names:tc:SPML:1:0#synchronous”
onError="urn:oasis:names:tc:SPML:1:0#exit">
<spml:addRequest requestID="add-1">
<spml:identifier type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>cn=my class,cn=supplier groups,cn=groups,cn=Extranet
Portal,cn=TargetSystems,cn=my-company</spml:id>
</spml:identifier>
<spml:attributes>
<spml:attr name="objectclass"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>dxrTargetSystemGroup</dsml:value>
</spml:attr>

75

<spml:attr name="uniqueMember"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>cn=my-company</dsml:value>
</spml:attr>
<spml:attr name="dxrState"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>ENABLED</dsml:value>
</spml:attr>
</spml:attributes>
</spml:addRequest>
</spml:batchRequest>

2.9.2.2. ModifyRequest

In a modify request, the identifier is also mandatory. All object classes and their attributes
contained in the schema of the LDAP server can be modified.

Example request:

<?xml version="1.0" encoding="UTF-8" ?>
<spml:batchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="batch-1"
processing="urn:oasis:names:tc:SPML:1:0#sequential”
execution="urn:oasis:names:tc:SPML:1:0#synchronous”
onError="urn:oasis:names:tc:SPML:1:0Q#exit">
<spml:modifyRequest requestID="mod-2">
<spml:identifier

type = "urn:oasis:names:tc:SPML:1:@#DN">

<spml:id>cn=standard class,cn=supplier groups,cn=groups,cn=Extranet
Portal,cn=TargetSystems,cn=my-company</spml:id>
</spml:identifier>
<spml:modifications>

<spml:modification name="dxrGroupMemberAdd" operation="delete">

<dsml:value>cn=YYYJimmy Sails

23e,ou=accounts,ou=extranet,o=sample-ts</dsml:value>

</spml:modification>

<spml:modification name="dxrGroupMemberAdd" operation="add">

<dsml:value>cn=XXXJimmy Sails

23e,ou=accounts,ou=extranet,o=sample-ts</dsml:value>

76

<dsml:value>cn=Jimmy Sails 23e,ou=accounts,ou=extranet,o=sample-
ts</dsml:value>
</spml:modification>
</spml:modifications>
</spml:modifyRequest>
</spml:batchRequest>

Rename/Move Functionality

If the operational attributes of the modify request contain the attribute dxrPrimaryKeyOld
the object in the LDAP system is renamed or moved from the position represented by the
DN value of dxrPrimaryKeyOld to the position of the DN value passed with the identifier. If
only the RDN part of the DNs are different it is a rename, if other parts of the DNs differ, for
example an OU, a move operation is performed.

Usually, the check for the last RDN (rename) is case insensitive. So, you are not able to
change, for example, the ou=RedFlag to ou=Redflag. If you want to enable such a rename
(case sensitive), you must provide the operational attribute caseExactRDNComparison
with the value true in your modify request. Here is a sample request (ou=RedFlag »
ou=Redflag):

<spml:modifyRequest requestID="mod-2">
<spml:identifier
type = "urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>ou=Redflag,cn=Custom,cn=BusinessObjects,cn=My-
Company</spml:id>
</spml:identifier>
<spml:operationalAttributes>
<spml:attr name="dxrPrimaryKeyOld">
<dsml:value
type="string" >ou=RedFlag, cn=Custom,cn=BusinessObjects,cn=My-
Company</dsml:value>
</spml:attr>
<spml:attr name="caseExactRDNComparison">
<dsml:value type="string">true</dsml:value>
</spml:attr>
</spml:operationalAttributes>
<spml:modifications>
<spml:modification name="description" operation="replace">
<dsml:value>erster modify</dsml:value>
</spml:modification>
</spml:modifications>

77

</spml:modifyRequest>

Single Modification Processing

If multiple values are to be deleted or added within a modification request - like in the
sample request above - and the request fails with one of the following LDAP error codes in
the situations previously described, the LDAP connector by default performs single
modifications for each value and then logs the values and operations that failed.

LDAP error codes and situations resulting in single modifications:

- ATTRIBUTE_OR_VALUE_EXISTS (add dn value or value that already exists in DirX; add
value that already exists in AD)

- NO_SUCH_ATTRIBUTE (delete dn value or value that does not exist in DirX; delete value
that does not exist in AD)

- ENTRY_ALREADY_EXISTS (add dn value that already exists in AD)
- UNWILLING_TO_PERFORM (delete dn value that does not exist in AD)

- NO_SUCH_OBJECT (add dn value for object that does not exists in AD)
This is the situation when members are tried to be added to a group in Active Directory,
but the member objects do not exist yet in the directory.

Single modification processing can be turned off with the connection section property
perform_single_mod. If not specified it is turned on. Since the ADS connector is derived
from the LDAP connector this property can also be specified in an ADS connector’s
connection section.

LDAP Relaxed Update Control

If an LDAP server supports the LDAP Relaxed Update Control - the DirX LDAP server
supports it since version 8.1B - the LDAP connector uses this control when performing
modifications. The LDAP server returns SUCCESS in the ATTRIBUTE_OR_VALUE_EXISTS or
NO_SUCH_ATTRIBUTE situations described above. In those cases, the LDAP connector no
longer performs the single modifications itself because a SUCCESS code is returned and
the LDAP server performs the operation. In all cases, one of the five error codes shown
above is returned. The LDAP connector performs single value modifications and logs the
failed values.

2.9.2.3. DeleteRequest

In a delete request, the identifier is also mandatory. Any type of object can be deleted. The
delete request does not require additional attributes.

2.9.2.4. SearchRequest

In an SPML search request, the LDAP connector supports the standard elements
searchBase and filter and the operational attributes scope, sizeLimit, pageSize,
pagedTimelLimit, sortAttribute, sortOrder and noattrs (if set to FALSE or not existing either
all attributes or the ones specified are retrieved).

78

Example request:

<?xml version="1.0" encoding="UTF-8" ?>

<spml:searchRequest

xmlns="urn:oasis:names:tc:SPML:1:0"

xmlns:spml="urn:oasis:names:tc:SPML:1:0"

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"

requestID="search_01"

>

<spml:searchBase type = "urn:oasis:names:tc:SPML:1:0#DN">

<spml:id>ou=Intranet,o=sample-ts</spml:id>

</spml:searchBase>
<spml:filter>

<dsml:present name="objectClass" />
</spml:filter>
<spml:operationalAttributes>

<dsml:attr name="scope">

<value>subtree</value>

</dsml:attr>

<dsml:attr name="sortAttribute">
<value>cn</value>

</dsml:attr>

<dsml:attr name="sortOrder">
<value>ASCENDING</value>

</dsml:attr>

<dsml:attr name="pageSize">
<value>0@</value>

</dsml:attr>

</spml:operationalAttributes>

<spml:attributes>

<dsml:attribute name="cn"/>

<dsml:attribute name="sn"/>

<dsml:
<dsml:
<dsml:
<dsml:
<dsml:
<dsml:
<dsml:

attribute
attribute
attribute
attribute
attribute
attribute
attribute

</spml:attributes>

</spml:searchRequest>

name="givenName"/>
name="company"/>
name="mail"/>
name="st"/>
name="street"/>
name="employeeNumber" />

name="telephoneNumber" />

79

2.9.3. Configuration

Here is a sample configuration snippet for the LDAP connector (without SSL connection):

<connector
role="connector"”
className="siemens.dxm.connector. ldap.LdapConnector”
name="Ldap Connector" version="1.00">
<connection type="LDAP"
user="CN=metatest,CN=Users,DC=mydomain,DC=mchp,DC=mycompany, DC=de"
password="XXXyyy###111"
server="myserver"
port="389"
ssl="false"
<property name="debugfile" value="dbgOut.xml"/>
<property name="perform_single_mod" value="true"/>
<property name="check_password_history" value="false"/>
<mvproperty name="binaryattributes”>
<value>customer LDAP attribute type 1</value>
<value>customer LDAP attribute type n</value>
</mvproperty>
</connection>

</connector>

2.9.3.1. Supported Connection Parameters

The LDAP connector supports the following properties from the standard properties of the
<connection> element of the XML configuration file:

port - the port number of the LDAP server.

server - the server name or IP address of the LDAP server.

user - the user name in DN form used for the connection.

password - the password for this user used for binding to the LDAP server.
ssl - whether (true) or not (false) to use server-side or client-side SSL/TLS.
For client-side SSL, the following additional parameters are available:
authentication="CLIENT_SSL"

keystore — the file name of the key store

keystorepassword - the password for accessing the key store

80

keystorealias - optionally an alias name of the relevant entry in the key store
truststore - the file name of the truststore

truststorepassword — the password for accessing the trust store
Non-standard supported properties are:

debudfile - (optional); if this property is configured, it outputs each received request and
response to this file in SPML format.

perform_single_mod - (optional) whether (true) or not (false) single modifications for multi-
value attributes in specific erroneous situations are performed. (See the section "Single
Modification Processing" for details.)

check_password_history - (optional) whether (true) or not (false) the connector checks
password history. If this property is configured and set to true, the LDAP connector first
checks whether the connected LDAP server supports the LDAPAdsPolicyHintsControl. If it
does, the LDAP connector uses this control on modify operations with the result that
password history is checked for both password reset operations and password change
operations.

binaryattributes - (optional); specifies a customer specific list of LDAP attribute types.

2.9.4. LDAP SSL Setup

This section describes LDAP SSL setup.

2.9.4.1. Setting up a Server-side SSL Connection to an LDAP Directory

Use the "keytool" of the Java Runtime Environment to import your certificate into the Cert
store.

To set up the SSL connection, see the section in "Core Component » Using LDAP » SSL/TLS"
in the online help (not available as PDF documentation).

2.9.4.2. Setting up a Client-side SSL Connection to an LDAP Directory

To set up client-side SSL, you must provide a (file based) keystore containing the client’s
certificate and private key and a (file-based) truststore containing the related CA
certificates.

2.9.4.3. Setting up an SSL Connection to the Active Directory Domain Controller (DC)

Note: setting up this connection is not a trivial task and requires knowledge of the
Microsoft Windows Active Directory. The following description contains some information
from the Microsoft documentation. If you encounter any problems, please refer to the latest
Microsoft documentation.

To establish the SSL connection:

81

2.9.4.3.1. 1. Install a Certificate Authority on your Windows domain controller

Get the Microsoft documentation about "How to Install/Uninstall a Public Key Certificate
Authority for Windows" and perform the steps described. Pay attention to the following
issues:

During installation:

- Choose to install an enterprise CA (not a stand-alone CA).

- In the Certificate Authority ldentifying Information window, you only need to enter the
CA Name field: enter the name of your server, either in fully-qualified form, like
kellner13.iam.mycompany.de, or just the first part, which is the server name short form.
This value acts as the CN part of the DN composed automatically by the tool and shown
in a field below. Check whether the composed DN contains the correct CN and DC parts
conforming to your environment. A certificate containing this name will be created
under a filename also containing this name.

- Check the shared folder field and then specify a shared folder under which all
configuration information for the CA is stored. Otherwise, all information - including
generated root CA certificate - will be stored in Active Directory.

Possible errors during installation:

- If the error message Provider could not perform the action since the context was
acquired as silent. 0x80090022 (-2146893790) is logged, the cause is the policy System
Cryptography: Force strong key protection for user keys stored on the computer
under Control Panel\Administrative Tools\Local Security Policy\Local
Policies\Security Options. If you change the default User must enter a password each
time they use a key to User input is not required when new keys are stored and used,
the installation runs successfully.

After installation:

- You will find the root CA certificate under the shared folder you specified. This certificate
is computer-related. You can copy it to any place in the network file system and import
it to the truststore that is used by your client application. With this certificate, your client
(in this case, the LDAP connector) can connect to this computer over SSL. If the client
wants to establish an SSL connection with another computer in the Windows domain,
this computer must be assigned another certificate, which must then also be imported
into your truststore. Certificates can be automatically assigned by setting a group policy
in Windows.

2.9.4.3.2. 2. Import the certificate into your truststore

This section first describes how to import the certificate for Java clients into a Java
truststore.

If you want to establish an SSL connection to the Active Directory Server with the C++-
based ADS Agent, you must import the certificate into the Windows certification store; for

example, with the Internet Explorer:

Menu Tools - Internet Options » Content » Certificates » Trusted Root Certification -

82

Authorities > Import

You must also set the UseEncryption flag in the AdsAdmin bind profile of your Ads
Connected Directory and you must specify the full qualified AD server name in the search
base for export or in the ADsPath for import.

For Java clients:

Import the root CA certificate created by the CA installation into the truststore used by the
LDAP connector (or your Java client) with the keytool.exe tool, which is part of the Java
Runtime Environment (JRE). The certificate is to be imported to:

- The truststore under the Java Development Kit (JDK) the LDAP connector runs with if it
runs in an Integrated Development Environment (IDE) like Eclipse. For example,
D:\java\lib\security\cacerts.

- The truststore in the directory dxi_java_home*/lib/security/cacerts* if it runs in the DirX
Identity environment under the Java-based Server.

Setting keytool command line parameters:

Depending on the environment the LDAP connector is supposed to run, change to the
directory containing the cacerts store and copy the certificate file (and keytool.exe if you
don't want to specify the complete pathname in the command line) to it. Then call the
keytool from the command prompt of the directory with the following parameters:

keytool -keystore storename -import -alias alias__name_ -file certfile_name

For example:

keytool -keystore cacerts -import -alias jupiter_cert -file
jupiter_certorg.crt.

You are prompted for the password of the cacerts store, which is by default changeit.

To list the certificates in the cacerts store, call:

keytool -keystore cacerts -list

before and after you import your certificate.

To delete an old certificate in the store, call:

keytool -keystore cacerts -delete -alias jupiter_cert

Setting SSL trace parameters:

83

Setting the following debug parameter in your javac command line:

-Djavax.net.debug=all

will trace detailed SSL errors and messages, which helps you determine the reason if the
SSL connection does not work. For example, the path of the key store in use is also traced,
SO you can see whether or not you imported the certificate into the right store.

Specifying a truststore:

If you explicitly specify a truststore in the javac command line, for example:

-Djavax.net.ssl.trustStore= D:\jdk\jre\lib\security\cacerts

this store is used.

2.9.5. Binary Attributes

To map binary attributes correctly between DirX Identity and a connected system
(including a file system) specify the ;binary suffix only for attributes that contain an ASN.1
prefix in their binary data. These are the attributes with either the schema syntax
Certificate, like the attribute userCertificate, or with the schema syntax CrossCertPair or
CRL or similar. For attributes containing only raw binary data - without an ASN.1 prefix -
which are those of schema syntax Octet String, specify the attribute name with the suffix
;raw in the mapping if it does not belong to the standard LDAP attribute schema. If it
belongs to the standard schema - for example jpegPhoto - a suffix is not required but does
not do any harm if specified. If you are not sure whether it belongs to the standard LDAP
schema, you should specify the jraw suffix. This is also true for Active Directory attributes
with raw binary data. Consequently, if Active Directory is part of the workflow, those
attributes - for example thumbnailPhoto - must also be specified with the jraw suffix
because the ADS connector is derived from the LDAP connector and inherits the
functionality that interprets the suffix. The suffix - if required - must always be specified in
both realtime mapping directions.

The LDAP connector knows the following (builtin) list of binary attributes:

"audio",
"authorityrevocationlist",
"cacertificate",
"certificaterevocationlist",
"consumerknowledge",
'crosscertificatepair”,
"deltarevocationlist",
"entryaci",

"jpegphoto”,
"mhsdeliverableclasses",
"mhsdlarchiveserv",

84

"mhsdimembers",
"mhsdlpolicy",
"mhsdlsubscriptionserv",
"mhsoraddreswithcapabilities",
"ntsecurityidentifier",
"ohoto",

"prescriptiveaci",
"owdhistory",
"queryoptimizerconfig",
"queryoptimizerstatistic",
"'subentryaci",
"'supportedalgs",
"usercertificate",
"userpassword",
"userpkcsl2",
"usersmimecertificate"

2.9.6. Non-Leaf Objects

The LDAP Connector supports the deletion of non-leaf objects. Even though non-leaf
objects are specific to Active Directory this feature is implemented in the LDAP Connector,
because it is realized through the LDAP control LDAPAdsDeleteSubtreeControl. The LDAP
connector manages all LDAP controls because any other LDAP Server can support them
too.

Non-leaf objects in Active Directory are no container objects, like OUs, but objects that are
usually expected to be leaf objects, like users. Nevertheless, sometimes these objects are
non-leaf objects because they have subentries in certain cases. For example, Active
Directory creates subentries for mailbox-enabled users in special situations. Those
subentries are only shown by the "Active Directory Users and Computers" tool if the "Users,
Contacts, Groups and Computers as containers" setting is checked in the View menu entry.

If such a non-leaf object is to be deleted the LDAP Connector - as parent class of the
instantiated ADS Connector class - automatically deletes this object with all its subentries.

2.9.7. LDAP Session Tracking

Session tracking was introduced to improve LDAP audit logging. For each LDAP operation,
it enables the user to identify the DirX Identity component, the directory user and the client
address of the computer where DirX Identity is running.

If your DirX Directory installation supports the LDAP session tracking control the various
DirX Identity components, like DirX ldentity Manager, Web Center, Policy Agent,
Provisioning or Request workflows and several more, extend the LDAP audit records with
some session tracking related items. The three most important items are:

- SID-Name, which contains the name of the invoking component,

- SID-Info, which contains the DN of the bind user, and

- SID-IP, which contains the IP address of the machine the component runs on.

85

The LDAP Connector supports session tracking the following way:

In the open method, the LDAP Connector checks if the property for the source component
name, also referred to as source application name, is passed in the context. The context
class consists of a lot of properties filled by the Connector framework in dependence on the
context the LDAP Connector is instantiated from.

If the source application name is set in the context, the LDAP Connector creates an LDAP
session tracking control (LDAPSessionldentifierControl) with the source application name,
the bind user DN and the computer name, and appends it to every subsequent LDAP
operation (open, add, modify, delete and search). If the DirX LDAP Server supports the
LDAP session tracking control it can be found afterwards inside the LDAP audit records.

For example, if a real-time provisioning workflow instantiated the LDAP Connector the
source application name has the following format:

DXI {JoinFromDXI | JoinToDXI} workflowlnstancelD workflowName,
for example DXI JoinFromDXI 1495c804a6e$-724d Ident_ADS_Realtime.

2.10. LDIF Connector

The LDIF connector implements the DirX Identity Java Connector Integration Framework's
DxmConnectorCore, DxmRequestor and DxmContext interfaces and writes and reads LDIF
files using the Netscape LDIF classes. Like all framework-based agents, it gets SPML
requests from the Identity side by the join engine as part of the workflow engine hosted by
the Java-based Server. It converts the SPML requests in order to read from and write to
LDIF files.

The LDIF connector provides the functionality to:
- Add any kind of object - especially user, account or group - to an LDIF content file.

- Perform searches on an LDIF content file to import the objects to Identity.

2.10.1. Overview

The connector implements the APl methods "add(...)" and "search(..)". They represent the
corresponding SPML requests "AddRequest" and "SearchRequest".

2.10.2. Limitations

It is not currently possible to read and write LDIF change files. Only LDIF content files are
supported.

2.10.3. Request and Response Handling

This section describes the supported requests and attributes for the LDIF connector.

86

2.10.3.1. AddRequest

In an add request, the identifier is mandatory. Any kind of object and attribute can be
passed in an add request to the LDIF connector, which writes it as LDIF content record to
the file name retrieved from the connector’s export_file property or if not specified there
from the framework context variable ts.*channelName.env.export_file* where
channelName is retrieved from the operational attributes of the AddRequest. The default
channel name is users. There might be other channels configured under the LDIF file
connected directory in order to read and write other objects than users to an LDIF file.

Example request:

<?xml version="1.0" encoding="UTF-8" ?>
<spml:batchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="batch-1"
processing="urn:oasis:names:tc:SPML:1:0#sequential”
execution="urn:oasis:names:tc:SPML:1:@#synchronous"”
onError="urn:oasis:names:tc:SPML:1:Q#exit">
<spml:addRequest requestID="add-1">
<spml:identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>cn=my class,cn=supplier groups,cn=groups,cn=Extranet
Portal,cn=TargetSystems,cn=my-company</spml:id>
</spml:identifier>
<spml:attributes>
<spml:attr name="objectclass"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>dxrTargetSystemGroup</dsml:value>
</spml:attr>
<spml:attr name="uniqueMember"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>cn=my-company</dsml:value>
</spml:attr>
<spml:attr name="dxrState"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>ENABLED</dsml:value>
</spml:attr>
</spml:attributes>
<spml:operationalAttributes>
<dsml:attr name="channelName">
<value>users</value>
</dsml:attr>

87

</spml:operationalAttributes>
</spml:addRequest>
</spml:batchRequest>

2.10.3.2. Search Request

In an SPML search request, the LDIF connector supports the elements searchBase and
filter and the operational attributes scope, pageSize, noattrs (if set to FALSE or not existing
all attributes are retrieved) and channelName.

The join engine sets the operational attribute channelName only in a Java server workflow
context. channelName is used to get the name of the source file for the SearchRequest if
no file name was specified in the LDIF connector’'s <connection> filename property. The file
name is then obtained from the framework context variable ts.*
channelName.env.import_file*.

If the join engine calls the LDIF connector’s search method in the context of a workflow
running from Identity to the connected system (export mode), the LDIF connector returns
an empty search result (if contentType is not specified or set to LDIF-CONTENT) to make
the join engine produce an AddRequest resulting in writing an LDIF content record.

If the LDIF connector is extended to be able to write LDIF change records, the connection
property contentType must be set to LDIF-CHANGE. This setting makes the LDIF
connector return the search result based on the specified import file to the join engine. The
join engine then - as usual - calculates the changes compared to the original modify
requests and passes the modify requests containing only the changes to the LDIF
connector, which writes them as LDIF change records to the specified export file.

Example request:

<?xml version="1.0" encoding="UTF-8" ?>
<spml:searchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"”
requestID="search_01"
>
<spml:searchBase type = "urn:oasis:names:tc:SPML:1:@#DN">
<spml:id>cn=users,cn=My-Company</spml:id>
</spml:searchBase>
<spml:filter>
<dsml:and>
<dsml:equalityMatch name="ou">
<dsml:value>Sales</dsml:value>
</dsml:equalityMatch>
<dsml:not>

88

<dsml:present name="assistant" />
</dsml:not>
</dsml:and>
</spml:filter>

<spml:operationalAttributes>
<dsml:attr name="scope">
<value>subtree</value>
</dsml:attr>
<dsml:attr name="pageSize">
<value>0@</value>
</dsml:attr>
<dsml:attr name="channelName">
<value>users</value>
</dsml:attr>
</spml:operationalAttributes>
<spml:attributes>
</spml:attributes>

</spml:searchRequest>

2.10.4. Configuration

Here is a sample configuration snippet for the LDIF connector:

<connector
role="connector"”
className=" siemens.dxm.connector.framework.ldif.LdifConnector "
name="LDIF Connector" version="1.00">
<connection type="file"
filename="1importl.ldif, import2.1ldif, import3.1ldif"
<property name="binaryAttributes" value="dxmMgrlayout,
dxmContent,dxmCompiled" />
<property name=" export_file" value="export.ldif"/>
<property name="contentType" value="LDIF-CONTENT"/>
<property name="namingAttribute" value=""/>
</connection>

</connector>

2.10.4.1. Supported Connection Parameters

The following standard properties of the XML configuration file's <connection> element are

89

supported:

filename - (optional); one or more comma-separated filenames used as the source file for
the search request (import file). The wildcards * and ? are supported. For example,
import.Idif* specifies any file beginning with import and ending with .Idif and import?2.Idif
specifies any file beginning with import followed by the character 0 or 1and ending with
JAdif. In a Java-based workflow context, the framework context variable ts.*
channelName.env.import_file* specifies the import file name if filename property is not
specified.

Non-standard supported properties include:

binaryAttributes - (optional); if configured, binaryAttributes handles the specified
attributes as binary ones regarding the correct setting of the appropriate SPML request
attribute types.

export_file - (optional); the name of the file the LDIF records are written to. If not specified,
in a Java server export workflow context the framework context variable ts.*
channelName.env.export_file* specifies the file name.

contentType - (optional); The default is LDIF-CONTENT. LDIF-CHANGE is not yet supported.

namingAttribute - (optional); only relevant for add request handling. If the naming
attribute is specified and if the Identifier of the add request is not of type DN (usually the
type is DN, which is also the default), but of type OID, the DN value written to the LDIF file is
built up by namingAttribute_value + RDN_of_Identifier.

2.11. IBM Notes Connector

The IBM Notes connector is a C-based connector that runs in the C-based Server. It handles
search and update requests (SPML V1) and therefore is able to export entries from an IBM
Notes address book or to import entries into the Notes address book.

For details of the OASIS SPML Service Provisioning Markup Language see http://www.oasis-
open.org/committees/provision/docs.

2.11.1. Overview

In DirX Identity, the Java-based Server hosts the Java components, especially the workflow
engine that includes the join engine. The join engine issues the search and update requests
via the configured connectors: the LDAP connector to the Identity Store and the SOAP
connector for requests to the IBM Notes connector. The SOAP connector sends SPML
requests to the SPML/SOAP listener of the C++-based Server, which passes them to the
Notes connector. Finally, the Notes connector interacts with the Notes server.

The Notes connector has the responsibility to:

- Create (and update) a "Person" document in the Notes address book.
- Register a user if the dxmLNregisterUser attribute is set.

- Request a Rename at the Notes server if one of the relevant user attributes has

90

http://www.oasis-open.org/committees/provision/docs
http://www.oasis-open.org/committees/provision/docs

changed: first name, last name, middle initial, unique organizational unit.

- Request a MovelnHierarchy operation if the target certifier of the user has been
changed.

- Put the user into an appropriate deny group if the user is to be disabled and remove it
from the deny group otherwise. The connector must consider that deny groups are
limited in size and create a new one if the existing ones reach the limit.

- Indicate that the user is disabled if it is a member of a deny group. As part of a search
result entry, the attribute dxrTSstate is set to DISABLED, if the entry is member of a
deny group; otherwise dxrTSstate is set to ENABLED.

- Create (and update) a “Group” document in the Notes address book.

This functionality is partly provided offline by adminp. The following Notes API calls are
used:

- Renaming a user:
ADMINRegRename

- Moving a person:
ADMINRegMoveUserlnHier and
ADMINRegMoveComplete

- Deleting a person:
ADMINRegDeleteInNAB

- Registering a person:
REGNewUser (sets the flag fREGCreateMailFileUsingAdminp if the parameter
CreateMailDBNow is set)

The following sections describe the functionality provided by the Notes connector in
details.

2.11.2. Prerequisites and Limitations

The Notes connector supports only IBM Notes server and client versions 7.03 or higher.
Earlier versions are no longer supported. Use of additional functionality of the Notes APIs
enforces this restriction.

The Notes connector requires the following software packages to be installed on the
platform where the C++-based Server is running:

IBM Notes Client VV7.03 (or higher)
The operation of the Notes connector is restricted by these limitations:

- Attribute names are handled as CaseExactStrings.
- Search limitations:

- If the SPML identifier (representing the universal IDs) is present, the search filter is
ignored.

- If any other search base format is present, it must define the type of document to be

91

searched for; for example, Type=Person or Type=Group.
- In filters, only matching for equality is supported for attribute values.
- NOT filters are not supported.

- UniqueOrgUnit
The unique organizational unit attribute value that could be part of a person’s full name
cannot be searched for. As a result, the Notes connector stores the value of the unique
organizational unit in a configurable attribute and uses that value, if available, when
searching a person document. (See the sections about configuration for details.)

- Rename and MovelnHierarchy:
If the parameters of an update operation both result in a Rename and a
MovelnHierarchy operation, then only the Rename operation is propagated to the
Notes server. The MovelnHierarchy operation is only executed in the next update
operation if no pending request is present (which is only detected if the Notes real-time
workflow is used). The connector itself has no knowledge whether there is a pending
rename operation.

- Item Types
The Notes attributes that are supported by the Notes connector must have one of the

following item types:
- TEXT
- TEXT_LIST
- NUMBER
- TIME

Other Notes item types (for example, RICH_TEXT) that are not listed above are not
supported.

2.11.3. Static Configuration Parameters

Static configuration parameters for the Notes connector are included with the "INI
Template" definition that can be viewed in the DirX Identity Manager (Connectivity view)
below the object:

Connectivity Configuration data » Configuration » Connector Types » Notes
The connector reads this information only once during the C++-based Server startup.

The Notes connector uses the following configuration information:

2.11.3.1. Connected Directory

AdminReqgDB

The Admin Request Database field specifies the name of the Notes Administration
Process (adminp) request database that is used when deleting persons.

Example:

AdminReqDB=admin4.nsf

92

AdminRegAuthor

The Admin Request Author field specifies the author name of the Notes Administration
Process (adminp) request database that is used when deleting persons.

Example:

AdminReqAuthor=FulilName_of_administrator
AdminReqAuthor=CN=administrator/0=My-Company

AdrBook
The Address Book field specifies the name of the Notes address book.

Example:
AdrBook=names.nsf

GroupMemberLimit

The Group Member Limit field specifies the maximum number of members in a group.
When that limit is reached, another group is created and the group name of that group
is stored in previous group (nested groups).

UniqueOrgUnitAttrType

IBM Notes doesn’t return the UniqueOrgUnit attribute when searching with that
attribute set. As a result, the Notes connector stores the UniqueOrgUnit in an additional
configurable attribute UniqueOrgUnitAttrType that can be used for searching.

Example:

UniqueOrgUnitAttrType=telexTerminalldentifier

2.1.3.2. Services

Server

The Server Name field specifies the name of the Notes server in the format:
CN=server_name/O=organization_namel/..]

Make sure that the attribute types in the server name (for example, CN, O, OU) are
defined with uppercase letters.

Example:
CN=my-server/0O=my-organization
2.11.3.3. Bind Profile
At least two bind profiles are required:

- A bind profile for the administrator who has the right to add, delete, modify or move
persons and groups

93

- A bind profile that represents an organization or organizational unit - for example,
cert.id - and is used when

- registering a user
- moving a person

- renaming a person
within that organization or organizational unit.

Furthermore, if a MovelnHierarchy operation is called (when Notes users are moved to a
different organization or organizational unit), additional bind profiles for each organization
or organizational unit are required.

The following fields of the bind profile are used:

User

The User field specifies the full pathname of the ID file. This file must be accessible on
the machine where the C++-based Server (hosting the Notes connector) is running.
Make sure that the pathname matches the pathname that is passed in the connector
update requests in the attributes "PathFileCertld" or "PathFileTargetCertld". (Be aware
that for Notes real-time workflows, these attributes are set using the values of the Notes
profiles in the Notes target system tree. So the pathnames in the bind profiles must
match the pathnames that are used in the Notes profiles.)

Password
The Password field specifies the password that is related to the ID file.

2.11.3.4. Dynamic Configuration Parameters

The Notes connector evaluates all of the attributes that are sent in the each SPML request.
A subset of attributes is set in the organizational unit-specific Notes profiles that are
defined in each target system instance.

The available attributes from the Notes profile objects are:

Control Parameters:
CreateldFile
CreateMailDatabase
CreateMailDBNow

CreateMailFullTextIndex

CreateMailReplicas
CreateNorthAmericanld
SaveldInAddressBook
SaveldInFile
SavelnternetPassword
DeleteMailFile

Other Attributes:
CertifierStructure (will be passed as TargetCerfier to the Notes connector)

94

ClientType
DbQuotaSizeLimit
DbQuotaWarningThreshold

DefaultMailServer (will normally be mapped to the attribute MailServer

LocalAdmin
MailACLManager
MailForwardAddress
MailOwnerAccess

MailServer
MailSystem
MailTemplate
MinPasswordLength

OtherMailServers
PathFileCertld
PathFileCertLog
PathUserld
RegistrationServer
Validity

The Notes connector does not know where these attributes originate
because it simply processes the attribute that is passed to it in the SPML
request. It is listed here to identify more details about Notes real-time
workflows, Notes configuration data and finally the Notes connector.

0 If you are not using the Notes real-time workflows provided with DirX
Identity, make sure that these attributes are passed in the SPML request, if
needed.

Be aware, too, that the attribute names are handled as CaseExactStrings.

2.11.4. Attributes at IBM Notes

The following list of attributes is relevant at the target system (IBM Notes) side. Customer
projects can synchronize additional attributes provided that the Notes documents in the
IBM Notes address book can hold these new attribute types.

ClientType

The ClientType field specifies the type of Notes client that the Notes connector is to
associate with the registered users it creates during the import process. The syntax is:

ClientType=number
where number is one of the following values:

- 1- create registered users of client type "desktop"

- 2 - create registered users of client type "complete"

95

- 3 - create registered users of client type "mail"

The client types correspond to the different kinds of licenses available for Notes clients.

ComputeWithFormignoreErrors

The ComputeWithFormignoreErrors field specifies the way in which the Notes-API
“ComputeWithForm” is called before the Notes document is saved.
(“ComputeWithForm” calculates computed fields and evaluates validation formulas
defined in the form used by the Notes document.)

The syntax is:
ComputeWithFormlgnoreErrors=switch
where switch is one of the following values:

- 0 - if you want the function to stop at the first error
- 1-if you do not want the function to stop executing if a validation error occurs
If absent, the Notes-AP| “ComputeWithForm” is not called. This default behavior is

compatible with older versions of DirX Identity where this parameter is not
configurable.

CreateldFile

The CreateldFile field controls whether or not Notes connector creates a user ID file for
Notes users that it registers during the import process. The syntax is:

CreateldFile=switch
where switch is one of the following values:

- 0 - register Notes users, but do not create a user ID file for them
- 1-register Notes users and create a user |ID file for them

If CreatelDFile is set to 1, either the SaveldlnAddressBook field or the SaveldInFile field
(or both) must be set to 1to specify where the Notes connector is to store the user ID
files it creates.

CreateMailDatabase

The CreateMailDatabase field controls whether or not the Notes connector creates user
mailboxes for Notes users that it registers. The syntax is:

CreateMailDatabase=switch
where switch is one of the following values:

- 0 - do not create a mailbox
- 1-create a mailbox

CreateMailDBNow
The CreateMailDBNow field controls whether or not the mail file is created during the

96

registration. The syntax is:
CreateMailDBNow =number
where number is one of the following values:

- 0 - create mail file later with the administration process
- 1- create mail file during the registration

CreateMailFullTextIndex

The CreateMailFullTextlndex field controls whether or not a full-text index is created
when creating the mailbox. The syntax is:

CreateMailFullTextindex=number
where number is one of the following values:

- 0 - do not create mail full-text index
- 1- create mail full-text index

If absent, the mail full-text index is created. (This default behavior is compatible with
older versions of DirX Identity where this parameter is not configurable.)

CreateMailReplicas

The CreateMailReplicas field controls whether or not the mail replicas should be created
with the administration process. The syntax is:

CreateMailReplicas=number
where number is one of the following values:

- 0 - do not create mail replicas
- 1- create mail replicas with the administration process

If absent, no mail replicas are created. This default operation is compatible with older
versions of DirX Identity where this parameter is not configurable.

CreateNorthAmericanld

The CreateNorthAmericanld field controls whether or not the Notes connector creates
United States security-encrypted User ID files when registering a new user. The syntax is:

CreateNorthAmericanld=switch
where switch is one of the following values:

- 0 - do not create U.S.-encrypted user ID files
- 1-create U.S.-encrypted user ID files

If CreateNorthAmericanld is set to 1, the Notes registered user can only be used within
the United States.

97

DbQuotaSizeLimit

The DbQuotaSizeLimit field is only used when registering a new user and specifies the
size limit of user’'s mail database. The syntax is:

DbQuotaSizeLimit =number
where number is the size in MB.

DbQuotaWarningThreshold

The DbQuotaWarningThreshold field is only used when registering a new user and
specifies the size of a user’'s mail database at which point a warning about the size of the
database is generated. The syntax is:

DbQuotaWarningThreshold =number

where number is the size in MB.

DeleteMailFile

The DeleteMailFile field controls the way the mail files of a person are handled when the
person is deleted. The syntax is:

DeleteMailFile=switch

where switch is one of the following values:

- 0 - don't delete mail file
- 1- delete the mail file specified in the person record

- 2 - delete mail file specified in person record and all replicas

dxmLNregisterUser

The dxmLNregisterUser field controls whether or not the Notes connector registers a
user. The syntax is:

dxmLNregisterUser=switch
where switch is one of the following values:

- 0 - do not register Notes users

- 1- register Notes users

InternetAddress

98

The InternetAddress field is only used when registering a new user and specifies the
internet mail address of the user. The syntax is:

InternetAddress=address

Example:

InternetAddress=john@x.com

mailto:john@x.com

MailACLManager

The MailACLManager field is only used when registering a new user and specifies the
manager name of the access control list of the mail file. The syntax is:

MailACLManager=name
where name is the manager name in canonical format. For example:
MailACLManager=CN=Administrator/0=MyCompany

MailFile
The MailFile field is used when registering a new user or when deleting a user with its
mail file. It specifies the mail file name including the path relative to the Notes data
directory.
Example:

MailFile=mail/tom.nsf

MailForwardAddress

The MailForwardAddress field is only used when registering a new user and specifies
the forwarding address of a Domino domain or foreign mail gateway. The syntax is:

MailForwardAddress=name of the forwarding address

MailOwnerAccess

The MailOwnerAccess field is only used when registering a new user and specifies the
mail owner's ACL privileges. The syntax is:

MailOwnerAccess =number
where number is one of the following values:

- 0 - Manager (default)
- 1- Designer
- 2 - Editor

MailServer

The MailServer field specifies the name of a Notes server on which the Notes connector
is to create user mailboxes during the user registration process. Furthermore it's used
when deleting a user and its mail must be deleted, too. The syntax is:

MailServer=server_name

where server_name is the name of a Notes server in the format:
"CN=server_name/O=organization_name]/..]"

For example:

MailServer="CN=Cambridge4/0=Notes/0=IBM"

99

MailSystem

The MailSystem field is only used when registering a new user and specifies the type of
the mail system. The syntax is:

MailSystem=number
where number is one of the following values:

- 0 - NOTES (default)

- 1- CCMAIL

- 2-VINMAIL

- 99 - NONE
MailTemplate

The MailTemplate field is only used when registering a new user and specifies the name
of the mail template database. The syntax is:

MailTemplate =name of the template database
Example:
MailTemplate=mail7.ntf

MinPasswordLength

The MinPasswordLength field is only used when registering a new user and specifies
the minimum number of characters that a user password must have. The syntax is:

MinPasswordLength=number

For example:

MinPasswordLength=5

The Notes connector sets the specified value as an attribute of the registered user entry.
If the value is set to O the SaveldlnAddressBook field also must be set to O.

PathFileCertid

The PathFileCertld field specifies the pathname to the certificate ID file cert.id, which is
a binary file that is supplied with the Notes Server installation software. This file contains
the certificate that grants the Notes connector the right to create registered users. The
syntax is:

PathFileCertld=pathname
where pathname is the pathname to the certificate ID file. For example:
PathFileCertId=a:\cert.id

This is a required field if the update operation is to process a RenameUser request or if

100

the dxmLNregisterUser field is set to TRUE.

This is a required field that must specify the pathname to the certificate ID file of the
source organizational unit if the update operation is to process the MoveUserInHier
operation.

PathFileCertLog

The PathFileCertLog field specifies the pathname to the certifier logging file certlog.nsf
on the server. This file contains the certifier logging entries of the registered users. The
syntax is:

PathFileCertLog=pathname
where pathname is the pathname to the certifier logging file. For example:
PathFileCertLog=d:\lotus\domino\data\certlog.nsf

This is a required field if the dxmLNregisterUser field is set to TRUE or if the update
operation is to process a RenameUser or a MoveUserlnHier request.

PathFileTargetCertld

The PathFileTargetCertld field specifies the pathname to the certificate ID file of a
target organizational unit. The file contains the certificate that grants the Notes
connector the right to create registered users for the organizational unit. The syntax is:

PathFileTargetCertld=pathname
where pathname is the pathname to the certificate ID file. For example:
PathFileTargetCertId=a:\German.id

This is a required field if the update operation is to process a MoveUserlnHier operation.

PathUserld

The PathUserld field specifies the directory in which the Notes connector is to store
Notes user IDs created during the user registration process. The syntax is:

PathUserld=directory
where directory is a directory pathname. For example:

PathUserId=e:\notes\data

Notes User IDs are binary user certificate files that the Notes connector creates during
the registration process if CreateldFile is set to 1. The Notes connector writes these user
ID files to the directory specified in the PathUserld field if SaveldInFile field is set to 1.

RegistrationServer

The RegistrationServer field specifies the name of the Notes registration server that is to
register the users in the Notes server address book. The syntax is:

101

RegistrationServer=server_name

where server_name is a the name of a Notes server in the format:
"CN=server_name/O=organization_name]/..]"

For example:

RegistrationServer="CN=Cambridge3/0=Notes/0=IBM"

SaveldinAddressBook

The SaveldIinAddressBook field controls whether or not the Notes connector saves the
user ID files it creates as attachments of the Notes entries for the registered users. The
syntax is:

SaveldinAddressBook=switch
where switch is one of the following values:

- 0 - do not save user ID files as attachments of the Notes entries for the registered
users

- 1-save user ID files as attachments of the Notes entries for the registered users in
the Notes address book

If SaveldinAddressBook is set to 1, the Notes connector creates the user ID file and
stores it as an attachment of the corresponding Person entry for the registered user.
If SaveldlnAddressBook is set to 1, the registered user must have got a password.

SaveldInFile

The SaveldinFile field is only used when registering a new user and controls whether or
not the Notes connector saves the user ID files it creates in individual files. The syntax is:

SaveldinFile=switch
where switch is one of the following values:

- 0 -do not save user ID files in individual files

- 1-save user ID files in individual files

If SaveldInFile is set to 1, the Notes connector creates the user ID files and stores
them in the directory specified in the PathUserld field.

SavelnternetPassword

102

The SavelnternetPassword field is only used when registering a new user and controls
whether or not the Notes connector saves the user ID password also for use as an
Internet password. The syntax is:

SavelnternetPassword=switch

where switch is one of the following values:

- 0 - do not save user ID password also as Internet password

- 1-save user ID password also as Internet password

If SavelnternetPassword is set to 1, the Notes connector saves the user ID password
also in the field for the Internet password.

TargetCertifier

The TargetCertifier field specifies the name of the new location when is user is moved..
The syntax is:

TargetCertifier=name

where name is a the name of a Notes entity in the format:
"OU=organizational unit name/O=/organization_namel/..]"
For example:

TargetCertifier=/0U=sales/0=my-company

Type
The Type field specifies the Notes document type to be extracted from the Notes
address book (on Export) or to be created in the Notes address book (on Import). The
syntax is:

Type=document_type

where document_type is a Notes document type.
Example:

Type=Person

or

Type=Group

UserldFile

The UserldFile field is only used when registering a new user and specifies the name of a
Notes ID file of a a user. The syntax is:

UserldFile=filename

where filename is the name of the user ID file.
Example:

UserldFile=tom.id

Validity

The Validity field defines the lifetime of a certificate in GeneralizedTime syntax. The

103

syntax is as follows:
Validity=YYYYMMDDhhmmssZ
Example:
Validity=20101230150000Z

Other important attributes

There are many other attributes available in the Notes address book. The important ones
include:

User attributes:

FirstName
LastName
Middlelnitial
UniqueOrgUnit
FullName

ShortName
Group attributes:
ListName

All of these attributes are string attributes and define the name of the group or (for user)
the combination of FirstName, LastName, Middlelntitial and UniqueOrgUnit define the
user object.

2.11.5. Attributes at Identity Store

The following list of attributes is relevant at the Identity Store side.

dxmLNregistereUser
The attribute dxmLNregisterUser is a Boolean attribute and indicates whether a person
should be registered in Notes. If set to FALSE, only a Notes document is created in the
Notes address book.

dxmLNuserRegistered
The attribute dxmLNuserRegistered is a Boolean attribute and indicates whether the
account has been registered in the Notes server. The attribute is set to TRUE, if the
FullName is present in Notes.

dxmLNuserinAddressBook

The attribute dxmLNuserinAddressBook is a Boolean attribute and indicates whether or
not the Type attribute in the Notes server is set to Person or not.
dxmLNuserinAddressBook is set to TRUE, if TYPE=Person; it is set to FALSE, if type is set
to InactivePerson. (Type=InactivePerson is set to make the user invisible for the Notes

104

Client).

2.11.6. Feature Details

This section describes Notes connector feature details.

2.11.6.1. General Aspects

This section describes general features of the Notes connector.

2.11.6.1.1. SPMLV1 Identifier
The SPML identifier is mandatory for the following operations:

DeleteRequest

ModifyRequest
It is optional for the following operations:

AddRequest

SearchRequest

When present, it is normally set up as type=value list of the Notes universal IDs. The format
is as follows (for example, as part of a Modify request):

<spml:identifier type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>UniversalIDPartl=<idl>,UniversalIDPart2=<id2>,

UniversalIDPart3=<1d3>,UniversalIDPart4=<id4>
</spml:id>

</spml:identifier>

If absent, then the SPML identifier should be set as follows:

<spml:identifier type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id/>

</spml:identifier>

If search requests, the Identifier could also by set using the Notes Type attribute, for
example

<spml:searchBase type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>Type=Person</spml:id>
</spml:identifier>

105

2.11.6.1.2. Deny Groups

If a user is disabled in the Identity Store, the user is put into one of the deny groups that are
available in the Notes system. In the SPML update operations, the attribute “dxrTSstate”
must be passed with the value set to “DISABLED". The Notes connector will check all the
deny groups and will put the user into one of them if not yet present there. If during an
SMPL update operation the value “dxrTSstate=ENABLED" is passed, then the user is
dropped from the deny groups. When putting users in the deny group, the Notes
connector guarantees that a new deny group is created when the existing ones have
reached their capacity limits.

When Notes users are returned in a search result, the attribute “dxrTSstate” is set according
to the presence of the users in the deny groups; the value is set to ENABLED if the user is
not present in one of the deny groups; otherwise, the value is set to DISABLED.

2.11.6.1.3. Register User

A user will be registered if the dxmLNregisterUser attribute comes along in an ADD or
MODIFY request and the Type attribute of a new object (for ADD) or of an existing object
(for MODIFY) is PERSON.

The user registration enforces a unique short name; that's not required by Notes itself, it's a
requirement of the Notes connector.

For registering the user, the following attributes are evaluated:

ClientType

CreateldFile
CreateMailDatabase
CreateMailDbNow
CreateNorthAmericanld
FirstName

IdFile (composed of “PathUserld\UserldFile")
InternetAddress
LastName

Middlelnitial
SaveldInFile
SaveldInAddressBook
SavelnternetPassword
ShortName
SMTPHostDomain

UnigqueOrgUnit (derived from the configurable attribute type)

If a mail database should be created, then these attributes are required, too:

106

DvQuotaSizeLimit
DbQuotaWarningThreshold
MailACLManager

MailFile
MailForwardAddress
MailOwnerAccess
MailServer

MailSystem

MailTemplate

2.11.6.2. Add Request

The Notes connector first checks whether a Notes document is already present in the
Notes address book. Therefore for objects of Type=Group, it uses the ListName for
retrieving the object, for objects of Type=Person or Type=InactivePerson, it uses
FirstName, LastName, Middlelnitial and UniqueOrgUnit. If UniqueOrgUnit is present, it
uses the attribute specified in UniqueOrgUnitAttr because the attribute UniqueOrgUnit is
not searchable in Notes address book.

If no such document is found, then the document is created.

If the attribute dxmLNregisterUser is set to TRUE, the user will be registered. For details,
see the section “Register User”.

If the attribute dxrTSstate is DISABLED, then the user is put into the Deny groups.

2.11.6.3. Add Response

The add response will return the SPML identifier of the new object. It will also return the
FullName of the new object, if the user was registered before. If available, it will also return
the ShortName of the user.

2.11.6.4. Delete Request

A user will be deleted if the TYPE attribute of the existing user is Person and the user had
been registered before. When deleting the user, the DeleteMailFile attribute (in the
OperationalAttributes section of the SPML Modify request) provides information whether or
not to delete the user’'s mail database.

If the object is not a registered used, then the Notes document will simply be deleted from
the Notes address book.

2.11.6.5. Delete Response

There is no specific information available in the delete response. It either return success or
provides the error message.

107

2.11.6.6. Modify Request

If the object exists in the Notes address book, then the attributes in the Notes document
are updated.

If the attribute dxmLNregisterUser is present in the attribute list and the value is set to
TRUE, then the user will be registered (if not yet registered). For details, see section
“Register User” above.

A user will be renamed if the Type attribute of the existing user is Person and one of the
following attribute changes in a MODIFY request:

FirstName

LastName

Middlelnitial

UniqueOrgUnit
Keep in mind that the UniqueOrgUnit attribute is not retrievable. Therefore the Notes

connector uses the value from the configurable attribute that is defined in
UniqueOrgUnitAttrType.

A user will be moved if the Type attribute of the existing user is Person and the attribute
PathFileTargetCertld is present and is different from PathFileCertld and the user has not
been renamed before. If the user has been renamed, then moving the person is rejected
until the user was successfully renamed. It's the responsibility of the client to send another
MODIFY request later on in order to move the person.

2.11.6.7. Modify Response

If available, the modify response will return the FullName and the ShortName of the object.

2.11.6.8. Search Request

For details on search base, see the section “SPMLvV1 Identifier”.

Apart from the search base, an SPML filter can be provided. For limitations on search filters,
see the section “Prerequisites and Limitations”.

2.11.6.9. Search Response

The Notes connector will search the relevant objects. It also checks, for every object,
whether it is present in one of the Deny groups. If present, it returns the attribute
dxrTSstate with the value DISABLED; otherwise ENABLED.

2.12. Microsoft 365 Connector

The Java-based Microsoft 365 connector runs inside the Identity Java Connector Integration
Framework. It communicates using the Microsoft Graph APl on the common URL
https://graph.microsoft.com via common HTTP protocol. The operations are authorized by a
dedicated OAuth server available on the common URL

108

https://graph.microsoft.com

https://login.microsoftonline.com/Tenant/D/oauth2/token.

The connector is implemented in the class Office365Connector in the package
net.atos.dirx.dxi.connector.azure.

The connector implements the common methods for the DirX Identity Connector API: add,
modify, delete, and search.

The operations are simply converted to the Graph API requests. The corresponding
responses are again translated to SPMLv] responses.

The Microsoft Graph APl is a Representational State Transfer (REST)-ful service comprised of
endpoints that are accessed using standard HTTP requests. The connector uses JavaScript
Object Notation (JSON) content types for requests and responses.

The connector communicates using SSL/TLS only.

2.12.1. Prerequisites

The connector is based on Microsoft Graph API version 1.0. The connector functionality is
limited by the functionality of the Graph API version in use. The functionality with other
Graph API versions cannot be guaranteed.

The connector appends a JISON Web Token (JWT) in the Authorization header of the
request. This token is acquired by making a request to the OAuth endpoint and providing
valid credentials. The connector supports the use of the OAuth 2.0 service only using a valid
symmetric key (Application Secret).

The connector supports common Microsoft 365 user objects (commmon attributes and
navigation properties memberOf and manager), Microsoft 365 group objects (common
attributes only), Microsoft 365 role objects (common attributes only) and Microsoft 365
subscribedSku objects (commmon attributes).

The user navigation properties memberOf and manager can be written or read only as
common objectld values (for example, 0ab8ac77-b07a-46ce-a3f6-42a03c5bed6b).

The connector can handle only one valid license for Microsoft 365 (subscribed sku).

The connector does not support nested group assignment. Nested group assignments
cannot be read or written.

2.12.2. Configuration

The connector receives its configuration from the Connector Framework in a format that is
specified there and reflects an XML document. Note that DirX Identity Manager presents
configuration options in a more convenient way. For example, bind credentials and service
addresses are typically collected from appropriate LDAP entries found by selecting the
appropriate connected directory and bind profile.

This section discusses the configuration options based on the XML format. These options
are either specified attributes in the XML schema of the element <connection> (referred to

109

https://login.microsoftonline.com/

as standard properties) or specified as <property> subelements of the <connection>
element (referred to as non-standard properties).

The connector evaluates the following standard properties:

server: required. This property provides information about the host name or IP address of
the Graph APl endpoint. An example is graph.microsoft.com.

ssl: required. This value enables SSL/TLS authentication of a Graph API server and secures
the communication line.

user: required. This property is the Application ID that identifies DirX Identity as a Graph API
client. This ID is also bound to the Application Secret used as a password and is used for
OAuth service. An example is 76¢c6e05b-d989-43a9-ab30-6f6a9a765c71.

password: required. The password is used as a symmmetric key for communication between
the Microsoft 365 connector and an OAuth service. An example is
6n2VHFRrylyXiryCelROtAEIBeiKhhtpwBiX/vp9yOO0-=.

type: required. This is the Directory Type, for example, Microsoft 365.

The Microsoft 365 connector evaluates the following non-standard properties beneath the
<connection> element:

authEndpoint: required. This property is the full URL of the OAuth service. The URL format
is https://OAuthServer/TenantID/OAuthPath. An example value is
https://login.microsoftonline.com/10ff036f-b6ae-462d-82cb-a7cad3b876c3/oauth2/token.

path: required. This property provides the path to the latest Graph API Version and is also
used for building endpoint URL. Use only valid values in the correct format. The default
value is v1.0. An example is https://graph.microsoft.com/v1.0/groups.

proxyHost: optional. This property provides information about the host name or IP address
of the HTTP proxy server. Do not use authenticated proxy servers. If the access to the proxy
server requires authentication, deploy another local transparent proxy server that can
access the authenticated one. Use only the local proxy server instead.

proxyPort: optional. This property provides information about the port number of the HTTP
proxy server. Do not use authenticated proxy servers. See the description for proxyHost for
more details.

Here is a sample configuration using some of the properties described here:

<connector
className="net.atos.dirx.dxi.connector.azure.Office365Connector"”
name="TS" role="connector">

<connection
password="ZEbMo@QUh/7tbYwUb89HUZObLNHABcJOELNHfUgsmQCo="
server="graph.microsoft.com" ssl="TRUE" type="Office 365"

110

https://login.microsoftonline.com/10ff036f-b6ae-462d-82cb-a7cad3b876c3/oauth2/token
https://graph.microsoft.com/v1.0/groups

user="def623cc-bac4-41ab-88ca-bea388941262" >

<property name="proxyHost" value="proxy-emea.my-it-
solutions.net"/>

<property name="proxyPort" value="84"/>

<property name="authEndpoint"
value="https://login.microsoftonline.com/10ff@36f-b6ae-462d-82cb-
a7cad3b876c3/oauth2/token" >

</property>

<property name="path" value="v1.0"/>

</connection>

</connector>

2.12.3. Creating Azure AD Groups

The following Microsoft Azure AD groups can be created/managed via the Microsoft365
connector using the Microsoft Graph API:

- Microsoft 365 groups (Public, Private, HiddenMembership)

- Security groups
For more information about these groups, see the document:

https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?view=graph-rest-
1.0

You can use DirX I[dentity Manager to create these groups on Microsoft Azure AD. For
example:

m

https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?view=graph-rest-1.0

i ALO365Grp

General Office 365 Approval Certification Operational Permission Parameters Permissions

PrimaryKey (ID in TS): | gr:b23f9326-2066-4fbc-a738-9bf7fbagob56

Display Name: A10365Grp

Mail Nickname: A10365Grp

Group Type: Microsoft 365 - Public (Default)
Security

Microsoft 365 - Public (Default)
Microsoft 365 - Private

Microsoft 365 - HiddenMembership

Figure 2. Creating a Group in DirX Identity Manager
Note the following limitations:

- Group Type cannot be changed after group creation.

- Do not change Group Type on imported groups in edit mode.

Mail-enabled security groups and distribution lists can’t be created through the Microsoft
Graph API. Microsoft recommends migrating them to Microsoft 365 Groups to achieve the
Graph API functionality. For more information, see the document:

https://docs.microsoft.com/en-us/microsoft-365/admin/manage/upgrade-distribution-lists?
redirectSourcePath=%252fde-de%252foffice%252f787d7a75-e201-46f3-a242-f698162ff09f&
view=0365-worldwide

For details about Microsoft Graph API, refer to the following Microsoft documents:

Graph REST API Reference: https://docs.microsoft.com/en-us/graph/api/overview?
view=graph-rest-1.0

Working with users in Microsoft Graph: https://docs.microsoft.com/en-us/graph/api/
resources/users?view=graph-rest-1.0

Working with groups in Microsoft Graph: https:;//docs.microsoft.com/en-us/graph/api/
resources/groups-overview?view=graph-rest-1.0

2.12.3.1. Properties Request Body for Creating Groups

The following group resource properties are required when creating a group:

- displayName - a string that specifies the name to display in the address book for the
group. This property is required.

12

https://docs.microsoft.com/en-us/microsoft-365/admin/manage/upgrade-distribution-lists?redirectSourcePath=%252fde-de%252foffice%252f787d7a75-e201-46f3-a242-f698162ff09f&view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/admin/manage/upgrade-distribution-lists?redirectSourcePath=%252fde-de%252foffice%252f787d7a75-e201-46f3-a242-f698162ff09f&view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/admin/manage/upgrade-distribution-lists?redirectSourcePath=%252fde-de%252foffice%252f787d7a75-e201-46f3-a242-f698162ff09f&view=o365-worldwide
https://docs.microsoft.com/en-us/graph/api/overview?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/overview?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/users?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/users?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?view=graph-rest-1.0

- mailEnabled - a boolean value that is set to true for mail-enabled groups.

- mailNickname - a string that specifies the mail alias for the group. Maximum string
length is 64 characters.

- securityEnabled - a boolean value that is set to true for security-enabled groups,
including Microsoft 365 groups.

Groups created using the Microsoft Azure portal always have securityEnabled initially set to
true.

The following optional group resource properties can also be used when creating a group:

- description - a string that specifies a description for the group. The maximum string
length is 1024 characters.

- owners - a string collection that represents the group owners at creation time.
- members - a string collection that represents the group members at creation time.

- visibility - a string that specifies the visibility of an Microsoft 365 group. Possible values
are:

o Private - owner permission is needed to join the group. Non-members cannot view
the contents of the group.

o Public - anyone can join the group without needing owner permission. Anyone can
view the contents of the group.

o HiddenMembership - owner permission is needed to join the group. Non-members
cannot view the contents of the group. Non-members cannot see the members of
the group. Administrators (global, company, user, and (helpdesk) can view the
membership of the group. The group appears in the global address book (GAL).

o Empty - interpreted as Public.

For more information about the group resource type, see https://docs.microsoft.com/en-us/
graph/api/resources/group?view=graph-rest-1.0.

For more information about required and optional properties of a create group request
body, see: https://docs.microsoft.com/en-us/graph/api/group-post-groups?view=graph-
rest-1.0&tabs=http.

2.12.3.2. groupTypes Property Options

Use the groupTypes property to control the type of group and its membership, as
described in the Microsoft document:

https://docs.microsoft.com/en-us/graph/api/group-post-groups?view=graph-rest-1.0&
tabs=http

Microsoft 365 Connector does not support
groupTypes=“DynamicMembership”.

13

https://docs.microsoft.com/en-us/graph/api/resources/group?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/group?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/group-post-groups?view=graph-rest-1.0&tabs=http
https://docs.microsoft.com/en-us/graph/api/group-post-groups?view=graph-rest-1.0&tabs=http
https://docs.microsoft.com/en-us/graph/api/group-post-groups?view=graph-rest-1.0&tabs=http
https://docs.microsoft.com/en-us/graph/api/group-post-groups?view=graph-rest-1.0&tabs=http

2.12.3.3. DirX Identity dxrType Values

The following table shows the DirX Identity dxrType values for the supported Azure AD
groups:

Group Type Attribute Values dxrType Value

Security Group securityEnabled=true; securityGroup
mailEnabled=false

Microsoft 365 - securityEnabled=false; officeGroupPublic
Public mailEnabled=true;

groupTypes=Unified;

visibility=Public
Microsoft 365 - securityEnabled=false; officeGroupPrivate
Private mailEnabled=true;

groupTypes=Unified,;

visibility=Private
Microsoft 365 - securityEnabled=false; officeGroupHiddenMembership
HiddenMembership mailEnabled=true;

groupTypes=Unified;

visibility=HiddenMembership

2.12.3.3.1. Filtering Azure AD Objects

The Microsoft 365 connector supports filtering of accounts, groups, and roles channels via
the Microsoft Graph $filter query parameter. Use DirX Identity Manager to set the filter in
the respective channel. For example, you can define a filter to restrict synchronization to
specific AD objects, as shown in the following dialog:

5.7 accounts

General Import EXport Delta Mapping Op. Mapping Join Primary Channel Content Specific Attributes

Scope: SUBTREE

Search Base Type: yrn:oasis:names:tc:SPML:1:0#GenericString

Search Base:

Filter:
none

Attribute ﬂ Operator Value

O
®

~ | country ;“ equals j us

Figure 3. Setting a Filter for an Azure AD Object in DirX Identity Manager

0 The following limitations apply:

N4

- The Microsoft Graph API for AD objects does not support all filter

operators.

- The $filter query parameter does not support all AD object properties.

- Not all AD object properties support filter queries.

- In DirX Identity Manager, not all AD objects own the attributes defined
in the attribute configuration file. Although you can select certain
operators and attributes in the filter control, not all operators and
attributes are supported.

For more information on Microsoft Graph query parameters, see the Microsoft document:

https://docs.microsoft.com/en-us/graph/query-parameters

2.12.3.4. Using the $filter Parameter on User and Group Resources

You can use the $filter query parameter on user and group resource types to retrieve:

- A subset of a collection

- Relationships, like members, memberOf, transitiveMembers, and transitiveMemberOf.
For example, get all the security groups of which | am a member.

The following example uses the startswith $filter query function to find users whose display

name starts with

the letter “J™:

HTTP GET https://graph.microsoft.com/v1.0/users?$filter=startswith(displayName,'J')

The following table shows currently supported and unsupported Microsoft Graph logical
operators for Azure AD user and group resources and how they correspond to DirX ldentity

and DirX DSML o

Graph API

equals (eq)

in (in)

not equals (ne)

greater than (gt)

greater than or
equals (ge)

less than (It)

perators:

Azure AD
Resources
(User, Group)

$filter=givenNa
me eq ‘Max’

unsupported

unsupported

unsupported

$filter=createdD
ateTime ge
2020-08-01

unsupported

DirX Identity
Manager

equals

unsupported

not equals

unsupported

is greater than
or equal to

unsupported

DirX DSML

<filter><dsml:equalityMatch
name="givenName"><dsml:.value>Smit
h</dsml:value>...

unsupported

<filter><dsml:not><dsml:equalityMatch
name="givenName><dsml.value>Smit
h</dsml:value>...

unsupported

<filter><greaterOrEqual
name="givenName"><dsml:value>Smit
h</dsml.value>...

unsupported

15

https://docs.microsoft.com/en-us/graph/query-parameters
https://graph.microsoft.com/v1.0/users?$filter=startswith(displayName,'J'

Graph API

less than or

equals (le)

unsupported

startswith

unsupported

unsupported

and (and)

or (or)

not (not)

Azure AD
Resources
(User, Group)

$filter=
createdDateTim
e le 2014-08-01

unsupported

$filter=startswit
h(givenName="
Max’)

unsupported

unsupported

$filter=startswit
h(givenName='
Max")

and
startswith(surN
ame='Smith’)

$filter=startswit
h(givenName='
Max’)

or
startswith(surN
ame’'Smith’)

unsupported

DirX Identity
Manager

is less than or

equal to

contains

begins with

ends with

is present

and

or

not

DirX DSML

<filter><lessOrEqual
name="givenName"><dsml:.value>Smit
h</dsml:value>...

<filter><dsml:substrings
name="givenName"><dsml:any>Smith
</dsml:any>...

<filter><dsml:substrings
name="givenName"><dsml:initial>Smit
h</dsml:initial>...

<filter><dsml:substrings
name="givenName"><dsml:final>Smith
</dsml:final>...

<filter><dsml:present
name="givenName"/></filter>

<filter><dsml:and>...

<filter><dsml:or>...

<filter><dsml:not>...

As shown in the table, the $filter operators ne, gt, It and not are not supported for Azure AD
resources. The contains string operator is currently not supported on any Microsoft Graph
resource. For more information about about query parameters, see the Microsoft
documentation at https://docs.microsoft.com/en-us/graph/query-parameters.

Not every Azure AD user and group object property supports filter query. Check the
documentation for the resource to see which property is filterable:

User resource: https://docs.microsoft.com/en-us/graph/api/resources/user?view=graph-

rest-1.0

Group resource: https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?
view=graph-rest-1.0

In these documents, only the properties marked with Supports $filter are supported in
Microsoft Graph API.

116

https://docs.microsoft.com/en-us/graph/query-parameters
https://docs.microsoft.com/en-us/graph/api/resources/user?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/user?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/groups-overview?view=graph-rest-1.0

2.12.3.5. Using the $filter Parameter on directoryRole Resources

The directoryRole resource type represents an Azure AD directory role (also called an
administrator role).

Only the equality match filter operator is supported for this resource type. For example:
..directoryRole?$filter=displayname eq ‘Helpdesk Administrator’
For more information on the directoryRole resource type, see the document:

https://docs.microsoft.com/en-us/graph/api/resources/directoryrole?view=graph-rest-1.0

2.12.3.6. Escaping Single Quotes

For requests that use single quotes, if any parameter values also contain single quotes, they
must be double escaped; otherwise, the request will fail due to invalid syntax.

In the following example, the string value let"s meet for lunch? has the single quote
escaped:

HTTP GET https://graph.microsoft.com/v1.0/me/messages?$filter=subject eq 'let"s meet for
lunch?'

For more information on encoding query parameters, see the Microsoft document
https://docs.microsoft.com/en-us/graph/query-parameters.

2.12.4. Paging

Paging for the Microsoft 365 connector is set to the following defaults in accounts,
members, groups, plans and roles channels under the channel’s Export tab:

pagedRead=true
timelimit=0

pageSize=100
Do not change these values for the Microsoft 365 connector.

Here is an example:

17

https://docs.microsoft.com/en-us/graph/api/resources/directoryrole?view=graph-rest-1.0
https://graph.microsoft.com/v1.0/me/messages?$filter=subject
https://docs.microsoft.com/en-us/graph/query-parameters

E{)’ accounts

General Import Export Delta Mapping Op. Mapping Join Primary Channel Content Specific Attributes |

Scope: SUBTREE

Search Base Type: |ymn:oasis:names:tc:SPML: 1:0#GenericString

Search Base:

Filter:
none

Attribute ﬂ Operator Value

_'|| equals _vj

~ Paged Read

Is Active:

Time Limit:

Page Size:

Figure 4. Microsoft 365 Connector Paging Defaults

2.13. OpenlICF Connector

The Java-based Openl|CF connector runs inside the Identity Java Connector Integration
Framework. It communicates with an Openl|CF connector server (Java- or .NET-based)
using an internal OpenlCF protocol. It dynamically converts SPMLV1 requests to OpenlICF
protocol operations, including automatic conversion of data types.

The connector is implemented in the class OpenlcfConnector in the package
net.atos.dirx.dxi.connector.openicf.

The connector implements the common methods for the DirX Identity Connector API: add,
modify, delete and search.

The operations are simply converted to the OpenlCF API. The corresponding responses are
again translated to SPMLvI responses.

The connector can dynamically obtain information about required configuration
parameters and data schema from a remote OpenlICF server and its deployed OpenlICF
connector bundle.

The connector supports SSL/TLS authentication with the OpenlICF server.

18

2.13.1. Prerequisites

SSL/TLS authentication requires the OpenlICF server certificate to be trusted by the JRE
used by the connector. Use a certificate issued by a trusted CA or use the Java keytool
command (keytool -importcert) to import the server certificate into the DirX Identity JRE
trust store (cacerts).

The connector requires the Openl|CF connector framework bundle 1.1.1.0 or newer.

2.13.2. Configuration

The connector receives its configuration from the connector framework in a format that is
specified there and reflects an XML document. Note that DirX Identity Manager presents
configuration options in a more convenient way: bind credentials, SSL flag and service
address are typically collected from appropriate LDAP entries found by selecting the
appropriate connected directory and bind profile.

This section describes the configuration options based on the XML format. These options
are either specified attributes in the XML schema of the element <connection> (referred to
as standard properties) or can be specified as <property> sub-elements of the <connection>
element (referred to as non-standard properties).

The connector uses two <connection> elements. The first element is related to the OpenICF
connector server (type="OpenlcfServer"). The connector evaluates the following standard
and non-standard properties for the OpenlICF server:

Standard attributes:

server: required. This property provides information about the host name or IP address
where an OpenlCF connector server (Java- or .NET-based) is deployed. For example,
localhost.

port: required. This property provides information about the port of an OpenlICF
connector server. For example, 8759.

ssl: optional. This property enables SSL/TLS authentication to an OpenlICF server and
secures the communication line.

password: required; the password is used as a shared secret between OpenlICF
connector and an Openl|CF connector server.

The OpenlICF connector evaluates the following non-standard properties beneath the
<connection> for the OpenlCF server:

timeout: optional. This property provides the timeout in seconds for communication
with OpenlCF server. The default value is 60 seconds.

bundleName: required. This property provides the name of the OpenlICF connector
bundle deployed on an OpenlICF server that we want to use. For example,
org.forgerock.openicf.connectors.solaris-connector. An OpenlCF connector bundle is
fully identified by bundleName, bundleVersion and implementationClassName.

bundleVersion: required. This property provides the version of the OpenlICF connector
bundle deployed on an OpenlICF server that we want to use. For example, 1.1.1.0-

19

SNAPSHOT. See the bundleName property for more information.

implementationClassName: required. This property provides the fully-qualified name of
the main entry class of an OpenlICF connector bundle deployed on an OpenlCF server
that we want to use. For example, org.identityconnectors.solaris.SolarisConnector. See
the bundleName property for more information.

configurationMapping: optional. This master property provides mapping of the
standard property names to an Openl|CF connector-specific format. For example, user
loginUser automatically converts the standard configuration property name user to
OpenlICF format loginUser. This property allows the use of the standard DirX Identity
support mechanism for special cluster workflow handling. The list can contain more
values separated by commas. The conversion is valid for the configuration related to
OpenlICF connector bundle (type="OpenlcfConnector").

The second connection element is related to the OpenlICF connector bundle
(type="OpenlcfConnector"). Since the configuration of OpenICF connector bundles is for
the most part very different for each bundle type, standard properties are not pre-defined.
The DirX Identity connector evaluates all of the properties passed to the connection
element, converts them to the appropriate type and then sends them as configuration
properties to a remote OpenlCF connector server. It is necessary to study the
documentation for a specific Openl|CF connector bundle and to define and deliver all
necessary properties properly.

Here is a sample configuration that uses some of the properties described here:

<connector
className="net.atos.dirx.dxi.connector.openicf.OpenIcfConnector"
name="TS" role="connector">

<!I-- settings for OpenICF server -->

<connection type="OpenIcfServer" server="ALFA" port="8759"
password="§SCRAMBLED{aG5WPw==" ss1="true">

<property name="timeout" value="60Q"/>

<property name="bundleName"
value="org.forgerock.openicf.connectors.solaris-connector"/>
<property name="bundleVersion" value="1.1.1.0-SNAPSHOT"/>
<property name="implementationClassName"
value="org.1identityconnectors.solaris.SolarisConnector"/>
<property name="configurationMapping" value="server host,user
loginUser"/>

</connection>

<!-- settings for OpenICF connector bundle -->

<connection type="OpenIcfConnector" password="§SCRAMBLED?}aG5WPw=="
server="someunixhost" user="root" port="22">

<property name="loginShellPrompt" value="#"/>

<property name="connectionType" value="ssh"/>

120

<property name="unixMode" value="1linux"/>
</connection>

</connector>

2.14. OpenICF Windows Local Accounts Connector

The OpenlICF Windows Local Accounts connector is implemented as a C#-based OpenlICF
.NET connector embedded and started by an OpenlICF .NET connector server. The OpenlICF
.NET connector server receives requests from the DirX Identity OpenlICF connector, which is
a Java-based connector that conforms to the DirX Identity Java Connector Integration
Framework and which sends the requests to the OpenlCF connector server using an
internal OpenlICF protocol.

For a description of the Java-based DirX Identity OpenlICF connector, see the chapter
"OpenlICF Connector" in this reference. This chapter also describes how to secure the
connection from the Java-based OpenlICF connector to the OpenlCF connector server with
SSL.

2.14.1. Overview

The OpenlICF Windows Local Accounts connector is deployed as an OpenlCF connector
bundle to a .NET-based Openl|CF connector server running on any Windows server.

On one side, it implements the OpenlICF SPI operations Schema(), Create(), Update(),
Delete(), CreateFilterTranslator() and ExecuteQuery() called by the Openl|CF connector
server that receives the corresponding SPML Add, Modify, Delete and Search requests by
the Java-based Openl|CF connector.

On the other side, it implements the System.DirectoryServices. AccountManagement API
for accessing a Windows local accounts and groups database. The Account Management
APl is a .NET framework DirectoryServices namespace that provides uniform access and
manipulation of user, computer and group security principals for three directory platforms:
the Active Directory Domain Services, the local Security Account Manager (SAM) database
on every Windows computer and the Active Directory Lightweight Directory Services (AD
LDS).

The connector manages user and group objects of a SAM database located on any
computer in the Windows network.

The Account Management API can only use the Windows NT LAN Manager (NTLM)
protocol for authentication when accessing a SAM database. If user name and password
are not provided for authentication, the security context of the calling thread (the account
under which the connector server runs) is used for binding. The Account Management API
also supports Kerberos or SSL authentication for accessing Active Directory.

The Account Management API does not provide any encryption protocol for the
subsequent data transfer when accessing a SAM database. Hence the attributes and values
of a create or modify request are not completely encrypted - as could be done by choosing
Kerberos when accessing Active Directory. If a password is submitted in such a request it is

121

always encrypted as stated by Microsoft:

When changing or setting a user’'s password on a remote SAM DB with the
AccountManagement APl methods UserPrincipal::ChangePassword(oldPassword,
newPassword) or UserPrincipal::SetPassword(newPassword) the function
SamrUnicodeChangePasswordUser2 is called behind the scene, which encrypts the new
password with a key from the hash of the old password or, in the latter case when no old
password is provided, with an internal temporary key.

Moreover there is the possibility to secure the complete RPC/TCP connection, which is the
underlying protocol used by the Account Management API by configuring IPSec. IPSec is a
computer-wide setting that secures all IP traffic. It is not specific to an individual
application like SSL, but it is transparent to applications.

2.14.2. Prerequisites

The OpenlICF .NET connector server in the OpenlCF Windows Local Accounts connector
configuration has the following prerequisites:

- The connector server must be OpenICF .NET connector server version 1.4.0.0 or newer.

- The machine on which the connector server is installed must be running Windows
Server 2008, Windows Server 2012, Windows 7 or Windows 8 and must have at least 20
MB of free disk space and 200 MB of available RAM.

- The .NET framework version 4.0 or newer must be installed on the machine where the
connector server is installed.

To install the OpenlICF .NET connector server:

- Download an OpenlICF .NET connector server version 1.4.0.0 or newer from the Internet
as a ConnectorServer*.msi* installation file; for example, openicf-1.4.0.0-SNAPSHOT-
dotnet.msi.

- Run the ConnectorServer*.msi* installation file and then follow the wizard’s instructions.
When it completes, the connector server is now installed as the Windows service
ConnectorServerService. The default installation location is C:\Program Files\Identity
Connectors\Connector Server.

To configure the OpenlICF .NET connector server:

- Set the key (shared secret key) for the connector server: navigate to the directory where
the connector server is installed and then execute the following command in the
MS/DOS shell:

ConnectorServer /setkey newkey

where newkey is the value for the connector server key. The same key (= password)
must be configured in the OpenlICF Windows Local Accounts connector configuration
file in the password property of the connection section of type OpenlcfServer (see the
configuration snippet given in the next step).

- Update the connector server configuration file ConnectorServer.exe.Config. This file is

122

located in the connector server installation directory and is an XML-formatted file. The

most common items to change in this configuration file are the port number or the

trace settings. For the trace settings, you can specify a log file name and a trace level

(for example, All) in the <trace> section and then find the related logging of all OpenICF

connector bundles deployed into the connector server in that log file, for example:

<trace autoflush="true" indentsize="4">
<listeners>
<remove name="Default" />
<!--add name="console" /-->
<add name="mylListener"
type="System.Diagnostics.TextWriterTracelListener"
initializeData="c:\Program Files (x86)\Identity Connectors\Connector
Server\connectorserver.log" traceOutputOptions="DateTime">
<filter type="System.Diagnostics.EventTypeFilter"
initializeData="All"/>

</add>
</listeners>

</trace>

The OpenlICF Windows Local Accounts connector has the following prerequisites:

- The WindowslocalAccounts.Connector-1.4.0.0.zip bundle, which is installed to the DirX
Identity subfolder install_path®\connectors\OpenICF\bundles\dotnet* must be
deployed (that is, unzipped) to the installation folder of the OpenICF .NET connector
server. Restarting the OpenlCF .NET connector server activates the new bundle..

- On the target Windows machines with the SAM databases to be managed, the Open
ICF Windows Local Accounts connector can only access the SAM databases of the
target Windows machines if they satisfy the following prerequisites:

- Windows Server 2012 R2 system - the Remote Registry Service must be started. This
action is performed by default on this Windows version.

- Windows Server 2008 R2 system - the Remote Registry Service must be started
(performed by default).

- Windows 7 Professional Client system - the Remote Registry Service must be started,
(not performed by default) and the following Inbound Rules of the Windows Firewall
configuration settings must be enabled: Remote Service Management (NP-In) for the
Profile type Domain.

- Windows Server 2003 system - the Remote Registry Service must be started (performed
by default) and the File and Printer Sharing services must be selected in the
Exceptions tab of the Windows Firewall configuration settings.

There may be other Inbound Rules to be enabled or Firewall Exceptions to be set to allow

SAM database access in addition to or instead of those described here if they cover the
relevant port ranges required for the RPC traffic.

123

The installation of a .NET Framework is not necessary on a target machine.

If the Remote Registry Service is not started on a target machine, the Windows Local
Accounts connector receives the error message "The network path was not found" when
trying to perform add, modify, delete or search operations.

2.14.3. Limitations
The following limitations apply:

- Between the machine where the connector service runs and each remote target
machine with a local SAM database to be managed, only one RPC connection for each
target machine is valid. An additional RPC connection with different credentials than an
existing RPC connection to the same target machine may fail due to the well-known
Microsoft RPC limitation described under KB106211, KB173199, KB183366, KB824198. As a
result, the connections to the target machines should not be built up with changing
credentials.

- Due to the preceding limitation, the .NET connector server service must be started
under an account with appropriate access rights to the remote target machine's SAM
database (it must be a member of the target machine’'s Administrator group). As a
result, no user and password must be specified for the Windows Local Accounts
connector. If they are specified, they are passed to the Account Management API
authentication method. However, they may not take effect because different
credentials for a pre-existing connection to the same machine may already be in effect.
If a user name beginning with dummy (case insensitive) is specified, the connector does
not pass any credentials to the authentication method.

- For search requests only, the EqualityMatch filter for all attributes and the StartsWith
filter for the naming attribute, which is the SamAccountName, are supported. The
"SearchRequest" section provides an example.

2.14.4. Deployment

This section describes the following deployment scenarios:

- One .NET connector server for all Windows systems in one Windows domain
- One .NET connector server on each Windows target machine

- One .NET connector server for several Windows domains

2.14.4.1. One .NET Connector Server/One Windows Domain

To manage several Windows local systems joined to the same domain, only one .NET
connector server needs to be installed on a Windows machine in the domain (see the
Windows system requirements for the .NET connector server described in "Prerequisites").
It must be configured so that the .NET connector server service runs under a specific
domain account which is added to the Administrator group of each targeted Windows
machine in that domain.

On DirX Identity side, one Identity target system relates to one Windows local target
system. All Identity target systems in this scenario bind to the same .NET connector server

124

(specified in the Windows Local Accounts Connector <connection> section of type
OpenlcfServer), which itself then addresses the request to that Windows target machine
that is specified in the Windows Local Accounts Connector <connection> section of type
OpenlicfConnector (see the example given in the "Configuration" section).

2.14.4.2. One .NET Connector Server per Windows Target Machine

If the Windows target machine is not joined to a domain or for performance or network
connectivity reasons, a .NET connector server can also be installed on a Windows target
machine itself.

2.14.4.3. One .NET Connector Server/Several Windows Domains

If the domain account under which a .NET connector server service runs is known in other
domains through trust relationships and can be added to the Administrator groups of
target machines in other domains, those target machines can also be managed by a .NET
connector server running in a different domain.

2.14.5. Request and Response Handling

This section describes the SPML requests processed by the Java-based DirX ldentity
OpenlCF connector and the attributes supported by the C#-based OpenlCF Windows Local
Accounts connector.

Attribute names in uppercase characters with leading and trailing underscore () characters
are predefined or operational attributes of the OpenlICF connector framework. If there are
also native attribute names for these attributes - for example, SamAccountName for
NAME or Members for ACCOUNTS or Enabled for ENABLE__ - both names are supported by
the connector and can therefore be used.

In all requests, the operational attribute objType with the allowed values user or group
(default = user) specifies whether the operation is performed for users or for groups.

2.14.5.1. AddRequest

The identifier in an add request for a user or a group is mandatory and will become the
SamAccountName attribute.

Here is an example add request for a user:

<spml:addRequest xmlns="urn:oasis:names:tc:SPML:1:0Q"

xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="add-0Q1"

<spml:identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:i1d>MHummels</spml:id>

</spml:identifier>

<spml:operationalAttributes>

125

<dsml:attr name="objType">
<dsml:value>user</dsml:value>
</dsml:attr>
</spml:operationalAttributes>
<spml:attributes>
<spml:attr name="Enabled"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>false</dsml:value>
</spml:attr>
<spml:attr name="__PASSWORD__">
<dsml:value type="string">Di1rx123#</dsml:value>
</spml:attr>
<spml:attr name="DisplayName"
xmlns="urn:oasis:names:tc:DSML:2:Q:core">
<dsml:value>Mats Hummels</dsml:value>
</spml:attr>
</spml:attributes>
</spml:addRequest>

Here is an example add request for a group:

<spml:addRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="add-01"
>
<spml:identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:id>TestGroup2</spml:id>
</spml:identifier>
<spml:operationalAttributes>
<dsml:attr name="objType">
<dsml:value>group</dsml:value>
</dsml:attr>
</spml:operationalAttributes>
<spml:attributes>
<spml:attr name="Description"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>Created with OpenICF</dsml:value>
</spml:attr>

<spml:attr name="Members"

126

xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>agerbe66</dsml:value>
</spml:attr>
</spml:attributes>
</spml:addRequest>

2.14.5.2. ModifyRequest

In a modify request, the identifier is also mandatory and must be set to the
SamAccountName value returned in the SPML AddResponse for the object.

Here is an example modify request for a user:

<spml:modifyRequest requestID="mod-1: set some attributes">
<spml:identifier
type = "urn:oasis:names:tc:SPML:1:@#DN">
<spml:id>MHummels</spml:id>
</spml:identifier>
<spml:modifications>
<spml:modification name="__GROUPS__" operation="replace">
<dsml:value>TestGroupl</dsml:value>
</spml:modification>
<spml:modification name="DisplayName" operation="replace">
<dsml:value>Mats Hummels</dsml:value>
</spml:modification>
<spml:modification name="Description" operation="replace">
<dsml:value>Test account for OpenICF Windows Local Accounts
Connector</dsml:value>
</spml:modification>
<spml:modification name="Enabled" operation="replace">
<dsml:value>True</dsml:value>
</spml:modification>
<spml:modification name="__CURRENT_PASSWORD__"
operation="replace">
<dsml:value>Dirx123#</dsml:value>
</spml:modification>
<spml:modification name="__PASSWORD__" operation="replace">
<dsml:value>Dirx456#</dsml:value>
</spml:modification>
<spml:modification name="PasswordNeverExpires"

operation="replace">

127

<dsml:value>True</dsml:value>
</spml:modification>
<spml:modification name="HomeDirectory" operation="replace">
<dsml:value>d:\MyTemp</dsml:value>
</spml:modification>
</spml:modifications>
</spml:modifyRequest>

Here is an example modify request for a group:

<spml:modifyRequest requestID="mod-1: add and delete members">
<spml:identifier
type = "urn:oasis:names:tc:SPML:1:@#DN">
<spml:id>TestGroup2</spml:id>
</spml:identifier>
<spml:operationalAttributes>
<dsml:attr name="objType">
<dsml:value>group</dsml:value>
</dsml:attr>
</spml:operationalAttributes>
<spml:modifications>
<spml:modification name="Description" operation="replace">
<dsml:value>Renamed</dsml:value>
</spml:modification>
<spml:modification name="Members" operation="add">
<dsml:value>MHummels</dsml:value>
<dsml:value>PwlTestUser</dsml:value>
</spml:modification>
<spml:modification name="Members" operation="delete">
<dsml:value>agerbeb6</dsml:value>
</spml:modification>
</spml:modifications>
</spml:modifyRequest>

2.14.5.3. DeleteRequest

In a delete request, the identifier is also mandatory. It must be the SamAccountName of
the user or group object. The delete request does not require additional attributes.

128

2.14.5.4. SearchRequest

In an SPML search request, the OpenICF Windows Local Accounts connector supports the
standard element filter, which can be of type EqualityMatch applicable on most attributes
or of type Substring Initial applicable only on the naming attribute NAME
(=SamAccountName). An example of each filter type is shown here. Regarding the
attributes section, either all attributes, if none are specified, or the ones specified are
retrieved.

Here is an example request that searches for all enabled users with the requested
attributes. Note that with the attribute GROUPS, you can also retrieve the list of groups of
which the user is a member.

<spml:searchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="search-user-1">
<spml:operationalAttributes>
<dsml:attr name="objType">
<dsml:value>user</dsml:value>
</dsml:attr>
</spml:operationalAttributes>
<filter>
<dsml:equalityMatch name="__ENABLE__">
<dsml:value type="string">true</dsml:value>
</dsml:equalityMatch>
</filter>
<dsml:attributes>
<dsml:attribute name="__NAME__"/>
<dsml:attribute name="SamAccountName"/>
<dsml:attribute name="DisplayName"/>
<dsml:attribute name="__ENABLE__"/>
<dsml:attribute name="__LOCK_OUT__"/>
<dsml:attribute name="__DESCRIPTION__"/>
<dsml:attribute name="PasswordNeverExpires"/>
<dsml:attribute name="HomeDirectory"/>
<dsml:attribute name="__GROUPS__"/>
</dsml:attributes>

</spml:searchRequest>

Here is an example request that searches for all groups with SamAccountName beginning
with “Test™

129

<spml:searchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="search-groups-1">
<spml:operationalAttributes>
<dsml:attr name="objType">
<dsml:value>group</dsml:value>
</dsml:attr>
</spml:operationalAttributes>
<filter>
<dsml:substrings name="__NAME__
<dsml:initial>Test</dsml:initial>
</dsml:substrings>
</filter>
<dsml:attributes>
<dsml:attribute name="__NAME__"/>

<dsml:attribute name="SamAccountName"/>

>

<dsml:attribute name="Description"/>
<dsml:attribute name="Members"/>
</dsml:attributes>

</spml:searchRequest>

2.14.6. Configuration

Here is a sample configuration snippet for the OpenlICF Windows Local Accounts
connector:

<connector
role="connector"
className="net.atos.dirx.dxi.connector.openicf.OpenIcfConnector"
name="ts" version="1.00">
<connection type="OpenIlcfServer"
server="WindowsServerQ@l"
port="8759"

password="pwd for connector server"

<property name="bundleName"
value="WindowsLocalAccounts.Connector"/>
<property name="bundleVersion" value="1.4.0.0"/>

<property name="implementationClassName"

130

value="0rg.IdentityConnectors.WindowsLocalAccounts.WindowsLocalAccoun
tsConnector"/>
</connection>
<!-- Windows LA Connector specific properties -->
<connection type="OpenIcfConnector">
<property name="user" value="AdminIcfConnector"/>
<property name="password" value="pwd local computer admin"/>
<property name="host" value="TargetSAMQl"/>
</connection>

</connector>

The following properties of the OpenlCF .NET connector server <connection> section can
be specified:

- port - the port number of the connector server.

- server - the server name or |IP address of the connector server.

- password - the key value for binding to the connector server. It is the key string value
that was applied when running the command ConnectorServer /setkey keyvalue in the
connector server installation folder before starting the server for the first time.

- bundleName - the name of the connector bundle running in the connector server.
- bundleVersion - the version number of the connector bundle.
- implementationClassName - the connector class name where the Openl|CF SPI

methods are implemented.

The following properties can be specified in the <connection> section of the OpenICF
Windows Local Accounts connector:

- user - the administrator name of the Windows Local Accounts (SAM) database.
- password - the password of the administrator.

- host - the name of the computer whose SAM database is to be managed.

2.15. RACF Connector

The Java-based RACF connector extends the Java-based LDAP Connector. It provisions the
RACF system through the IBM Tivoli Directory Server for z/OS. See IBM's web page
https://www.ibm.com/docs/en/zos/2.5.0?topic=tivoli-directory-server-zos for more
information on the Tivoli Directory Server.

The connector evaluates the same configuration properties as the LDAP Connector.
The connector is implemented in the class siemens.dxm.connector.racf.RacfConnector.

It implements the following functional changes compared to the LDAP connector:

131

https://www.ibm.com/docs/en/zos/2.5.0?topic=tivoli-directory-server-zos

- User-group memberships are managed in extra connect entries in RACF.

- User default groups are set by the connector as calculated by the userhook of the
workflow's accounts channel.

- Disabling / enabling a RACF user is realized by setting the appropriate values in the
attribute “racfAttributes”.

- For resetting an existing password, the connector first sets the new password in the
attribute racfPassword of the RACF user and then performs an extra bind operation
with this user, providing the old and the new password.

- Binding to the RACF system can be certificate-based (SASL bind) in the same way as for
the LDAP connector.

2.15.1. Prerequisites
The RACF connector has the following prerequisites:

- The connector accesses a z/OS or OS/390 RACF system via the LDAP protocol. Therefore,
a separate IBM Tivoli Directory Server is required per RACF system.

- An LDAP service account must be set up in the RACF database to be able to administer
all users and groups. This user needs the RACF authorization "advanced".

2.15.2. Limitations
The RACF connector has the following limitations:

- The connector does not support nested groups. Nested group assignments cannot be
read nor written.

- The workflow and the connector do not handle the RACF group member limit for
groups that are not default groups.

2.15.3. Limitations of RACF via LDAP (SDBM)

The IBM LDAP access to RACF (via the SDBM backend) imposes some limitations regarding
filters, returned attributes and number of returned entries. For details, see the IBM
documentation, for example: https://www.ibm.com/docs/en/zos/2.5.0?topic=behavior-
sdbm-search-capabilities.

2.15.4. Sample Requests

For sample requests, see the chapter on the LDAP Connector. This chapter contains just a
few samples to highlight aspects specific to RACF.

In the RACF Tivoli Directory, users, groups, and connect objects are typically in their own
sub-trees:

- Users in profiletype=USER, ...
- Groups in profiletype=GROUP, ...
- Connect objects in profiletype=CONNECT, ...

132

https://www.ibm.com/docs/en/zos/2.5.0?topic=behavior-sdbm-search-capabilities
https://www.ibm.com/docs/en/zos/2.5.0?topic=behavior-sdbm-search-capabilities

2.15.4.1. Search Request

The following sample request searches for a single user identified by its racfid and lists the
attributes to be returned.

Note that for filtering only a subset of attributes can be used. See the RACF documentation
for details.

<spml:searchRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:Q@:core"
xmlns:spml="urn:oasis:names:tc:SPML:1:0">
<spml:searchBase
type="urn:oasis:names:tc:SPML:1:0#GenericString">
<spml:id>profiletype=USER, cn=RACF, o=someNS</spml:id>
</spml:searchBase>
<filter>
<dsml:equalityMatch name="racfid">
<dsml:value>UZ00001</dsml:value>
</dsml:equalityMatch>
</filter>
<spml:attributes>
<dsml:attribute name="racfid"/>
<dsml:attribute name="racfprogrammername"/>
<dsml:attribute name="racfattributes"/>
</spml:attributes>
<spml:operationalAttributes>
<spml:attr name="scope">
<dsml:value>subtree</dsml:value>
</spml:attr>
</spml:operationalAttributes>
</spml:searchRequest>

2.15.4.2. Modify Membership and Enable a RACF User

The following request re-enables an account and adds a group membership. Note that the
enable / disable is performed via RACF attribute racfAttributes and that it is enough to
manage the memberships in the artificial user attribute “member”. The connector
performs the appropriate changes in the connect entries in the sub-tree
profiletype=CONNECT.

<spml:modifyRequest>

<spml:identifier type = "urn:oasis:names:tc:SPML:1:@#DN">

<spml:id>racfid=UIATES1, profiletype=USER, o=someNS</spml:id>

133

</spml:identifier>
<spml:modifications>
<dsml:modification name="racfAttributes"”
operation="replace">
<dsml:value>RESUME</dsml:value>
</dsml:modification>

<dsml:modification name="member" operation="add">

<dsml:value>racfid=GIAMTES], profiletype=GROUP, o=someNS</dsml:value>
</dsml:modification>
</spml:modifications>
</spml:modifyRequest>

2.15.4.3. Change a Password

The following request changes the password for a RACF user. Note that the old password
must be provided as the operational attribute “currentpassword”.

<spml:modifyRequest>

<spml:identifier type = "urn:oasis:names:tc:SPML:1:0@#DN">

<spml:id>racfid=UIATES1, profiletype=USER, o=someNS</spml:id>
</spml:identifier>
<spml:modifications>
<dsml:modification name="racfPassword"
operation="replace">
<dsml:value>the-new-password</dsml:value>
</dsml:modification>
</spml:modifications>
<spml:operationalAttributes>
<spml:attr name="currentpassword">
<dsml:value>the-old-password</dsml:value>
</spml:attr>
</spml:operationalAttributes>
</spml:modifyRequest>

2.16. Remote AD Connector

DirX Identity can be deployed as part of the Atos Cloud Service ldentity Management as a
Service (IDMaas). Provisioning targets can be in the provider's (Atos) cloud infrastructure, in
a public cloud or on customer premises outside of a cloud; the Remote AD connector is

134

intended for use in this last scenario.

The Remote AD connector’s provisioning components must be able to work without online
(LDAP) connection to the DirX Identity configuration database.

A standard framework-based agent job implements the export-to file-action on the
customer side. It obtains its configuration from XML files: one for the job and one for the
search request with the filter conditions. Importing the file to DirX is performed by an
existing LDIF import workflow. The following figure illustrates the Remote AD connector
architecture.

Cusiomir Firgwal DMZ Firgwal Cloud Pronicor

Tomecat
HTTP ||
| Reverse | | | =WebSenices
| Proxy File Upha;l
i T
<ldif=
<Workflow=]
In'_l
<batch> | ¥
F- I HTTP |
1 Proxy | |
Server | |
DirX Identity

Figure 5. Remote AD Connector Architecture

2.16.1. Security Considerations

Transport connections between the customer and DirX Identity in the cloud should be
secured by SSL/TLS.

2.16.2. Requirements and Limitations

To deploy / run the service / client, the following requirements apply:

- Java 7 installed on the customer side

- Apache Tomcat 7 installed on the cloud provider side
It is assumed that inbound traffic into the cloud is routed through a reverse HTTP proxy,
which basically translates IP addresses. Outbound traffic will also be routed through an

HTTP proxy. As a result, provisioning using native interfaces such as LDAP and JDBC are not
allowed and are replaced by HTTP-based SOAP protocol (web service).

Access to the customer premises is expected to be strictly constrained: no remote
installation, no reading / writing of (workflow) configuration in LDAP, no messaging.

135

Authentication to DirX Identity and to Active Directory: authentication for the standard
connectors is based on user / password. Authentication via user certificates is not
supported.

Encryption of passwords stored in local configuration files: in standard configurations
with workflows hosted by a Java-based Server, the passwords used for authentication of
the connectors are encrypted on transport. Framework-based standalone jobs as described
here lack this feature: they do not know the system PIN for decryption of the system
certificate and they do not have access to LDAP, where the private key is usually stored.

2.16.3. Remote AD Agent

The Remote AD agent is a client application for the File Upload Web Service, delivered as
jar archives, configuration files and batch file(s). The Remote AD connector can be started
by an operating system scheduler.

2.16.3.1. Activities
The agent application performs the following activities:
- Starts the job that connects to Active Directory and searches and exports users to an
LDIF file.
- Packs the LDIF file and sends it to the File Upload Web service.

- Deletes the exported LDIF file if the transport is successful.

2.16.3.1.1. The Export-AD-to-File Job

The agent exports users from the Active Directory (AD) domain according to a configurable
search request and then writes the resulting entries to an LDIF file. Typically not all Active
Directory users need to be imported to DirX. You can filter them according to their
organizational unit or other attributes or on group memberships.

The export-AD-to-file job is based on the DirX Identity Connector Integration Framework
and is illustrated in the following figure. The default standalone controller reads its
configuration from an XML file. It receives a search request from the SPML file reader,
forwards it to the AD connector and then passes the search response to the LDIF
connector, which writes it to a local LDIF file.

136

“AD-to-File"

ADS LDIF <LDIF>
C Co —

Default
Stand
SPML C
File Re:

<File =
Job Config

Figure 6. Export-AD-to-File Job

2.16.3.2. Installation

The application requires no installation. To start the agent, run the provided batch file. On
the command line, you can specify the trust store path (for example, cacerts) to use when
connecting to a secure endpoint. See the content of the batch file remoteADAgent.bat for
details.

2.16.3.3. Configuration

You configure the Remote AD agent with the following files located in the config folder:

- The wsConfig.properties contains Web service-related parameters.

- The jobConfig.xml contains the job configuration of the AD export workflow, especially
the AD connectivity parameters.

- The searchRequest.xml contains detailed configuration of the search request
performed in the AD, especially filtering and returned AD attributes.

The batch file configures logging and trust store location. See the provided files for details.

2.16.4. File Upload Web Service

The File Upload Web service resides in a servlet container (for example, a standalone
Tomcat or IdS-J tomcat) on the cloud provider side. Requests to the Web service consist of:

- Customer ID <_xs_._string_>

- Content of the LDIF file <_xs_:_base64Binary_>

2.16.4.1. Activities

The Web service performs the following activities on the cloud provider side:

- Unpacks the received LDIF file and saves it under the configured folder.

- Invokes a Java-based workflow that corresponds to the received Customer ID. This call is

137

asynchronous, so there is no check to verify the result. The workflow imports the users
from the LDIF file into the Identity store.

- Returns a response message to the client if no problems occurred or generates an error
response.

2.16.4.2. Installation

To install the File Upload Web service, locate the war file under the webapps directory of
Apache Tomcat. Tomcat automatically deploys the file. After deployment, adapt the
configuration files in the newly created remoteADFileUpload folder and then restart
Tomcat. The endpoint URL of the Web service is

http(s)://host:_port_/remoteADFileUpload/ProvisionFileUploadService

Where the host, port and usage of HTTP(s) depends on the Tomcat configuration, as
described in the "Configuration" section.

2.16.4.3. Configuration

You configure the Web service with configuration files located under the WEB-INF/config
folder. These files include:

- config.properties - the default configuration file that is used when a request without a
client id is received or if no configuration file for the given customer ID is found.
- customerlD*.config.properties* - customer-specific configuration files. These files are

used when an incoming customer ID matches an existing customer configuration file.

The default deployment contains the files config.properties and My-
Company.config.properties. (See the files for more details, search for the CONFIGURE tag.)

2.16.4.3.1. Configuring SSL on Tomcat

The configuration parameters for Tomcat are specified in the file /conf/server.xml.
To enable SSL:

- Generate / copy the key store file under CATALINA_BASE/keys/keystore.

- Edit the following lines in server.xml to enable SSL:

<Connector SSLEnabled="true" acceptCount="100" clientAuth="false"
disableUploadTimeout="true" enablelLookups="false"
maxThreads="25"
port="443" keystoreFile="keys/.keystore" keystorePass="asd123"
protocol="org.apache.coyote.httpll.HttpllNioProtocol"
scheme="https"

secure="true" sslProtocol="TLS" />

138

To enable LDAP authentication and authorization:

- Edit the following Realm element under <Host/>:

<Realm className="org.apache.catalina.realm.JNDIRealm"
connectionName="cn=DomainAdmin, cn=My-Company"
connectionPassword="dirx"
connectionURL="1dap://localhost:389"
userPattern="{0%"
roleBase="cn=Groups,cn=DirXmetaRole,cn=TargetSystems,cn=My-
Company"
roleSubtree="true"
roleName="cn"

roleSearch="(uniqueMember={0%)"/>

- Disable other realms that are not required.
The meaning of the parameters is as follows:

roleBase
Specifies the entry under which the groups are located in the LDAP directory.

connectionName and connectionPassword

Identify a technical user. Tomcat uses this technical user in the bind for the LDAP group
search. If an anonymous bind is performed, these parameters are omitted. Currently
Tomcat cannot use the authenticated user for performing the search for groups.

2.16.4.3.2. Configuring Authorization Based on Group

To configure a group against which authorization needs to be performed, define the group
name under <security-constraint /> and <web-app /> elements of the Tomcat web.xml file.
For example:

<auth-constraint>
<role-name>TSAdmins</role-name>
</auth-constraint>

2.17. Request Workflow Connector

The Java-based Request Workflow connector is built with the Identity Java Connector
Integration Framework. It sends SOAP requests over HTTP to the configured DirX Identity
endpoint and receives SOAP responses from the SOAP service.

The connector is implemented in the class ReqWfConnector in the package
com.siemens.dxm.connector.reqwf.

139

The connector implements the common methods for the DirX Identity Connector API: add,
modify, delete and search.

The add, modify and delete methods create an appropriate request workflow subject type
and invoke a new request workflow instance. The search method simply returns success
and an empty list of entries.

The connector supports basic authentication as well as server and client-side SSL/TLS
authentication. It does not support WS-Security protocols yet.

The main goal of the connector is to create new request workflow instances for delivered
SPMLvl-based requests for account and group objects.

2.17.1. Prerequisites

The connector is based on the Identity Java Connector Integration framework. The
framework is contained in the library dxmConnector.jar.

It uses the common JAX-WS framework for sending and receiving SOAP requests and
responses over HTTP. Usage of a JRE 1.7 is required to be able to run the connector.

2.17.2. Configuration

The connector receives its configuration by the connector framework in a format that is
specified there and reflects an XML document. Note that Identity Manager presents
configuration options in a more convenient manner. Especially bind credentials, SSL flag
and service address are typically collected from appropriate LDAP entries found by
selecting the appropriate connected directory and bind profile.

The following text discusses the configuration options based upon the XML format. These
options are either specified attributes in the XML schema of the element <connection>
(referred to as standard properties) or can be specified as <property> sub-elements of the
<connection> element (referred to as non-standard properties).

The connector evaluates the following standard and non-standard properties:
Standard attributes:

server (mandatory)
this property provides the server part of the endpoint URL.

Example: Llocalhost

port (mandatory)
this property provides the port of the endpoint URL.

Example: 4000

ssl (optional)

If no URL is given, this property defines which protocol to use. If true, https is selected;
otherwise the connector sets http.

140

user (mandatory)

the username used for HTTP basic authentication. These credentials are used to
authenticate for request workflow creation. Use a DirX Identity user with sufficient
access rights; for example, the DomainAdmin.

password (mandatory)
the password used for HTTP basic authentication along with the user property.

The connector evaluates the following non-standard properties beneath the <connection>
element:

path (mandatory)
this property provides the path of the URL.

Example: workflowService/services/WorkflowService

timeout (optional)
the socket read timeout in seconds. The default is 0 seconds, which indicates infinite.

domain (optional)
use this property in an environment with multiple Provisioning domains. Use it to check
the connected Provisioning domain name.

Example: cn=My-Company

primaryWorkflowDN (optional)

this property can be used to specify the DN of the request workflow which will be used
for account objects. It will be also used for group objects if no secondaryWorkflowDN is
configured. If no primaryWorkflowDN option is configured, then the "When applicable"
section of the active request workflow is evaluated and a suitable request workflow
definition is instantiated.

secondaryWorkflowDN (optional)

use this property to specify the DN of the request workflow which will be used solely for
group objects. If it is missing, the primaryWorkflowDN is used also for group objects.
The secondaryWorkflowDN option is ignored if no primaryWorkflowDN is configured.

Here is a configuration sample using some of the described properties:

<connector name="TS" role="connector”
className="com.siemens.dxm.connector.reqwf.RegWfConnector">
<connection

type="RequestWorkflow"

server="localhost"

port="40000"

ss1="FALSE"

user="cn=DomainAdmin, cn=My-Company"

141

password="§SCRAMBLEDtaG5WPw=="">

<property name="path"
value="workflowService/services/WorkflowService"/>
<property name="domain" value="cn=My-Company"/>
<property name="primaryWorkflowDN"
value="cn=Manual Provisioning,cn=Service

Management,cn=Default,cn=Definitions,cn=wfRoot,cn=My-Company"/>
<property name="secondaryWorkflowDN" value=""/>

<property name="timeout" value=""/>
</connection>

</connector>

2.18. Salesforce Connector

The Java-based Salesforce connector is built with the Identity Java Connector Integration
Framework and uses the REST framework and its APls.

2.18.1. Overview

The Salesforce connector implements the APl methods "add(..)", "modify(..)", "delete(...)"
and "search(..)". They represent the corresponding SPML requests"AddRequest",
"ModifyRequest", "DeleteRequest" and "SearchRequest".

Currently it only supports Account, Contact, User, PermissionSet and Profile objects in
Salesforce.

The Salesforce connector offers the following functionality:

- Add an account, a contact or a user to Salesforce

- Delete an account, a contact or a user from Salesforce

- Modify an account, a contact or a user in Salesforce

- Modify a permission set or a profile in Salesforce (attribute Description only)

- Search accounts, contacts, users, permission sets and profiles in Salesforce

2.18.2. Prerequisites and Limitations

The Salesforce connector has the following limitations:
- Users cannot be physically deleted in Salesforce. As a result, the Delete operation only

sets the IsActive attribute to false and the customer-specific attribute Statusinfo__c to
DELETED.

142

- New profiles can't be created or deleted using the REST APIs. Only a Modify operation is
supported; for example, modifying the Description attribute of a profile.

2.18.3. Request and Response Handling

This section describes the supported attributes and requests for the Salesforce connector.

The following sections provide the supported attributes.

2.18.3.1. Supported Account Attributes

- AccountNumber
- AnnualRevenue

- BillingCity

- BillingCity

- BillingCountry

- BillingPostalCode
- BillingState

- BillingStreet

- Description

- Fax

- |Id - the identifier of the account; is returned as SPML identifier in the SPML ADD
resonse; must be used as SPML identifier in an SPML MODIFY or DELETE request or in
SPML SEARCH request if a single object is searched.

- Industry

- IsCustomerPortal - read only
- IsDeleted - read only

- IsPartner - read only

- Name

- Ownerld - reference to a Salesforce user that is defined if the account is used for
defining a Customer Portal User.

- Ownership

- Phone

- PhotoUrl

- Rating

- Site

- ShippingCity

- ShippingCountry

- ShippingPostalCode

143

- ShippingState
- ShippingStreet
- Type

- Website

2.18.3.2. Supported Contact Attributes

- Accountld - reference to a Salesforce account that is defined if the contact is used for
defining a Customer Portal User.

- AssistantName
- Birthdate

- Department

- Description

- Email

- Fax

- FirstName

- 1d - the identifier of the contact; is returned as SPML identifier in the SPML ADD resonse;
must be used as SPML identifier in an SPML MODIFY or DELETE request or in SPML
SEARCH request if a single object is searched

- IsDeleted - read only
- HomePhone

- LastName

- LeadSource

- MailingCity

- MailingCountry

- MailingPostalCode
- MailingState

- MailingStreet

- MobilePhone

- Name

- OtherCity

- OtherCountry

- OtherPhone

- OtherPostalCode

- OtherState

- OtherStreet

- Ownerld - reference to a Salesforce user that is defined if the contact is used for
defining a Customer Portal User.

144

- Phone
- PhotoUrl
. Salutation

- Title

2.18.3.3. Supported Permission Set Attributes

- Description

- |Id - the identifier of the permission set; is returned as SPML identifier in the SPML ADD
resonse; must be used as SPML identifier in an SPML MODIFY or DELETE request or in
SPML SEARCH request if a single object is searched.

- Licenseld
- Name

- Profileld

2.18.3.4. Supported Profile Attributes

- Description

- Id - the identifier of the profile; is returned as SPML identifier in the SPML ADD resonse;
must be used as SPML identifier in an SPML MODIFY or DELETE request or in SPML
SEARCH request if a single object is searched.

- Name
- UserLicenseld

- UserType

2.18.3.5. Supported User Attributes

- Alias - mandatory in ADD operations.

- City

- CommunityNickName - mandatory in ADD operations; must be unique.
- CompanyName

- Country

- Department

- Division

- Email - mandatory.

- EmailEncodingKey - mandatory in ADD operations.
- EmployeeNumber

- Extension

- Fax

- FirstName

145

- Id - the identifier of the user; is returned as SPML identifier in the SPML ADD resonse;
must be used as SPML identifier in an SPML MODIFY or DELETE request or in SPML
SEARCH request if a single object is searched.

- IsActive

- LanguagelocaleKey - mandatory in ADD operations.
- LastName

- LocaleSidKey - mandatory.

- MobilePhone

- Password

- Phone

- Profileld - mandatory.

- PostalCode

- State

- StatusInfo__c - customer-specific attribute.

- Street

- TimeZoneSidKey - mandatory in ADD operations.
- Title

- Username - mandatory in ADD operations; must be, unique and in the form of an e-mail
address (for example, john@acme.com).

2.18.3.6. Operational Attributes

All SPML requests contain a section for operational attributes. In this section, you specify
the object type for your SPML request.

In the operational attribute objtype you can use the following values:

- Account for Salesforce account objects

- Contact for Salesforce contact objects

- PermissionSet for Salesforce permission set objects
- Profile for Salesforce profile objects

- User for Salesforce user objects

Here is a sample operational attribute section for handling a Salesforce user:

<spml:operationalAttributes>
<spml:attr name="objtype">
<dsml:value type="string">User</dsml:value>
</spml:attr>

</spml:operationalAttributes>

146

mailto:john@acme.com

Note that for all requests, you must specify the OperationalAttributes section and define
the kind of object.

In AddRequest, no Spml-ldentifier is set. The Spml-Identifier of the new object that has
been created in Salesforce and returned in the AddResponse.

All other requests use the Spml-Identifier in the request. For search operations, the Smpl-
Identifier is optional. If you omit it, you should set the scope operational attribute to
subtree to initiate a search with filter.

The following sections describe the operation details.

2.18.3.7. AddRequest

The following example request adds a user object:

<spml:addRequest xmlns="urn:oasis:names:tc:SPML:1:0Q"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="add_01">
<spml:operationalAttributes>
<spml:attr name="objtype">
<dsml:value type="string">user</dsml:value>
</spml:attr>
</spml:operationalAttributes>
<spml:attributes>
<dsml:attr name="Username">
<dsml:value>Miller.Tom@My-Company.com</dsml:value>
</dsml:attr>
<dsml:attr name="LastName">
<dsml:value>Miller</dsml:value>
</dsml:attr>
<dsml:attr name="FirstName">
<dsml:value>Tom</ dsml:value>
</dsml:attr>
<dsml:attr name="CompanyName">
< dsml:value>My-Company</dsml:value>
</dsml:attr>
<dsml:attr name="Department">
<dsml:value>Sales</dsml:value>
</dsml:attr>
<dsml:attr name="City">
<dsml:value>Munich</dsml:value>

147

</dsml:attr>

<dsml:attr name="Country">
<dsml:value>US</dsml:value>

</dsml:attr>

<dsml:attr name="EmployeeNumber">
<dsml:value>1234</dsml:value>

</dsml:attr>

<dsml:attr name="Alias">
<dsml value>TMill</dsml value>

</dsml:attr>

<dsml:attr name="Password">
<dsml value>dirxdirxl</dsml value>

</dsml:attr>

<dsml:attr name="IsActive">
<dsml value>true</dsml value>

</dsml:attr>

<!-- Chatter Free User -->

<dsml:attr name="Profileld">
<dsml:value>00ei10000001QzcCAAS</ dsml:value>

</dsml:attr>

<dsml:attr name="EmailEncodingKey">
<dsml:value>IS0-8859-1</dsml:value>

</dsml:attr>

<dsml:attr name="TimeZoneSidKey">
<dsml:value>America/Los_Angeles</dsml:value>

</dsml:attr>

<dsml:attr name="LocaleSidKey">
<dsml:value>en_US</dsml:value>

</dsml:attr>

<dsml:attr name="LanguagelocaleKey">
<dsml:value>en_US</dsml:value>

</dsml:attr>

<dsml:attr name="Email">
<dsml:value>Miller.Tom@My-Company.com</dsml:value>

</dsml:attr>

<dsml:attr name="CommunityNickname">
<dsml:value>Tom-Miller-1</dsml:value>

</dsml:attr>

</spml:attributes>
</spml:addRequest>

148

2.18.3.8. ModifyRequest

The (user) modify request modifies a user in Salesforce. The same attributes as in

AddRequest are supported.

The (profile) modify request modifies a profile in Salesforce. The only attribute that can be

modified is Description.

The (permission set) modify request modifies a permission set in Salesforce. The only

attribute that can be modified is Description

The following example request modifies a user object:

<spml:modifyRequest xmlns="urn:oasis:names:tc:SPML:1:0"

xmlns:spml="urn:oasis:names:tc:SPML:1:0"

xmlns:dsml="urn:oasis:names:tc:DSML:2:Q:core"

requestID="mod_02"
>
<spml:identifier
type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:i1d>00510000003F84dAAC</spml:id>
</spml:identifier>
<spml:operationalAttributes>

<spml:attr name="objtype">

<dsml:value type="string">user</dsml:value>

</spml:attr>
</spml:operationalAttributes>

<spml:modifications>

<spml:modification name="Title" operation="replace">

<dsml:value>Dr.</dsml:value>

</spml:modification>

<spml:modification name="City" operation="replace">

<dsml:value>Munich</dsml:value>
</spml:modification>
</spml:modifications>

</spml:modifyRequest>

2.18.3.9. DeleteRequest

The delete request is used to delete an object from a Salesforce site.

Important: The identifier for each delete request must be set to the group name.

The delete request does not require additional attributes.

149

The following example request deletes a user object:

<spml:deleteRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="delete_01">
<spml:identifier type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:1d>00510000003FAX9AAO</spml:id>
</spml:identifier>
<spml:operationalAttributes>
<spml:attr name="objtype">
<dsml:value type="string">user</dsml:value>
</spml:attr>
</spml:operationalAttributes>
</spml:deleteRequest>

2.18.3.10. SearchRequest

The search request is used to retrieve either an object by its name (defined in the
“searchBase” XML component) or by a filter.

The following example requests search users. The first search request (search-01) searches
the user object with the name; the second search request (search-02) searches the user
objects with a filter:

<!-- search one user in SalesForce -->
<spml:searchRequest requestID="search-01"
xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">
<spml:searchBase type="urn:oasis:names:tc:SPML:1:Q#DN">
<spml:i1d>00510000003FAX9AAO< /spml:id>
</spml:searchBase>
<spml:operationalAttributes>
<spml:attr name="objtype">
<dsml:value type="string">user</dsml:value>
</spml:attr>
<spml:attr name="scope">
<dsml:value type="string">base</dsml:value>
</spml:attr>
</spml:operationalAttributes>

<spml:attributes>

150

<dsml:
<dsml:
<dsml:
<dsml:
<dsml:
<dsml:

attribute
attribute
attribute
attribute
attribute
attribute

</spml:attributes>

</spml:searchRequest>

<l—search several users in SalesForce with filter -->

name="Id"/>
name="Username" />
name="LastName" />
name="FirstName"/>
name="Name" />

name="CompanyName" />

<spml:searchRequest requestID="search-02"

<spml:searchBase type="urn:oasis:names:tc:SPML:1:0#DN">

xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">

<spml:id></spml:id>

</spml:searchBase>

<spml:operationalAttributes>

<spml:attr name="objtype">

<dsml:value type="string">user</dsml:value>

</spml:attr>

<spml:attr name="scope">

<dsml:value type="string">subtree</dsml:value>

</spml:attr>
</spml:operationalAttributes>

<spml:attributes>

<dsml:
<dsml:
<dsml:
<dsml:
<dsml:
<dsml:

attribute
attribute
attribute
attribute
attribute
attribute

</spml:attributes>
<spml:filter>

name="Id"/>
name="Username" />
name="LastName" />
name="FirstName" />
name="Name" />

name="CompanyName" />

<dsml:or>

<dsml:equalityMatch name="CompanyName">

<dsml:value>Atos</dsml:value>

</dsml:equalityMatch>

<dsml:equalityMatch name="Alias">

<dsml:value>mgoet</dsml:value>

</dsml:equalityMatch>

151

</dsml:or>
</spml:filter>

</spml:searchRequest>

2.18.4. Configuration

Here is a sample configuration snippet for the Salesforce connector:

<connector

role="connector"

className="net.atos.dirx.dxi.connector.salesforce.SalesForceConnector
name="ts"
version="1.00">
<connection
type="SalesForce"
user="<your user name>"
password="<your password>"
server="<your Salesforce installation, e.g.
login.salesforce.com>"
port=""
ssl="true"
>
<property name="debugfile" value="<your output file name>"/>
<property name="clientId" value="<your client id>"/>
<property name="clientSecret" value="<your client secret>"/>
<property name="securityToken" value="<your security token>"/>
<property name="loginPath" value="/services/oauth2/token" />
<property name="path" value="e.g. /services/data/v30.0" />
<property name="proxyHost" value="<IP address of your HTTP
proxy>" />
<property name="proxyPort" value="<<port of your HTTP proxy>"
/>
</connection>

</connector>
The Salesforce connector supports the following standard properties of the XML
configuration file's <connection> element:

server (mandatory) - the Salesforce login site, for example, login.salesforce.com.

152

port - not used.

user (mandatory) - the Salesforce user name of the Salesforce user that has administrative

rights.
password (mandatory) - the password of the Salesforce user.

ssl (mandatory) - a flag that should normally be set to true because you access the
Salesforce installation using HTTPS; for example, https:/login.salesforce.com.

Supported non-standard properties include:

clientld (mandatory) - the consumer key of your registered remote application. For details,

see the section on the Salesforce workflow in the chapter "Using the Target System
(Provisioning) Workflows" in the DirX Identity Application Development Guide.

clientSecret (mandatory) - the consumer secret of your registered remote application. For
details, see the section on the Salesforce workflow in the chapter "Using the Target System

(Provisioning) Workflows" in the DirX Identity Application Development Guide.

debugFile (optional) - the name of the file to which all SPML requests and responses are
written.

loginPath (mandatory) - the HTTP path for performing OAuth authentication.

path (mandatory) - the HTTP path for performing the requests using the REST API; for
example, ./services/data/v30.0. Note that the path contains the Salesforce REST API
version; for example, 30.0.

proxyHost (optional) - the IP address of your HTTP proxy server.
proxyPort (mandatory) - the port of your securityToken.

securityToken (mandatory) - the security token that is assigned to your Salesforce user
account when registering the user in Salesforce (the securityToken you will receive as e-
mail from Salesforce).

Here are some hints for the handling of path and loginPath:

Using the following snippet:

server="login.salesforce.com"
loginPath="/services/oauth2/token"
path="/services/data/v30.0"

the Salesforce connector:

- Connects to Salesforce using https:/login.salesforce.com/="/services/oauth2/token".

- Receives an instance URL from Salesforce; for example, nal5.salesforce.com.

153

- Sends a search request to Salesforce using
https:/nal5.salesforce.com//services/data/v30.0/query.

- Sends an update request to Salesforce using
https:/nal5.salesforce.com//services/data/v30.0/sobjects/Account or
https:/nal5.salesforce.com//services/data/v30.0/sobjects/Contact or
https:/nal5.salesforce.com//services/data/v30.0/sobjects/PermissionSet or
https:/nal5.salesforce.com//services/data/v30.0/sobjects/Profile or
https:/nal5.salesforce.com//services/data/v30.0/sobjects/User

2.19. SAP ECC UM Connector

The following sections provide information about the SAP ECC UM connector.

Most of the connector and its configuration is described in the section about the SAP ECC
UM Agent. This section describes how to extend the connector by defining a filter that can
also perform BAPI and RFC calls. Customers can use this filter to extend the capability of
the SAP ECC UM connector.

It is assumed that the reader is familiar with SAP’s Java Connector (JCo). JCo is SAP's Java
middleware and allows SAP customers and partners to build SAP-enabled components
and applications in Java easily.

2.19.1. Overview

The Java-based SAP ECC UM connector runs inside the DirX Identity Connector Integration
Framework. It converts SPML requests to the appropriate SAP BAPI USER object interface
and converts the results and responses of those interfaces back to SPML results and
responses.

2.19.2. Request and Response Handling

This section contains an example of a filter that performs a call to the same ECC server as
the connector to check if a user exists. This can be used, for example, to change an add
request to a modify request. The example only contains the parts to set up a connection
and to perform the existence check, not the part to change the SPML request. You can find
the source code of the complete example for JCo version 3.0.x on your DVD under

Additions/SampleConnectorFilter/jco3/java

2.19.2.1. Example Filter Implementation for JCo Version 3

As noted in the DirX Identity Integration Framework Guide, a filter must implement the
interface ConnectorFilter. If the filter needs the configuration of the connector, it must also
implement the interface ConnectorFilterConfig.

This section describes the filter implementation for JCo version 3. JCo version 3 has
changed in incompatible ways from previous versions. For example, the connection
management has completely changed. You now use a JCoDestination, which just identifies
a physical destination to a function call.

154

The filter requires at least a variable to hold the successor, the connector configuration, and
the JCo variable for a destination. You can use a helper class in the UM connector to
simplify the process of interpreting the connector configuration for the proper connection
parameters and to create a JCoDestination. The class is named Configuration. Here are the
specifications for these variables:

import com.sap.conn.jco.*:
import siemens.dxm.connector.sapUM.Configuration;
public class TestFilterWithConnectorCfg implements ConnectorFilter,
ConnectorFilterConfig {
ConnectorFilter successor = null;
private DxmConnectorConfig connCfg = null;
private JCoDestination destination;

private Configuration myConfig;

Before the open() method can be called, the setConnectorConfiguration() method must be
called to provide the connector configuration:

public void setConnectorConfiguration(DxmConnectorConfig
connectorConfig) {
connCfg = connectorConfig;

In the open() method, the filter gets its own configuration and can set up the Configuration
variable.

The Configuration helper class includes the following three methods:

- A constructor to create and initialize the instance

- A method to get a JCo destination from the JCo pool

- A method to release the used pool.
You can use the Configuration instance to get one or more destinations objects for the
same connection as the connector will use, including the same user and his credentials.

The Configuration class does not support the use of a different user and/or connection. If
you need this function, you must implement it on your own.

For more information about JCo pooling, read the JCo documentation.

public void open(DxmFilterConfig config, Context context) throws
DxmConnectorException §
if (connCfg != null) {
try {

155

myConfig = new Configuration(connCfg, "myPool");
destination = myConfig.getDestinationFromPool();
? catch (JCoException e) {

n

throw new DxmConnectorException("Open Filter " + name +"
failed:" , e);
3

? else §

throw new DxmConnectorException(name + ": Connector configuration
not set");

3
5

The close() method releases the pool and calls the close() method of its successor:

public void close() {

try §

if (destination != null) ¢
myConfig.releasePool();

5

? catch(Exception e) {
System.err.println(..)

3

successor.close();

The main work is done in the doFilter() method. In this example, only add requests are
filtered, and no responses:

public SpmlResponse doFilter(SpmlRequest request) throws
DxmConnectorException §
if (request instanceof AddRequest) §
request = doCallECC((AddRequest) request);

h

return successor.doFilter(request);

The doCallECC() method performs the simple BAPI call BAPI_USER_EXISTENCE_CHECK to
check if a user exists. First, it extracts the identifier from the add request:

private SpmlRequest doCallECC(AddRequest request) throws

156

DxmConnectorException §
Identifier id = request.getIldentifier();
if (id.getType() != null && id.getType().toString

() .equalsIgnoreCase(IdentifierType.VALUE_2.toString()))
IdentifierChoice idchoice = id.getIdentifierChoice();
String username = idchoice.getId();

try §

The destination is already set up in the open() method. It uses the destination to get the
ECC repository to set up a function. A JCo function has an execute() method which uses a
destination parameter:

// get a repository from the destination

JCoRepository repository = destination.getRepository();

// using BAPI if user exists

JCoFunctionTemplate fctExistenceTempl = (JCoFunctionTemplate)
repository.getFunctionTemplate("BAPI_USER_EXISTENCE_CHECK");
JCoFunction fctExistence = fctExistenceTempl.getFunction();
// get the import parameter list

JCoParameterList plImp = fctExistence.getImportParameterList();
// set parameter, here the user name
plImp.setValue("USERNAME", username);

// execute BAPI EXISTENCE_CHECK
fctExistence.execute(destination);

// Check return structure

JCoStructure returnSt = fctExistence.getExportParameterlList
() .getStructure("RETURN");

If the returned message type is informational and the message number is 88, the user
exists; if it is 124, the user does not exist. Any other type or number is a failure.

For the full example, see the source code on the DVD.

2.19.3. Configuration

To use a filter, you must specify a <port> element. The <port> element combines a list of
<filter> elements with one <connector>. It specifies the port to a target system and is
required when SPML requests from the controller to a connector must be filtered.

The following snippet shows an example from a configuration file. The filter can have its
own parameters (like “myAttribute”):

<port connector="SAP UM Agent" mode="inout">

157

<filter className="yourFilterClass" name="filterName">
<property name="myAttribute" value="myValue" />
</filter>
<connector role="connector"
className="siemens.dxm.connector.sapUM.sapUMuser" name="SAP UM Agent”
version="2.00">
<connection type="SAP_R3_UM"
user="theUser"
password="password"
server="server-address">
<property name="logonVariant" value="0" />
<property name="client" value="nnn" />

<property name="systemID" value="nn" />

</connection>
</connector>
</port>

2.20. SharePoint Connector

The Java-based SharePoint connector is built with the DirX Identity Connector Integration
Framework and can be used for validation workflows in the C++-based Server and real-time
workflows in the 1dS-J-Server. Like all framework-based agents, it gets SPML requests from
the Identity side and converts them to the appropriate SOAP requests on the SharePoint
side and vice versa.

The SharePoint connector offers the following functionality:

- Add a group to a SharePoint site.
- Modify group information including members and roles.
- Delete a group from a SharePoint site.

- Perform searches on SharePoint sites to retrieve group information including members
and roles.

2.20.1. Overview

The SharePoint connector implements the APl methods "add(...)", "modify(..)", "delete(...)"
and "search(..)". They represent the corresponding SPML requests"AddRequest",
"ModifyRequest", "DeleteRequest" and "SearchRequest".

The connector uses the standard SharePoint Web Service methods for UserGroup handling
(http://yourserver/_vti_bin/UserCroup.asmx).These Windows SharePoint Web Services (WSS
3.0) have not changed since SharePoint Server 2010. Although they are no longer
maintained, they are still supported.

158

http://yourserver/_vti_bin/UserGroup.asmx).These

The SOAP requests and responses are handled via the Axis framework 1.4.

A connection is always made to one specific site on the SharePoint server.

2.20.2. Limitations

This section describes SharePoint connector limitations and restrictions.

Groups

You cannot change the description or the default user login name in a modify request.
Please note that at this time all operations are group based.

Users

You cannot create, modify or delete users in SharePoint. You can only assign users that
already exist in the active directory or the SharePoint site to a group or remove them from
a group.

Roles

You cannot create, modify or delete roles in SharePoint. You can only assign roles that
already exist in the SharePoint site to a group or remove them from a group.

Permissions

You cannot assign permissions for SharePoint Welbs or Lists.

2.20.3. Request and Response Handling

This section describes the supported requests and attributes for the SharePoint connector.

2.20.3.1. AddRequest

The add request creates a new group in the SharePoint site. The following attributes are
supported:

- objectClass (mandatory)
Must be "Group".

- groupName (mandatory)
Name for the new group.

- ownerType
The type of the group owner (either "User" or "Group").
If no ownerType is passed in the request the value is set to "User" and the bind account
is used as owner for the new group.

- ownerldentifier
The name of the group owner (either a valid username in the active directory or another
group in the same SharePoint site).
If no ownerldentifier is passed in the request the value is set to the username of the

159

bind account.

- defaultUserLoginName
A valid username in the active directory.
If no defaultUserLoginName is passed in the request the value is set to the username of
the bind account.

- description
A short description for the new group.

- member
A list of valid usernames in the active directory.

- role
A list of valid roles in the SharePoint site.

Example Request:

<?xml version="1.0" encoding="UTF-8" ?>
<batchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="batch-1"
processing="urn:oasis:names:tc:SPML:1:0@#sequential”
execution="urn:oasis:names:tc:SPML:1:0@#synchronous”
onError="urn:oasis:names:tc:SPML:1:0#exit">
<spml:addRequest requestID="add-1">
<spml:identifier type="urn:oasis:names:tc:SPML:1:0#GenericString">
<spml:id>NewGroupName</spml:id>
</spml:identifier>
<spml:attributes>
<spml:attr name="objectclass"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>Group</dsml:value>
</spml:attr>
<spml:attr name="groupName" xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>NewGroupName</dsml:value>
</spml:attr>
<spml:attr name="ownerType" xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>User</dsml:value>
</spml:attr>
<spml:attr name="ownerIdentifier"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>M0OSS2007\ossadm</dsml:value>
</spml:attr>
<spml:attr name="defaultUserLoginName"

160

xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>MOSS2007\ossadm</dsml:value>

</spml:attr>

<spml:attr name="description”

xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>Description for the new group</dsml:value>
</spml:attr>

<spml:attr name="member" xmlns="urn:oasis:names:tc:DSML:2:Q:core">
<dsml:value>moss20@7\usernamel</dsml:value>
<dsml:value>moss20@7\username2</dsml:value>

</spml:attr>

<spml:attr name="role" xmlns="urn:oasis:names:tc:DSML:2:@:core">
<dsml:value>Full Control</dsml:value>

</spml:attr>

</spml:attributes>

</spml:addRequest>

</batchRequest>

2.20.3.2. ModifyRequest

The modify request can be used to change group information, to add and remove group
members and to add and remove roles.

Important: The identifier for each modification request must be set to the group name. If
the request modifies the group name then this is the old group name.

The following attributes are supported:

- groupName (add/replace)
A new name for the group.

- ownerType (add/replace)
The type of the new group owner (either "User" or "Group").

- ownerldentifier (add/replace)
The name of the group owner (either a valid username in the active directory or another
group in the same SharePoint site).

- member (add/remove)
A list of valid usernames in the active directory.
No error is raised if an add modification is performed for a username that is already a
member of the group.
No error is raised if a delete modification is performed for a username that is not a
member of the group.

- role (add/remove)
A list of valid roles in the SharePoint site.
No error is raised if an add modification is performed for a role that is already assigned

161

to the group.
No error is raised if a delete modification is performed for a role that is not assigned to
the group

- The properties "defaultUserLoginName" and "description" cannot be modified and are
therefore ignored.

Example Request:

<?xml version="1.0" encoding="UTF-8" ?>
<batchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="batch-1"
processing="urn:oasis:names:tc:SPML:1:0#sequential”
execution="urn:oasis:names:tc:SPML:1:0#synchronous”
onError="urn:oasis:names:tc:SPML:1:0Q#exit">
<spml:modifyRequest requestID="mod-1">
<spml:identifier
type = "urn:oasis:names:tc:SPML:1:0#GenericString">
<spml:id>GroupName</spml:id>
</spml:identifier>
<spml:modifications>
<spml:modification name="groupName" operation="replace">
<dsml:value>NewGroupName</dsml:value>
</spml:modification>
<spml:modification name="ownerIdentifier" operation="replace">
<dsml:value>Human Resources Owners</dsml:value>
</spml:modification>
<spml:modification name="ownerType" operation="replace">
<dsml:value>Group</dsml:value>
</spml:modification>
<spml:modifications>
<spml:modification name="member" operation="add">
<dsml:value>moss2007\username3</dsml:value>
<dsml:value>moss20@7\username4</dsml:value>
</spml:modification>
<spml:modification name="role" operation="add">
<dsml:value>Design</dsml:value>
<dsml:value>Contribute</dsml:value>
</spml:modification>
</spml:modifications>
</spml:modifications>

162

</spml:modifyRequest>
</batchRequest>

2.20.3.3. DeleteRequest

The delete request is used to delete a group from a SharePoint site.
Important: The identifier for each delete request must be set to the group name.
The delete request does not require additional attributes.

Example Request:

<?xml version="1.0" encoding="UTF-8" ?>
<batchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
requestID="batch-1"
processing="urn:oasis:names:tc:SPML:1:0#sequential”
execution="urn:oasis:names:tc:SPML:1:0#synchronous”
onError="urn:oasis:names:tc:SPML:1:0Q#exit">
<spml:deleteRequest requestID="del-1">
<spml:identifier
type="urn:oasis:names:tc:SPML:1:0#GenericString">
<spml:id>GroupName</spml:id>
</spml:identifier>
<spml:attributes>
<spml:attr name="objectclass"
xmlns="urn:oasis:names:tc:DSML:2:0:core">
<dsml:value>Group</dsml:value>
</spml:attr>
</spml:attributes>
</spml:deleteRequest>
</batchRequest>

2.20.3.4. SearchRequest

The search request is used to retrieve group data such as owner information, members and
roles. The search can either be restricted to one specific group or return all groups in the

current site.

There are two ways to filter on one specific group:

- Define a filter with an equality match on the attribute "groupName".

163

- Limit the search scope to "base" and set the request identifier to the group name

If the search is limited to one group name and the group cannot be found in the current
site, then the search return the error code NO_SUCH_OBJECT.

Supported attributes for the search result include:

- objectClass
Always returns "Group".

- groupName

- ownerType
The type of the group owner (either "User" or "Group").

- ownerldentifier
The name of the group owner (either an active directory user or a group in the same
site).

- description

- member
The user names of all group members.

- role

A list of all role names assigned to the group
- site

Returns the name of the current site

Example Request:

<?xml version="1.0" encoding="utf-8"?>
<spml:searchRequest requestID="search-01"
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
xmlns:spml="urn:oasis:names:tc:SPML:1:0">
<spml:filter>
<dsml:and>
<dsml:equalityMatch name="groupName">
<dsml:value type="string">SearchGroupName</dsml:value>
</dsml:equalityMatch>
<dsml:equalityMatch name="objectclass">
<dsml:value type="string">Group</dsml:value>
</dsml:equalityMatch>
</dsml:and>
</spml:filter>
<spml:attributes>
<dsml:attribute name="groupName"/>
<dsml:attribute name="ownerIdentifier"/>

<dsml:attribute name="ownerType"/>

164

<dsml:attribute
<dsml:attribute
<dsml:attribute
<dsml:attribute
<dsml:attribute

name="description"/>
name="member" />
name="role"/>
name="objectclass"/>

name="site"/>

</spml:attributes>
</spml:searchRequest>

2.20.4. Configuration

Here is a sample configuration snippet for the SharePoint connector:

<connector

role="connector"

className="

siemens.dxm.connector.sharepoint.SharePointConnector"

name="ts" version="1.00">

<connection type="Sharepoint”

server="sharepoint-2016-01"

port="80"

user="domain-0@1l\admin"
password="!xxxYYY123"

ssl="false"

<property name="endpoint" value="http://sharepoint-2016-
01/sites/DXI_TestSiteCollection/SiteA"/>

<property name="searchGroupsFromSiteCollection" value="false"/>

<property name="debugfile" value="dbgOut.xml"/>

</connection>

</connector>

2.20.4.1. Supported Connection Parameters

The SharePoint connector supports the following standard properties of the XML
configuration file's <connection> element:

server - (mandatory); the SharePoint server name.

port - (mandatory); the SharePoint server port number listening for HTTP requests

user - (mandatory); the bind user in <domain>\<name> syntax with admin rights in

SharePoint.

password - (mandatory); user password.

165

ssl - (optional); flag whether to connect over SSL to the SharePoint server or not. Default is
false.

Supported non-standard properties include:
endpoint - (mandatory); the base site from where the group search starts.

searchGroupsFromSiteCollection - (optional); if set to true, all groups from the complete
Site collection — also those from sites parallel to the specified base site- are searched for. If
set to false (the default), only the groups from the specified (sub)site are searched for.

debugFile - (optional); if specified, all SPML requests and responses are written to the
configured file.

2.21. SPMLv1 Connector

The Java-based SPML vl SOAP connector runs inside the DirX Identity Connector
Integration Framework. It sends SPML SOAP requests over HTTP to the configured
endpoint and receives SPML SOAP responses from a SOAP service.

There are two flavors of the connector identified by their class name in the package
siemens.dxm.connector.framework.soap:

- DxaSpmlSoapProxy: produces SPML requests according the latest OASIS SPMLVI
standard (http://www.oasis-open.org/committees/download.php/4138/0s-pstc-spml-
schema-1.0.xsd).

- SpmlSoapProxy: produces SPML requests according a more recent draft of SPMLv1 that
is not considered the official release any more (http://www.oasis-open.org/committees/
download.php/2396/cs-pstc-spml-schema-1.0.xsd).

The connector supports all SPMLV1 requests and the corresponding methods of the
connector APIl: addRequest, modifyRequest, deleteRequest, searchRequest,
extendedRequest, cancelRequest, batchRequest.

The connector supports basic authentication as well as server and client-side SSL/TLS
authentication. It does not support WS-Security protocols yet.

The connector does not support connection pooling. It uses the Axis "maintainSession"
feature together with a configurable time-out in order to hold connection between
consecutive requests.

2.21.1. Prerequisites

The connector is part of the Identity Java Connector Integration Framework and uses
Apache Axisl V1.4 for sending and receiving SOAP requests and responses over HTTP. As a
result, the following libraries need to be in the classpath, which are delivered together with
the framework:

axisjar

saaj-apijar and saaj-impl.jar

166

http://www.oasis-open.org/committees/download.php/4138/os-pstc-spml-schema-1.0.xsd
http://www.oasis-open.org/committees/download.php/4138/os-pstc-spml-schema-1.0.xsd
http://www.oasis-open.org/committees/download.php/2396/cs-pstc-spml-schema-1.0.xsd
http://www.oasis-open.org/committees/download.php/2396/cs-pstc-spml-schema-1.0.xsd

jaxrpc-apijar and jaxrpc-rijar
saaj-apijar and saaj-impl.jar
commons-discovery.jar

commons-logging.jar

2.21.2. Configuration

The connector receives its configuration by the connector framework in a format that is
specified there and reflects an XML document. Note that Identity Manager presents
configuration options in a more convenient manner. Especially bind credentials, SSL flag
and service address are typically collected from appropriate LDAP entries found by
selecting the appropriate connected directory and bind profile.

The following discusses the configuration options based upon the XML format. These
options are either specified attributes in the XML schema of the element <connection>
(referred to as standard properties) or may be specified as <property> sub-elements of the
<connection> element (referred to as non-standard properties).

The connector evaluates the following standard and non-standard properties:
Standard attributes:

url

(optional) The endpoint where to send the request;
for example, http://localhost:8080/spml/spmiservice.

You either need to specify the SOAP endpoint completely in this url parameter or
provide the parts in the attributes server, port, ssl and the non-standard property path.

A protocol selector of "https" requests SSL/TLS protocol. In this case, you
must ensure that the certificate of the addressed Web server is
imported in the trust store of the Java runtime. See the JDK
documentation (keytool) for details.

server

(optional) If no url is given, this property provides the server part of the url. In the above
sample, this would be "localhost".

port
(optional) If no url is given, this property provides the port of the url. In the above sample,
this would be "8080".

ssl

(optional) If no url is given, this property tells the connector which protocol to use. If true,
https is selected. Otherwise, the connector sets http. In the above sample, a missing ssl
property or the value false would apply.

167

http://localhost:8080/spml/spmlservice

user
(optional) the user name used for HTTP basic authentication.

password
(optional) the password used for HTTP basic authentication.

trustStore

(optional) the path to the trust store file, which contains the certificate of the server to be
used for SSL/TLS server-side authentication.

trustStorePassword
(optional) the password that is required to read the certificate from the trust store.

keyStore

(optional) the path to the key store file that contains the private key or certificate to be
used for SSL/TLS client authentication.

keyStorePassword
(optional) the password that is needed to read the key from the key store.

keyStoreAlias
(optional) the alias name to identify the private key in the key store.

The SOAP connector evaluates the following non-standard properties beneath the
<connection> element:

maintainSession

(optional) boolean (true / false); if set to "true" (the default), maintains the HTTP session
to the target Web service between consecutive requests and thereby saves
performance.

path

(optional) If no url is given, this property provides the path of the url. In the above
sample, this would be "spml/spmlservice".

timeout
(optional) The socket timeout in seconds. Default is 60.

includePrefixesForXsdPrimitiveTypes

(optional) boolean (true / false); if set to "false" (the default), the DSML value types are not
declared with full XML name. Only the XML attribute type is declared and a common
string is used as its value.

httpHeaders

(optional) multi-value string in the format "*httpHeaderName httpHeaderValue"* (for
example "X-Requested-With XMLHttpRequest"); if set, each SOAP request sent over
HTTP will contain additionally these custom HTTP headers. Note that a custom HTTP
header name and its value must be separated by a space.

168

Here is a configuration sample using the url property to denote the SOAP endpoint using
the SPMLv1 compliant connector implementation:

<connector role="connector"
className="siemens.dxm.connector.framework.soap.DxaSpmlSoapProxy"
name="SPML connector">
<connection type="SOAP"

url="http://localhost:8080/spmlsoapservice/services/SpmlSoapService"
/>

</connector>

The following is an alternative with the non-compliant SPML connector class using the
properties server, port, path and ssl to denote the SOAP endpoint.

<connector role="connector"
className="siemens.dxm.connector.framework.soap.SpmlSoapProxy"
name="SoapConnector">
<connection type="SOAP"

server="localhost" port="8080" ssl="false"

<property name="path"
value="spmlsoapservice/services/SpmlSoapService" />
</connection>

</connector>

2.22. SPMLVIToV2 Connector

The SpmIVIToV2 SOAP connector implements the Identity Java Connector Integration
Framework’'s DxmConnector interface and connects to SPMLv2 Web services. For details of
the OASIS SPML Service Provisioning Markup Language, see http://www.oasis-open.org/
committees/provision/docs.

2.22.1. Overview

The connector implements the APl methods "add(...)", “"modify(..)" "delete(...)"and
"search(..)". They represent the corresponding SPMLV1 requests AddRequest,
ModifyRequest, DeleteRequest and SearchRequest. It transforms each of them to the
corresponding SPMLV2 request and sends them to the configured URL of an SPMLv2
service provider. The connector transforms the received SPMLV2 response into the
corresponding SPMLVI response and returns it at the interface.

The connector supports the SPML2-DSML profile.

169

http://www.oasis-open.org/committees/provision/docs
http://www.oasis-open.org/committees/provision/docs

The following sections describe how the connector handles the requests and responses,
the connector’s configuration, and the extension points to adapt to non-standard
capabilities of the SPMLV2 service.

2.22.2. Prerequisites
The SPMLV2 connector is contained in
dxmSpmIVIToV2Connector.jar.

The connector is based on the Identity Java Connector Integration Framework and uses
Apache Axisl V1.4 for sending and receiving SOAP requests and responses over HTTP. The
framework is contained in the library

dxmConnector.jar.

The following libraries are required for SOAP handling with Axisl and are delivered together
with the framework:

axis.jar

saaj-apijar and saaj-impl.jar
jaxrpc-apijar and jaxrpc-rijar
saaj-apijar and saaj-impl.jar
commons-discovery.jar

commons-logging.jar
SPMLV2 classes are contained in

com.siemens.dxm.provisioning.jar

2.22.3. Request and Response Handling

This section describes how the connector transforms SPMLV1 to / from SPMLV2 requests
and responses.

2.22.3.1. General Aspects

This section describes general aspects of the connector’s request and response handling
operations.

2.22.3.1.1. SPMLV1 Identifier

SPMLv1 supports several identifier types, especially the DN type. The SomIVIToV2 connector
produces the type “GenericString” in responses, especially in search result entries. It ignores
the type in SPMLVI1 requests.

2.22.3.2. AddRequest

In an addRequest, the identifier is optional, both in SPMLv] and v2. The connector inserts a

170

psolD into the SPMLv2 addRequest, if the SPMLV1 addRequest has an identifier.

It inserts a targetID into the psolD, if one is configured or passed as an operational
attribute. The operational attribute overrides the configuration value.

The connector puts all attributes of the SPMLv1 request into the data section of the SPMLv2
request that are neither configured a reference, password or other capability attribute. In
case reference or capability attributes are configured the corresponding handlers are
invoked just after this. So they can update the SPMLV2 request and especially insert the
capability sections into the request.

The connector puts the returned attributes and capabilities from the SPMLV2 response into
the SPMLv1 addResponse.

If a password attribute name is configured or passed as an operational attribute and a
value is contained in the SPMLVI attributes, the connector sends a setPasswordRequest
after the addRequest. It delegates generation of the request to the password handler. If
either the addRequest or the setPasswordRequest fails, the connector returns an error
result code in the SPMLV1 addResponse to the controller.

2.22.3.3. ModifyRequest

The connector transforms the mandatory SPMLVI1 identifier into the SPMLv2 psolD and
adds the targetlD, if one is available as an operational attribute or in the configuration.

The connector transforms each SPMLvI modification to an SPMLv2-DSML modification for
all attributes of the SPMLv1 request that are neither configured as a reference, password or
other capability attribute. As prescribed by the SPML2-DSML profile, the modify operation
occurs two times in the SPMLV2 request as can be seen in the following sample:

<modification modificationMode="replace">
<dsml:modification name="description”
operation="replace">
<dsml:value>rolel for tests modified</dsml:value>
</dsml:modification>

</modification>

In case reference or capability attributes are configured the corresponding handlers are
invoked just after this. So they can update the SPMLV2 request and especially insert the
capability sections into the request.

The SPMLv1 modifyResponse only contains the identifier and no modifications.

If a password attribute name configured or passed as an operational attribute and a
modification is contained in the SPMLv] request, the connector sends a
setPasswordRequest after the modifyRequest. It delegates generation of the request to the
password handler. If either the modifyRequest or the setPasswordRequest fails, the
connector returns an error result code in the SPMLVI modifyResponse to the controller.

171

2.22.3.4. DeleteRequest

The connector simply transforms the mandatory SPMLv1 identifier into an SPMLv2 psolD
and includes the targetlD. No handlers are called.

2.22.3.5. SearchRequest

If the SPMLV1 operational attribute “scope” is set to “base”, the connector issues an SPMLv2
lookupRequest, otherwise a searchRequest.

2.22.3.5.1. Processing a lookupRequest

The SPMLv1 search base is transformed to the SPMLV2 psolD and the targetlD added.

The connector invokes the reference and capability handler so that they are able to insert
their capabilities into the SPMLV2 request.

The connector is responsible for putting the attributes of the SPMLV2 response that are not
configured as reference or capability attribute into the SPMLv1 search result entry, while
the reference and capability handler are responsible for their corresponding capabilities.

2.22.3.5.2. Processing a searchRequest

The SPMLv1 search base is transformed to the SPMLV2 psolD and the targetlD added.

If the SPMLV1 requested attributes, the connector requests “everything” as return data.
Each capability or reference attribute of the requested attributes is put as
“<includeDataForCapability../>" into the SPMLVv2 searchRequest.

The operational SPMLvV1 attribute “sizelimit” is taken as the SPMLVv2 “maxSelect”. The
connector strips off all reference or capability attributes from the filter. It's the responsibility
of the corresponding capability handlers to evaluate them. The reference handler as an
example could insert “<hasReference>" elements into the SPMLV2 request.

The connector invokes the reference and capability handler so that they are able to insert
their capabilities into the SPMLV2 request.

The connector is responsible for putting the attributes of each SPMLV2 response PSO that
are not configured as reference of capability attribute into the SPMLV1 search result entries,
while the reference and capability handler are responsible for their corresponding
capabilities.

If the SPMLV2 service provider does not return all PSO’s in one searchResponse, the
connector issues the necessary iterateRequest’s and includes their PSO's into the SPMLVI
response.

2.22.4. Configuration

The connector is configured according the Identity Java Connector Integration Framework.
It evaluates connector options and connection class (or XML element).

Here is a complete XML configuration sample:

172

<connector role="connector"
className =
"com.siemens.dxm.connector.spmlvltov2.SpmlV1ToV2Connector"
name="ts">
<connection type="spmlv2"
url="http://localhost:8088/spml/spmlservice"”
user="cn=DomainAdmin,cn=my-company”
password="dirx" >
</connection>
<property name="targetID" value="roles"/>
<property name="referenceAttributes”
value="dxrPermissionlLink, dxrRolelLink"/>
<property name="referenceHandler"
value="com.siemens.dxm.connector.spmlvltov2.handler.SimpleReferenceHa
ndler"/>
<property name="passwordAttribute"
value="userPassword" />
<property name="capabilityAttributes”
value="dxrRoleParams"/>
<property name="capabilityHandler"
value="com.siemens.dxm.connector.spmlvltov2.handler.RoleParamHandler"
/>

</connector>

2.22.4.1. Connection Options

The connection options specify the connection parameters to reach the remote SPMLv2
web service over a SOAP/HTTP transport. It evaluates the following parameters: First the
XML standard attributes of the <connection> element:

url: optional. The endpoint to which to send the request; for example,
“http://localhost:8080/spml/spmlservice”.

You must specify the SOAP endpoint completely in the url parameter or provide the parts
in the server, port and ssl standard properties and in the non-standard property path.

Note that a protocol selector of "https" requests SSL/TLS protocol. In this case, you must
ensure that the certificate of the addressed Web server is imported in the trust store of the
Java runtime. See the JDK documentation (keytool) for details.

server: optional. If no URL is given, this property provides the server part of the URL. In the
sample above, this is "localhost".

port: optional. If no URL is given, this property provides the port of the URL. In the sample

173

above, this is "8080".

ssl: optional. If no URL is given, this property tells the connector which protocol to use. If
true, https is selected; otherwise, the connector sets http. In the sample above, a missing
ssl property or the value false would apply.

user: optional; the user name used for HTTP basic authentication.
password: optional; the password used for HTTP basic authentication.

trustStore: optional; the path to the trust store file, which contains the certificate of the
server to be used for SSL/TLS server-side authentication.

trustStorePassword: optional; the password that is required to read the certificate from the
trust store.

keyStore: optional; the path to the key store file that contains the private key or certificate
to be used for SSL/TLS client authentication.

keyStorePassword: optional; the password that is needed to read the key from the key
store.

keyStoreAlias: optional; the alias name to identify the private key in the key store.

The SOAP connector evaluates the following non-standard properties beneath the
<connection> element:

path: optional. If no URL is given, this property provides the path or suffix of the URL. In the
above sample, this would be "spml/spmlservice".

maintainSession: optional, boolean (true / false); if set to true (the default), the SOAP
connector maintains the HTTP session to the target Web service between consecutive
requests and thus increases performance.

httpHeaders: optional, multi-value string in the format "*httpHeaderName
httpHeaderValue'* (for example "X-Requested-With XMLHttpRequest"); if set, each SOAP
request sent over HTTP will also contain these custom HTTP headers. Note that a custom
HTTP header name and its value must be separated by a space.

The following configuration snippet of the <connection> element shows a configuration

nou

where the URL is determined from the parts “ssl”, “server”, “port” and “path™:

<connection type="spmlv2"
ssl="false"

server="localhost"

port="8088"

user="cn=DomainAdmin, cn=my-company”
password="dirx">

<property name="path"

174

value="spml/spmlservice"/>

</connection>

2.22.4.2. Connector Options

The non-standard XML options beneath the <connector> element specify the connector’s
class name and determine the handling of SPMLv2 options and capabilities. They are all
optional and specified in XML <property ,,/> elements.

Note that all these options can be overridden per request. See the following section on
operational attributes for details.

targetlD: The target identifier to be used in all PSO identifiers in SPMLV2 requests. This
value must be set according the “listTargets” response of the SPMLV2 service.

referenceAttributes: A comma separated list of attribute names. These attributes in an
SPMLV1 request are expected to be handled as references in SPMLV2 requests and
responses.

The connector does not pass them as normal attributes or modifications to the SPMLv2
service; instead, it passes them to the configured reference handler.

referenceHandler: The class name of a reference handler.

A reference handler has to implement the interface
“com.siemens.dxm.connector.spmlvitov2.api.Spmlv2ReferenceHandler”. It is expected to
take the reference attributes from SPMLV1 requests and insert them as reference
capabilities into SPMLV2 requests and transform reference capabilities from SPMLv2
responses into attributes in SPMLV1 responses.

If reference attributes are configured, but no reference handler, the connector takes its
default reference handler implementation with the class name
“‘com.siemens.dxm.connector.spmlvitov2.handler.SimpleReferenceHandler”.

For more details on reference handling, see the section on reference handlers.
passwordAttribute: The name of the attribute, which contains the password.

The connector does not include the password as normal attribute or modification into the
SPMLV2 request; instead it delegates password handling to the configured password
handler.

passwordHandler: The class name of a password handler. A comma-separated list of
attribute names. These attributes in an SPMLvVI request are expected to be handled as
references in SPMLV2 requests and responses.

A password handler must implement the interface
“‘com.siemens.dxm.connector.spmlvitov2.api.Spmlv2PasswordHandler”. It is expected to
take the password attribute out of SPMLvV1 requests and insert it as password capability into
SPMLV2 requests.

175

The connector does not expect passwords to be contained in responses.

If a password attribute is configured, but no password handler is configured, the connector
takes its default password handler implementation with the class name
“‘com.siemens.dxm.connector.spmlvitov2.handler.DefaultPasswordHandler".

For more details on reference handling, see the section on password handlers.

capabilityAttributes: A comma-separated list of attribute names. These attributes in an
SPMLVI request are expected to be handled as capabilities in SPMLv2 requests and
responses.

The connector does not pass them as normal attributes or modifications to the SPMLv2
service; instead, it passes them to the configured capability handler.

Separating reference and password capabilities from other ones, allows a customer to re-
use the default implementation for the SPMLv2 specified reference and password
capabilities and only provide an implementation for proprietary capabilities.

capabilityHandler: The class name of a capability handler.

A capability handler must implement the interface
“‘com.siemens.dxm.connector.spmlvitov2.api.Spmlv2CapabilityHandler”. It is expected to
take the capability attributes (excluding reference and password attributes) from SPMLv1
requests and insert them as capabilities into SPMLV2 requests and transform capabilities
from SPMLV2 responses into attributes in SPMLV1 responses.

The SpmIV1toV2 connector does not provide any default implementation for a general
capability handler, but instead provides a sample that can you can use as a starting point
for your own implementation.

For more details on reference handling, see the section "Custom Capabilities".

2.22.4.3. Overriding Connector Options per Request

An SPMLV2 service can support a number of entity types at the same time. Often they are
identified by different target identifiers in their PSO and support different capabilities. As an
example, a user typically has other references than a group or role.

If a particular connector configuration is valid for more than one entity type, it may be
necessary to support different capabilities per type. For these scenarios, the SomIVIToV2
connector allows you to override the overall capability options per request.

SPMLV1 requests may contain operational attributes. The connector evaluates all
operational attributes with a name matching one of the connector attributes “target|D”,
“referenceAttributes”, “referenceHandler”, “passwordAttribute”, “passwordHandler”,
“capablityAttributes” or “capabilityHandler”. If it finds one, the attribute value overrides the
one from the configuration while processing this request. If the next request does not

contain this operational attribute, the value of the connector configuration holds again.

176

2.22.5. Custom Capabilities

SPMLv2 defines few mandatory operations and allows each provider to define and
implement its own custom capabilities. Some important capabilities are already part of the
SPMLV2 specification, especially the search, reference and password capabilities.

The SpmIVIToV2 connector provides default implementations for these capabilities out of
the box since they are considered to be widely distributed. To allow for custom extensions,
the connector also supports interfaces for appropriate capability handlers:

Spmlv2HandlerOptions

This is a basic interface for al handlers. It allows you to pass configuration options to the
handler.

Spmlv2PasswordHandler

This is the interface for a password handler. The handler is expected to produce a
SPMLV2 setPassword request.

Spmlv2ReferenceHandler

This is the interface that a reference handler must implement. The handler is expected
to add the capabilities into SPMLV2 requests, take capabilities from a SPMLV2 response
and insert them as attributes into the corresponding SPMLvV1 response.

Spmlv2CapabilityHandler

This interface is intended for all types of capability handlers. The handler is expected to
add the capabilities into SPMLV2 requests, take capabilities from a SPMLv2 response and
insert them as attributes into the corresponding SPMLV1 response. The connector passes
the SPMLvI and v2 requests and responses to the handler and the reference to an
Spmlv2SoapSender. This operation allows the handler to send its own SPMLV2 requests
before or after those sent by the connector.

The product DVD folder Additions/SpmIV1toV2Connector contains the Java

documentation of the interfaces and also the sources of some default handlers. The

following handler classes are delivered with the product:
DefaultPasswordHandler java - a password handler.

SimpleReferenceHandler java - a handler for simple object-to-object DN references.

RoleParamHandler.java - a handler for processing role parameters of user-to-role
assignments.

TargetSystemCapabilityHandler java - a handler that implements all capabilities for
target system management.

You can find more details about these handlers in the section "Sample Handlers".

2.22.5.1. Interface Spmlv2HandlerOptions

The interface “com.siemens.dxm.connector.spmlvitov2.api.Spmlv2HandlerOptions” is the
basic interface for all capability handlers. It allows the connector to set the configuration
options with its method setOptions(ConfigurationOptions options).

177

The ConfigurationOptions parameter contains the options in a map and other additional
convenience methods to get the capability, reference and password attributes and
handlers.

The method is called after the handler is instantiated and before the other methods are
invoked. The options contain the values taken from the SPMLv1 operational attributes, if
there are any. Therefore, the method is called in each request.

2.22.5.2. Interface Spmlv2ReferenceHandler

The interface “com.siemens.dxm.connector.spmlvitov2.api.Spmlv2ReferenceHandler”
extends the Spmlv2HandlerOptions and is to be implemented by a reference handler. The
handler is responsible for processing all attributes that are configured as reference
attributes.

It provides the following methods:

includeReferencelntoRequesty(...):

The connector passes the SPMLv] request and the SPMLv2 request generated so far and
expects the updated SPMLV2 request to be returned.

The method is called after the connector has included the normal attributes into the
request.

includeReferencelntoResponse(...):

The connector passes the SPMLV2 response received and the SPMLV1 response
generated so far and expects the updated SPMLvVI response to be returned.

The method is called after the connector has included the normal attributes into the
response.

includeReferencelntoResultEntry(...):

The method is called while the connector transforms a SPMLv2 lookup- or
searchResponse to a SPMLV1 searchResponse for each PSO, which is part of the SPMLv2
response. The connector passes one SPMLv2 PSO received and the SPMLv1 search result
entry generated so far and expects the handler to update the search result entry.
Therefore the handler may ignore these responses when performing the
“includeReferencelntoResponse” method.

The search result entry contains already the non-capability attributes.

The default implementation
“com.siemens.dxm.connector.spmlvitov2.handler.SimpleReferenceHandler” transforms
each reference attribute into a SPMLV2 <reference> capability. The following snippet shows
such a sample for the attribute “dxrPermissionLink” as part of an addRequest:

<capabilityData
capabilityURI="urn:oasis:names:tc:SPML:2.0:reference">

<spmlref:reference typeOfReference="dxrPermissionLink">

178

<spmlref:toPsoID ID="cn=Project Manager,cn=Project
Specific,cn=Corporate Permissions,cn=Permissions,cn=My-Company"/>
</spmlref:reference>
</capabilityData>

2.22.5.3. Interface Spmlv2CapabilityHandler

The interface “com.siemens.dxm.connector.spmlvitov2.api.Spmlv2CapabilityHandler”
extends the Spmlv2HandlerOptions and is to be implemented by a capability handler. The

handler is responsible for processing all attributes that are configured as capability
attributes.

It provides the following methods:

includeCapabilitiesintoRequest(...):

The connector passes the SPMLVI request, the SPMLV2 request generated so far and the
SPMLv2 SOAP sender and expects the updated SPMLV2 request to be returned.

The method is called after the connector has included the normal attributes into the
request. The handler may send additional SPMLv2 requests using the SOAP sender
before the connector sends the passed request.

includeCapabilitiesintoResponse(...):

The connector passes the SPMLV2 response received, the SPMLv] response generated so
far and the SPMLV2 soap sender and expects the updated SPMLv1 response to be
returned.

The method is called after the connector has included the normal attributes into the
response. The handler may send additional SPMLV2 requests using the SOAP sender
after the connector has sent the “normal” request.

includeCapabilitiesintoResultEntry(...):

The method is called while the connector transforms a SPMLV2 lookup- or
searchResponse to a SPMLV1 searchResponse for each PSO, which is part of the SPMLv2
response. The connector passes one SPMLv2 PSO received and the SPMLv1 search result
entry generated so far and expects the handler to update the search result entry.
Therefore the handler may ignore these responses when performing the
“includeCapabilitiesiIntoResponse” method.

The search result entry already contains the non-capability attributes.

2.22.5.4. Interface Spmlv2PasswordHandler

The interface “com.siemens.dxm.connector.spmlvitov2.api.Spmlv2PasswordHandler”
extends the Spmlv2HandlerOptions and is to be implemented by a password handler. The
handler is responsible for processing the configured password attribute.

It provides only one method:

179

setPasswordRequest(...):

The connector passes the SPMLv1 request and the SPMLV2 response received for the
previously sent SPMLV2 request. It expects a SPMLV2 request to be returned, usually a
setPasswordRequest.

The method is called after an add- or ModifyRequest.

The default implementation
“‘com.siemens.dxm.connector.spmlvitov2.handler.DefaultPasswordHandler” produces a
SPMLV2 setPasswordRequest from the password attribute of a SPMLv1 request. It also adds
the current password, if it is available as an operational attribute.

2.22.5.5. Sample Handlers

This section provides some details on the sample handlers delivered with the product. Find
their sources and configuration files or sample requests in the folder
Additions/SpmlIVitoV2Connector of the product DVD.

2.22.5.5.1. DefaultPasswordHandler.java

The password handler expects the name of the SPMLvVI attribute with the password in the
configuration property "passwordAttribute". The default is "userPassword".

If an add or modify request contains the password attribute, it creates an SPMLv2
setPassword request. It uses the PSO ID of the modify request or of the add response or
request as the PSO identifier. If the SPMLV1 request contains an operational attribute
"currentPassword", the handler adds it to the setPassword request.

This is the relevant snippet of the configuration:

<connection type="spmlv2" url="...
<property name="passwordAttribute" value="userPassword"/>
<property name="passwordHandler"
value="com.siemens.dxm.connector.spmlvltov2.handler.DefaultPasswordHa
ndler"/>

</connection>

2.22.5.5.2. SimpleReferenceHandler.java

The simple reference handler transforms SPMLvVI attributes into simple SPMLV2 object-to-
object references and vice versa. It is applicable only for simple (for example, DN) links
between objects.

For each attribute configured as a reference attribute, it creates a SPMLV2 reference
capability with the attribute name as the reference type. From SPMLV2 result entries in
lookup or search responses, it takes references matching the attribute names and puts
them as attributes into the SPMLvI1 result entry.

180

If a SPMLV1 search request contains a reference attribute in its filter, it generates a SPMLv2
hasReference clause.

This is a sample snippet with the relevant configuration properties:

<property name="referenceAttributes" value="dxrPermissionLink,
dxrRoleLink" />

<property name="referenceHandler" value="com.siemens

2.22.5.5.3. RoleParamHandler.java

This handler is a sample for a proprietary, complex capability used in DirX Identity user Web
services: role parameters of user-to-role assignments.

It expects role parameters in the SPMLV1 attribute "dxrRoleParams" and transforms them
to a SPMLv2 capability with URI "urn:siemens.dxm:provisioning:role:matchrule:1:0" and vice
versa.

In the SPMLVI attribute, it expects the role parameters as an XML document according to
the following sample:

<matchrule>

<uid>uid-7f001l-cee271-fed935aabd--7eb4</uid>
<roleparamDN>cn=Project,cn=My-Company,cn=RoleParams,cn=Customer
Extensions,cn=Configuration,cn=My-Company</roleparamDN>
<type>Group</type>

<attribute>dxrproject</attribute>

</matchrule>

The handler uses the Open Source tool Castor and its generated classes for marshaling and
unmarshalling,

For a sample request, see the file "spmlviRequestWithRoleParam.xml" in the "Additions"
folder of the DVD.

If the dxrRoleParams attribute is requested in a search request, the handler generates an
appropriate include capability for the SPMLV2 lookup or search request.

2.22.5.5.4. TargetSystemCapabilityHandler.java

This handler implements all capabilities needed for the DirX Identity Web service for target
system management: options, connection-, environment- and create- options.

The handler expects all the options to be in tag/value format in the respective SPMLv1
attributes "dxroptions", "dxrconnectionoptions", "dxrenvironmentproperties" and
"tscreateoptions". They are transformed to and from the SPMLV2 capabilities as defined by

181

the DirX Identity Target System Web Service.

If one of the options (except for the create option) is a requested attribute in an SPMLVI
search request, the handler creates the appropriate includeCapability clause for the
SPMLV2 lookup or search request.

For sample requests, see the file "spmlviRequestWithTSCapabilities.xml" in the "Additions"
folder of the DVD.

Here is the relevant configuration snippet. Note that the capability attributes in the
configuration are ignored because they are hard-coded:

<property name="capabilityAttributes”
value="dxrenvironmentproperties, dxrconnectionoptions, dxroptions,
tscreateoptions”/>

<property name="capabilityHandler"
value="com.siemens.dxm.connector.spmlvltov2.handler.TargetSystemCapab
ilityHandler" />

2.23. Unify Office Connector

The Java-based Unify Office connector runs inside the Identity Java Connector Integration
Framework. It communicates using the RingCentral System for Cross-domain ldentity
Management (SCIM) API on the common URL https://platform.ringcentral.com/scim/v2
via common HTTP protocol. The operations are authorized by a dedicated OAuth server
available on the common URL https://platform.ringcentral.com/restapi/oauth/token.

The connector is implemented in the class UnifyOfficeConnector in the package
net.atos.dirx.dxi.connector.ringcentral.

The connector implements the common methods for the DirX Identity Connector API: add,
modify, delete and search.

The operations are simply converted to RingCentral API requests. The corresponding
responses are again translated to SPMLv1 responses.

The RingCentral APl is a Representational State Transfer (REST)-ful service comprised of
endpoints that are accessed using standard HTTP requests. The connector uses JavaScript
Object Notation (JSON) content types for requests and responses. The current workflow
only uses the SCIM endpoint of the RingCentral API. The documentation of the functions
can be found at https://developers.ringcentral.com/api-reference/SCIM.

The connector communicates using SSL/TLS only.

2.23.1. Prerequisites

The connector is based on the RingCentral API. The connector functionality is limited by
the functionality of the RingCentral API, with only the SCIM API being stable and therefore

182

https://platform.ringcentral.com/scim/v2
https://platform.ringcentral.com/restapi/oauth/token
https://developers.ringcentral.com/api-reference/SCIM

fully supported. The functionality with other RingCentral APl endpoints cannot be
guaranteed.

The connector appends a JISON Web Token (JWT) in the Authorization header of the
request. This token is acquired by making a request to the OAuth endpoint and providing
valid credentials. The connector supports the use of the OAuth 2.0 service using “Resource

nou

Owner Password Credentials Flow", “Client Credentials Flow" or “Refresh Token Flow".

The connector supports commmon RingCentral user objects as specified in the SCIM
specification.

It also supports extension, device, call queue and call queue member, answering rule,
phone number, user-role and user-template objects of the (non-SCIM) RingCentral API
endpoints, but there are no channels provided for these by default.

2.23.2. Configuration

The connector receives its configuration from the Connector Framework in a format that is
specified there and reflects an XML document. Note that DirX Identity Manager presents
configuration options in a more convenient way. For example, bind credentials and service
addresses are typically collected from appropriate LDAP entries found by selecting the
appropriate connected directory and bind profile.

This section discusses the configuration options based on the XML format. These options
are either specified attributes in the XML schema of the element <connection> (referred to
as standard properties) or specified as <property> subelements of the <connection>
element (referred to as non-standard properties).

The connector evaluates the following standard properties:

server

(required) This property provides information about the host name or IP address of the
RingCentral APl endpoint. An example is platform.ringcentral.com.

ssl

(required) This value enables SSL/TLS authentication of a Graph API server and secures
the communication line.

user

This property is the User ID of a RingCentral user. It is used for the "Resource Owner
Password Credentials Flow" at the OAuth Service. Providing the password will
automatically select the right flow and implicitly set the Account ID (= tenant in
RingCentral) to the one the user is managed in.

password

The password of the User used for the "Resource Owner Password Credentials Flow" at
the OAuth Service.

type
(required) This is the Directory Type, here Unify Office.

183

The Unify Office connector evaluates the following non-standard properties beneath the
<connection> element:

proxyHost

The IP or server name of a proxy server, if any.

proxyPort
The port of a proxy server, if any.

proxyUser
The user for authorization at the proxy server, if any.

proxyPassword

The password for authorization at the proxy server, if any.

clientld

required. The OAuth service requires a client ID, which is provided by RingCentral when
creating the "App" for APl access in their administrative console. The client ID is usually a
generated UID.

clientSecret

required. A client secret is generated together with the client ID. This client secret
should be kept secret and works like a password for client authentication.

accountld

When no user and password is provided, the connector runs in "Client Credentials flow"
mode. In this case, the Account ID is needed to identify the account (= tenant in
RingCentral) that is being managed.

path

required. This property provides the path to the RingCentral APl endpoint. By default,
the SCIM V2 endpoint "scim/v2" is used.

authPath

required. This property provides the path to the RingCentral OAuth service. This is always
"restapi/oauth/token".

Here is a sample configuration using some of the properties described here:

<connector
className="net.atos.dirx.dxi.connector.ringcentral.UnifyOfficeConnect
or" name="TS" role="connector">
<connection password="§SCRAMBLED}aG5WPw==" port="443"
server="platform.devtest.ringcentral.com" ss1="TRUE" type="Unify
Office" user="&1lt;<E.164 Phonenumber>>">
<property name="proxyHost" value="ProxyServer"/>

<property name="proxyPort" value="3128"/>

184

<property name="proxyUser" value="user"/>

<property name="proxyPassword"
value="§SCRAMBLEDtaG5WPw=="/>

<property name="clientId" value="&1t;&Llt;Application
Client Id>>"/>

<property name="clientSecret" value=
" {SCRAMBLED?}aG5WPw=="/>

<property name="accountId" value="<<Account Id for
Client Credentials Flow>>"/>

<property name="path" value="scim/v2"/>

<property name="authPath" value="restapi/oauth/token"/>

<property name="debugMode" value="false"/>

</connection>
</connector>

2.23.3. SCIM

The Unify Office Connector is based on the System for Cross-domain Identity Management
(SCIM) connector implementing the AbstractRestConnector. Many methods used are
simply SCIM standard functions and compliant with the specification. For details, please
refer to https://tools.ietf.org/wg/scim/.

185

https://tools.ietf.org/wg/scim/

3. Identity Agents

The Identity agent component of DirX Identity is the interface to a specific connected
directory via batch workflows. Its function is to import data into a connected directory and
export data from a connected directory. The following figure illustrates the Identity agent
component and its relationship to the meta controller and meta directory components.

7= Identity Agent %
AIreC Do
< , :
I/ |dentit ent Connected
Identity Meta e Diractor
Controller
Store : z CE
Join Engine -
Ea Identity Agent E Connected
~-Dirsctong
[]
== ldentity Agent = Céj_rra:te:
- TEEE

Figure 7. Meta Controller and Agent Control Flow

Identity agents can be designed to handle a particular connected directory, such as NT or
Lotus Notes, or they can be designed to handle a specific set of connected directories; for
example, ADSI directories or ODBC databases.

The meta controller can also perform the Identity agent function: it can export Identity
store data into LDIF structured files, and it can import LDIF structured files into the Identity
store. In this way, the meta controller can act as a generic LDAP agent for Identity stores.

The next sections provide a description of Identity agent architecture and the files used by
Identity agent components. The remainder of this document provides reference
information about each ldentity agent, including:

- Command line format

- Import and export configuration file format, and how the data in the configuration file
affect the Identity agent’'s import and export operation

- Import and export data file format

- Import error file format

3.1. Identity Agent Architecture
DirX Identity distinguishes between two types of agents:

- Framework-based Agents - implementation is based on the Identity Connector
Integration Framework. A set of such agents is delivered with DirX Identity (for example,
the JDBC agent). You can use the Identity Connector Integration Framework to build
your own custom agents.

- Non-framework-based Agents - implementation of an executable in any programming

186

language. This type of agent comes with DirX Identity (for example the ADS or Notes
agents).

In both cases, you can use the Identity Agent Integration Framework to run these agents
within the C++-based Identity Servers.

3.1.1. Framework-based Agents

Framework-based agents are built with the Identity Connector Framework. It works
internally with SPML, provides standard methods to integrate a target system API and has
standard methods for configuration and reading and writing data.

3.1.2. Non Framework-based Agents

A non framework-based Identity agent is implemented in any programming language as
an executable program that is invoked from a command line. It is either:

- The export of data from its associated connected directory into an export data file for
subsequent import into the Identity store. Some ldentity agents can export incremental
data (deltas or changes). If the connected directory does not support deltas (or does, but
only partially), the Identity agent keeps a copy of the connected directory data in a
"delta base" file. The Identity agent uses this file to generate delta information or to
complete it.

- The import of data into its associated connected directory that has been previously
exported from the meta directory store. Some Identity agents can perform special
administration tasks in the connected directory on import; for example, the creation of
mailboxes or user accounts.

Some ldentity agents can also handle entry and attribute filtering (this filtering is
independent of the filtering performed by the meta controller).

An ldentity agent requires the operation of the meta controller to complete a
synchronization task.

3.2. Framework-based Agents

Framework-based agents use a standard configuration method. The next sections
describe:

- The command line format to invoke an agent
- The exit codes provided by an agent
- General information about configuration file formats

- General information about the search request file format

3.2.1. Command Line Format

The command line format to invoke a framework-based agent is as follows:

187

agent.bat configuration_file (on Windows platforms)
agent.sh configuration_file (on UNIX platforms)
configuration_file

Specifies the name of the file that contains the specifications for the import procedure. All
other parameters for correct agent operation are defined in the agent’s configuration file in
XML format.

3.2.2. Exit Codes

The following table describes the standard exit codes provided when an agent finishes
running.

Exit Description

Code

0 Agent completed successfully.

1 Agent completed with errors. Details are described in the specified trace file

unless this file cannot be created due to a file exception error.

60 Agent completed with warnings. For details see the specified trace file.

3.2.3. Configuration File Formats

Framework-based agents use configuration files that control import and export of data into
a target system.

This section describes the general structure of a configuration file.

3.2.3.1. General Structure of a Configuration File

The configuration file's format is XML. It is composed of multiple sub-units (connectors).
Normally you should not change the general structure of a configuration file. Instead, you
configure some well-defined attribute values to the specific environment in which the
agent runs.

Tags
The configuration files contain the tags job, connector, logging and connection.

- job - Defines the file's document tag, with connector sub-tags

- connector - Configures the properties of one connector, has connection and/or logging
sub tags

- connection - Configures connection parameters, for example filename for a
reader/writer or host/port/credentials for a network connector

Attributes

A connector tag can have the following attributes:

188

- name - The connector's name

- role - One of reader, controller, connector, responseWriter or requestCryptTransformer
- className - The name of the Java class that implements the connector

- logging - Configures the logging properties of a connector

The connection parameters of the specific connectors are described in their connection
sub-tags.

Each connection tag has the attribute
- type - The type of connection (file format, protocol)
Readers and response writers are configured by the attribute
- filename - The pathname of the input or output file.
Dependent on the type of connectors additional properties may be defined in this section.
Encryption transformers are configured by these attributes

- firstAttribute ... lastAttribute - This list of parameters specifies the names of the
attributes which can be encrypted in the input of the agent. All encrypted user
attributes must be listed here to allow the agent to decrypt them. There's no limit of the
number of encrypted attributes in the configuration file.

A connection to the target system is configured by some attributes that might differ
dependent on the target system. Typical attributes are:

- host - the host to access
- port - the port to use
- user - the user for simple bind operation

- password - the user password for simple bind operation
The agent’s logging is configured in the controller’'s logging tag by the attributes:

- level - The integers 0-9, where O indicates no logging and 9 indicates full logging
O - none
1- FatalError and Error
2 - FatalError, Error and Warning
3 - FatalError, Error and Warning
4 - FatalError, Error and Warning
5 - FatalError, Error, Warning and Trace
6 - FatalError, Error, Warning and Trace
7 - FatalError, Error, Warning and Trace
8 - FatalError, Error, Warning and Trace
9 - FatalError, Error, Warning and Trace (and additional HTML files)

- filename - The path and name of the trace file

- debugmode - a boolean switch to specify a special debug mode (possible values: true

189

and false)

3.2.3.1.1. Example of an Import Configuration File

The import configuration file has the format defined above. The following generic example
describes shows the general layout. The attribute values that can be configured are shown
in bold italic, e.g. level.

<?xml version="1.0" encoding="UTF-8" ?>

<job>

<connector name="Default Controller" version="0.1" role="controller"
className="siemens.dxm.connector.framework.DefaultControllerStandalon
e">

<logging level="level" filename="traceFileName" />

</connector>

<connector role="reader" name="LDIF change file reader”
className="siemens.dxm.connector.framework.LdifChangeReader">
<connection type="LDIF change" filename="inputFileName" />
<property name="ExtractRDN" value="false"/>

<property name="IncludingNamingAttribute" value="false"/>

</connector>

<connector role="RequestCryptTransformer" name="Crypto Transformer”
className="siemens.dxm.connector.framework.CryptTransformer">
<mvproperty name="encryptedAttributes">

<value> firstAttribute </value>

<value> lastAttribute </value>
</mvproperty>
</connector>

<connector role="connector" name="agent_name"

n

className="siemens.dxm.connector...">
<connection type="connection_type"
user="account”
password="password"
>
<property name="property_name" value="property_value"/>
</connection>

</connector>

<connector role="responseWriter" name="LDIF file writer"

190

className="siemens.dxm.connector.framework.LdifFileWriter">
<connection type="LDIF" filename="responseFilename" />
<property name="contenttype" value="LDIF-CONTENT"/>
</connector>

</job>

3.2.4. Search Request File Format

The objects to be exported are defined in a Service Provisioning Markup Language (SPML)
search request. SPML is an XML format. The search request contains an LDAP-like filter and
searchBase. Its configuration is described by the following template. The attribute values
that can be configured are shown in bold (blue) italic; for example, subtree:

<?xml version="1.0" ?>
<spml:searchRequest xmlns="urn:oasis:names:tc:SPML:1:0"
xmlns:spml="urn:oasis:names:tc:SPML:1:0" requestID="search_01">
<spml:operationalAttributes>
<attr name="scope"> <value>scope</value> </attr>
</spml:operationalAttributes>
<spml:searchBase type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>searchBase</spml:id>
</spml:searchBase>
<filter>
<substrings name="attribute">
<initial>value</initial>
</substrings>
</filter>
<spml:attributes>
<attribute name="attributel" />
<attribute name="attribute2" />
</spml:attributes>
</spml:searchRequest>

searchBase

searchBase specifies the base object for the search .
This definition is dependent on the target system.

scope

scope specifies the depth of the search. It must have one of the following values:

191

base
The base object defined in searchBase

onelevel

The base object and all objects located one level below it.
subtree::The base object and the entire subtree under this object.

filter

filter is a tag that specifies the search criteria. It supports an LDAP-like structure, with
the operator tags <and>, <or>, <not>, corresponding to the LDAP operators (& ...), (]..), (! ...)
and the tags <substrings> and <equalityMatch>.

The previous example uses a substrings tag, but you can use all the tags and
combinations of the tags defined here.

equalityMatch

equalityMatch is a filter sub-tag that specifies that an attribute value must be exactly
equal to the value defined in the <value> tag.

Example:

<equalityMatch name="objectclass">
<value>user</value>
</ equalityMatch >

substrings

substrings is a filter sub-tag that specifies that an attribute value must start with, end
with, or contain a value defined in its <initial>, <contains>, or <final> sub-tag.

Example:

<substrings name="objectclass">
<initial>ro</initial>

</substrings>

and

and specifies the tags it contains to be "and" related.

Example:

<and>
<substrings name="name">

<initial>develop</initial>

192

</substrings>

<equalityMatch name="objectclass">
<value>folder</value>

</ equalityMatch >

</and>

or

or specifies the tags it contains to be "or" related.

Example:

<or>
<substrings name="name">
<initial>develop</initial>
</substrings>
<substrings name="name">
<initial>market</initial>
</substrings>

</or>

not

not specifies that the tag it contains must evaluate to false.

Example:

<not>
<equalityMatch name="objectclass">
<va'lue>folder</value>
</ equalityMatch >
</not>

spml:attributes

spml:attributes specifies the attributes attributel, attribute2,
search.

3.3. Non Framework-based Agents

Non framework-based agents use the following files:

- Import and export configuration files

- Import and export data files

... to be returned by the

193

Note: Non framework-based agents support only the ISO 8859-1 (Latinl) character set.

3.3.1. Agent Configuration Files

The non framework-based agents export and import configuration files "configure" a DirX
Identity agent’s import and/or export process.

The directory synchronization parameters for coommand line-based DirX Identity agent
configuration are contained in "*.ini" configuration files, which are generally specified on
the command line that invokes the DirX Identity agent import or export operation. The
configuration files consist of fields that control directory synchronization parameters such
as:

- The category of entry to be exported from the connected directory; for example, NT
accounts, NT local groups, or NT global groups

- The set of attributes to be exported from the connected directory; typically a subset of
the total number of available attributes can be selected through the export
configuration file

- Whether a full or delta import or export of entries is performed

- The import integration process, such as whether or not existing entries are updated
with imported information, whether or not existing entries are deleted if they match
entries in the import file, whether imported attribute values replace existing attributes,
and so on.

- The server and/or target directory for the import or export

The synchronization profile-based DirX Identity agents' directory synchronization
parameters are generally specified as profile switches in the variable section of the DirX
Identity agent's synchronization profile. The synchronization profile-based DirX Identity
agents also support import and export mapping rule files that configure the attribute
mapping between the directories to be synchronized.

The directory synchronization parameters available in the export and import configuration
files or the synchronization profile variable section depend on the individual DirX Identity
agent. See the description of each DirX Identity agent for an explanation of the format and
content of its export and import configuration files and how they affect the DirX Identity
agent's operation.

3.3.2. Import and Export Data Files

Non framework-based agents use import and export data files to commmunicate with the
meta controller, and both DirX I[dentity agents and the meta controller use these files as
intermediate storage in the synchronization process. (Note that protocol access is possible
for LDAP-enabled connected directories.)

Each DirX Identity agent supports a specific import data file format in which data to be
imported into its connected directory must be formatted and supports a specific export
data file format that it generates when exporting data from its connected directory. See the
description of each DirX Identity agent for a description of its import and export data file
formats.

194

3.4, JDBC Agent

The JDBC agent is the DirX Identity agent that handles the import and export of
information into and out of relational databases. It is based on the Identity Integration
Framework.

The JDBC agent can:

- Carry out search (SELECT) operations on configured tables
- Carry out add (INSERT), modify (UPDATE), and delete (DELETE) operations, and
- Execute stored functions and procedures.

- There are a variety of trace-file options.

The following figure illustrates the components of the JDBC agent.
ren] e
i
Caonfig file JOBC Agent m

— i1

Driver-DB JOBC
customizer driver

i 1

relational data
hase

Figure 8. IDBC Agent Components

The JDBC agent carries out the actions specified by the file marked as "File In" in the
diagram, and makes a return (depending on the action) to the file marked "File out".

The JDBC agent is able to accept as data input either an SPML request or (in the case of
modify operations) LDIF-change format. Similarly, as data output the JDBC agent produces
either SPML response or LDIF-content.

The actions of the JDBC agent are normally carried out on information within the relational
database shown at the bottom of the diagram. The JDBC driver at lower centre provides a
URL-based method for connecting to such databases, as well as giving the means of
accessing it for searches and updates. JDBC can also access databases other than relational
ones.

JDBC drivers are available for many standard databases. In addition, a generic JDBC/ODBC
driver is available on certain target environments, and thus gives connectivity to many
database systems for which ODBC access is available. This generic driver is not the
preference for high-performance access, but has the necessary facilities to support the
JDBC agent.

195

Databases vary in the list of data types that they can handle or not (e.g. text or decimal
strings, integers, date/time, binary data such as photos, etc.). The Driver-DB Customizer
shown at the lower left of the diagram provides an optional facility for identifying
unsupported data types and for handling any special behavior for particular data types.
There is a default customizer that should handle most normal cases.

Events (information-generating events, error events, warning events) are reported in the
log-file.

This section describes:

- Agent-specific configuration files for export and import operations

- Data formats

The current agent supports name/password authentication only.

Command-line

The command-line to start the JDBC agent in stand-alone mode is:

java siemens.dxm.connector.framework.AgtSessionExe
-c configfile
-m mappingfile

The -m flag is mandatory, and must specify the location of the mapping file for the JDBC
agent. The default file is jdbcMapping.xml. It is provided as part of the JDBC agent, and
must not be modified. The batch file to start the agent inserts this parameter automatically
and does not require it as input.

Parameters

configfile

All parameters of JIDBC operation are defined in the agent’'s XML-formatted config file.
mappingfile

Mandatory, and must specify the location of the default file jdbcMapping.xml.

3.4.1. Configuration File

For details, see the section "Configuration" of the JDBC connector.

3.4.2. Input and Output Data File Formats

For details, see the section "Input and Output Data File Formats" of the JDBC connector.

3.4.3. CLASSPATH Environment Variable

You can use the CLASSPATH environment variable to define additional jar files for specific
JDBC drivers to be used by the JDBC agent. To define or extend this environment variable:

196

Windows

If the JDBC agent should be executed under the system account, perform these steps:

- Extend the system environment variable CLASSPATH (or add the variable if it does not
exist) so that the jar file of the requested JDBC driver is on the classpath and so that this
extension is syntactically correct and does not interfere with other applications on your
computer.

- Reboot the system

If the JDBC agent should be executed under a Windows user account, perform these
steps:

- Extend the user environment variable CLASSPATH (or add this variable if it does not
exist) so that the jar file of the requested JDBC driver is on the classpath and so that this
extension does not interfere with other applications on your computer.

- Using the Expert View of the DirX Identity Manager, configure your JDBC agent job so
that it runs under the specified user account (tab Authentication).

UNIX

Define a file install_path/customer_rc.sh to extend the environment variable CLASSPATH
for the driver. Setting and exporting this variable must be done in separate commands,
must be syntactically correct and must not interfere with other applications. The
environment setting will become effective for the user after subsequent logins only and for
the C++-based Server after the next restart only. Here is a sample content for this file:

CLASSPATH=$CLASSPATH:/opt/myjdbc/myjdbc jar
export CLASSPATH

3.4.4. Error Handling

For details, see the section "Error Handling" of the JDBC connector.

3.5. IBM Notes Agent

NotesAgent is the DirX Identity agent that handles the import and export of entries to and
from a public IBM Notes address book maintained on an IBM Domino server. NotesAgent
can handle entries of any IBM Notes document type.

NotesAgent supports only IBM Notes server and client versions 7.03 or higher. Earlier
versions are no longer supported. Use of additional functionality of the Notes APIs enforces
this restriction. The agent runs on Windows and requires a co-located Notes Client.
NotesAgent uses the Notes API to bind to a Notes server.

NotesAgent can:

- Perform a full or delta export of Person or Group entries from a Notes address book,
including multiple attribute values

197

- Perform a full or delta import of Person or Group entries into a Notes address book,
including multiple attribute values

- Create a separate "modify/delete" file of modified and deleted entries as part of the
export process

- Create mailboxes and registered users in the Notes address book as part of the import
process (includes support of mail replica servers)

- Rename, re-certify and delete registered users in the Notes address book as part of the
import process

- Generate an import error file that records all entries that it fails to import
- Generate a log file (for tracing)

The following figures illustrate the components of NotesAgent export and import
operations.

Connected

Doming Server

command line optiopns ——* b dizplay
oo Notes Agent i
configuration|——" trace
fil= file
export data file
{ally {deleted and modified)
Figure 9. NotesAgent Export Components
command line options ——= — display
AR Notes Agent AT
configuration - - trace
file I file
exoeption import data
file file

Figure 10. NotesAgent Import Components
The rest of this chapter describes:

- NotesAgent command line format for export and import operations

- NotesAgent configuration files for export and import operations

198

- The export data file format that NotesAgent generates
- The import data file format that NotesAgent recognizes

- NotesAgent import error file format
These functions use AdminP functionality:
RecertifyUser - uses the AdminP function ADMINRegRecertify
RenameUser - uses the AdminP function ADMINReqRename

MoveUserlnHierarchy - uses the AdminP functions ADMINReqMoveUserinHier and
ADMINRegMoveComplete

DeleteUser - uses the AdminP function ADMINRegDeleteInNAB

RegisterNewUser - calls internally REGNewUser and sets the flag
fREGCreateMailFileUsingAdminp if the parameter CreateMailDBNow is set in the ini-file

RegisterNewPerson - calls internally REGNewPerson and sets the flag
fREGCreateMailFileUsingAdminp if the parameter CreateMailDBNow is set in the ini-file

Sample configuration files and scripts are provided in the \Samples\Notes directory of the
DirX Ildentity installation. See the file NotesReadme.txt for a description of these files and
scripts.

3.5.1. Password Handling

NotesAgent uses the password that grants the credentials to log into a Notes server from
an installed Notes client. NotesAgent must use password authentication to a Notes server
in order to export data from an address book or import data into it.

The password can be supplied at login:

- Manually, at the user prompt

- Automatically, through the use of password information in the Export and Import ini
files.

Information for users of older version of NotesAgent:

In older releases, an Extension Manager for Notes was defined in notes.ini of the IBM Notes
installation.

The section

[Notes]
ExtMGR_ADDINS=nextpwd.dll

in notes.ini is no longer needed because the NotesAgent directly connects to the IBM
Domino server with the “Admin” ID file defined in the Password section.

199

For details, see “Password Section” in "Password Configuration File Formats".

3.5.2. Command Line Format
The command line format to invoke NotesAgent is as follows:

NotesAgent.exe sync_switch data_file configuration_file error_file>_initial_error_file_

3.5.2.1. Parameters

sync_switch

Specifies the type of directory synchronization that NotesAgent is to perform. Possible
values are:

/e - Invokes the NotesAgent export function
/i - Invokes the NotesAgent import function

data_file

For export: specifies the pathname of the target export data file that is to contain the
entries that NotesAgent extracts from a Notes address book. For delta exports, this file
must already exist and is used as the delta base to generate delta information.*

For import* specifies the pathname of the source file that contains the data to be
imported into the Notes address book.

configuration_file

Specifies the name of the file that contains the specifications for the import or export
procedure.

error_file

Specifies the name of the file to which NotesAgent is to write error messages about
errors that occur during the import or export process, in the format:

error_code
error_message
[error_specific_information]

where error_code is the code for the error that occurred, error_message is a description
of the error, and error_specific_information is additional information that can appear
depending on the type of error. For example:

#ProcessAddress error:

#Find more as one document with the following ItemIdentityName(s):
LastName: Test00000

FirstName: Hugo

ShortName: hTest00000

In this example, the last three lines are specific for this error.

200

For an import operation, NotesAgent writes additional information about the entries
that it cannot import into the Notes address book into the file specified in error_file. See
"Import Error File Format" for more details about the contents of the error file on an
import operation.

initial_error_file

Specifies the name of the file to which NotesAgent is to write error messages about
errors that occur before it creates error_file. The error format is the same as that of
error_file.

3.5.3. Configuration File Formats
NotesAgent uses the following configuration files:

- Notes export configuration file - controls the export of data from a Notes address book
- Notes import configuration file - controls the import of data into a Notes address book

- Password configuration files - automates password authentication during NotesAgent
login to a Notes server and enables the assignment of a default password for registered
users

See "General Structure of a Configuration File" for a description of the basic organization.

Templates of these configuration files are provided with the NotesAgent installation. The
filenames are:

- NotesExport.ini

- Noteslmport.ini

In general, you must customize these files to support the requirements of your Notes
import and export operations.

3.5.3.1. General Structure of a Configuration File

A NotesAgent configuration file consists of sections and fields defined within those
sections. A configuration file has the following structure:

[*SectionName]*
<;comment>
sectionField*=fieldValue

*

[*SectionName]*
<;comment>
sectionField*=*fieldValue

201

SectionName is a keyword enclosed in square brackets ([]) that identifies the purpose of
the section. sectionField is a keyword that identifies the field and fieldValue is the value
assigned to the section field, preceded by the equal sign (=). For example:

UpdateExportFile=1

Comments can be inserted anywhere in the configuration file and are identified by a
semicolon (;) at the beginning of a line.

3.5.3.2. Export Configuration File Format

The NotesAgent export configuration file consists of these sections:

- The Version section (required)
- The Export section (required)
- The Password section (optional)

- The Export Items section (optional)

These sections are described below.

3.5.3.2.1. The Version Section

The Version section consists of a single field that specifies the export configuration file
version. The syntax is:

*Version=*version_number

where version_number is the version number assigned to the configuration file, in the
format n**nn. The current version is:

Version=1.03

This is a mandatory field. This document describes the latest version of the NotesAgent
export configuration file. The NotesAgent is able to process configuration files with version
number 1.00, 1.01, 1.02, 1.03 or "old" files that do not contain a Version section. The following
table provides information about the differences between export configuration file versions
and about the support of older export configuration file versions for compatibility reasons:

"old" 1.00 1.01 1.02,1.03
FileForDeleteAddr Supported Not Supported Not Supported Not Supported
FileForModifiedAddr Supported Not Supported Not Supported Supported

If the version is greater than 1.02, the new field "TypeName" must be in the export
configuration file.

3.5.3.2.2. The Export Section

The Export section consists of fields that define the parameters of an export operation for
NotesAgent. The next sections describe these fields.

202

Server

The Server field specifies the name of the Notes server that contains the Notes address
book from which entries are to be exported. The syntax is:

Server=[server_name]

where server_name is the name of a Notes server, in the format:
"CN=*server_name/O=organization_name][/...]"*

For example:

Server="CN=westford/0=IRIS/0=NOTES"

If server_name is not specified, the NotesAgent uses the local Notes address book (the
address book that is present on the machine on which NotesAgent is running) as the
export target.

This is a mandatory field.

AdrBook

The AdrBook field specifies the name of the Notes address book from which entries are
to be exported. The syntax is:

AdrBook=*filename[.nsf*]

where filename is the name of a Notes address book managed by the Notes server
specified in the Server field and .nsf is the file extension, which is automatically supplied
by NotesAgent if you do not specify it explicitly. (You cannot use a different extension). A
single Notes server can support multiple Notes address books. NotesAgent can export
from only one Notes address book at a time.

This is a mandatory field.

FormName

The FormName field specifies the Notes form of a document. Forms allow users to
create documents that store data.

The syntax is:

FormName=form_name

where form_name is a Notes form name. For example:
FormName=Person

This is a mandatory field.

TypeName

The TypeName field specifies the Notes document type to be extracted from the Notes
address book. The syntax is:

203

TypeName=document_type

where document_type is a Notes document type. For example:
TypeName=Person

This is a mandatory field.

FirstDeltalsFull

The FirstDeltalsFull field controls weather NotesAgent writes all entries also in the
"modify" file. The syntax is:

FirstDeltalsFull=[switch]
where switch is one of the following values:

- O - Perform the first delta export only in the data file (default)

- 1- Perform the first delta export in both files.

This is an optional field. If it is not specified (or the field is not present in the
configuration file), the NotesAgent exports all entries only in the data file.

SMTPHostDomain

The SMTPHostDomain field controls the generation of Internet addresses for Person
entries exported from a Notes address book. The syntax is:

SMTPHostDomain=[domain_name | None]

Notes address books do not store Internet addresses. You can use the
SMTPHostDomain field to control:

- whether or not Internet addresses are generated for Person entries that are exported
from the Notes address book

- the domain supplied in the generated Internet address for each Person entry

Specify the name of a host in domain_name to generate an Internet address for each
exported entry that uses this domain. For each exported entry, the NotesAgent
generates an Internet address in the SMTP format:

name@domain_name

where name is the value of the ShortName attribute of the Notes entry and
domain_name is the value supplied in domain_name. For example, if
SMTPHostDomain is:

SMTPHostDomain=wstfd.ibm.us

and the value of ShortName for the entry is:

ShortName: Ray.Ozzie

204

the generated Internet address for the entry is:

Ray.Ozzie@wstfd.ibm.us

The Internet address is written to the export data file in this form:

InternetAddress: Ray.Ozzie@wstfd.ibm.us

Specify the keyword None to suppress Internet address generation for exported entries.

If no value is specified in this field, NotesAgent generates SMTP-format Internet
addresses for the exported entries using the ShortName attribute for the name part of
the address and the value of the SMTPFullHostDomain attribute of the Notes server
entry ("document", in Notes terminology) in the hostname part of the address. It also
updates the SMTPHostDomain field in the export configuration file with the retrieved
Notes SMTPFullHostDomain attribute value.

This is a mandatory field.

ModifiedAddresses

The ModifiedAddresses field controls whether NotesAgent performs a full or delta
export of the document type specified in the FormName field from the Notes address
book. The syntax is:

ModifiedAddresses=[switch]
where switch is one of the following values:

- 0 - Export all entries of the selected document type (default)

- 1- Export only those entries that have been added, deleted, or modified after the
date specified in the ModifiedDate field

If O is specified, NotesAgent creates one file that contains all of the entries of the
selected document type that are present in the address book. This file is called the
"export data file" (or "full export data file") and is the file specified as an import data file to
metacp. If 1 is specified, NotesAgent creates two files:

- Afile that contains all of the entries of the selected document type that are present
in the address book (the full export data file); this is the file specified in data_file on
the command line

- A"modify and delete" file, which contains the entries that have been added, modified
or deleted since the date specified in ModifiedDate (delta export data file). New and
modified entries are identified by a "modify" changetype attribute. Deleted entries
are identified by a "delete" changetype attribute. See the section "Delta Export data
file Format" for further details about "modify/delete" file format.

NotesAgent creates the "modify/delete" file using the pathname specified in the
FileForModifiedAddr field.

This is an optional field. If it is not specified (or the field is not present in the

205

mailto:Ray.Ozzie@wstfd.ibm.us

configuration file), NotesAgent exports all entries of the selected document type that are
present in the address book.

ModifiedDate

The ModifiedDate field specifies the date to be used to select entries for export. The
syntax is:

ModifiedDate=date_and_time
where date is one of the date and time formats supported by Windows. For example:
ModifiedDate=22.06.98 14:20:25

specifies the date in European date and time format. In this example, all entries added,
deleted, or modified after the specified date are to be exported. After NotesAgent
performs a delta export, it updates this field in the export configuration file with the
current date and time to enable subsequent delta exports. The date and time format
specified in this field must match the date and time format selected in the Windows
Regional Settings Properties Date and Time tabs.

This is an optional field unless ModifiedAddresses is set to 1.

UpdateExportFile

The UpdateExportFile field controls (for delta exports only) whether or not the full export
data file created by the NotesAgent can be updated. The syntax is:

UpdateExportFile=[switch]
where switch is one of the following values:

- 0 - Do not update the full export data file
- 1- Update the full export data file (default)

If O is specified, NotesAgent creates a new full export data file on subsequent export
operations and preserves the original full export data file it creates on the initial export. If
1is specified, NotesAgent overwrites the original full export data file on subsequent
export operations.

This is an optional field. If it is not specified (or is not present in the configuration file),
NotesAgent preserves the original full export data file on subsequent export operations.
NotesAgent evaluates this field only when performing a delta export
(ModifiedAddresses set to 1).

CopyDeletedAdrinModFile

The CopyDeletedAdrinModFile field controls whether or not NotesAgent retrieves the
contents of entries of the document type selected with the FormName field that have
been deleted since a full export data file was last generated. The syntax is:

CopyDeletedAdrIinModFile=[switch]

where switch is one of the following values:

206

- 0 - Do not retrieve the contents of deleted entries

- 1- Retrieve the contents of deleted entries (default)

The Notes address book retains the identifiers of deleted entries, although their contents
are removed. Specifying O in this field directs NotesAgent to write the identifiers of the
deleted entries to the "modified/deleted" file that it creates if the ModifiedAddresses
field is set to 1. Specifying 1in this field directs NotesAgent to retrieve the entry contents
associated with the deleted entry identifiers from the most recently generated full
export data file, and write the contents and the identifiers into the "modify/delete" file. To
use this functionality the field UpdateExportFile must be set to 1.

This is an optional field. If it is not specified (or is not present in the configuration file),
NotesAgent retrieves the contents of deleted entries. NotesAgent evaluates this field
only when performing a delta export (ModifiedAddresses set to 1).

FileForModifiedAddr

The FileForModifiedAddr field specifies the pathname of the file to which NotesAgent is
to write modified (and deleted) entries during a delta export operation. The syntax is:

FileForModifiedAddr=pathname
where pathname is the name for the "modify/delete" file. For example:
FileForModifiedAddr=c:\ibmnotes\ModDelFile

This field is optional unless ModifiedAddresses is set to 1. NTAgent does not evaluate this
field if ModifiedAddresses is set to O.

ExportAllltems

The ExportAllltems field controls whether all of the attributes ("items", in Notes
terminology) of entries of the document type selected with the FormName field are
exported, or whether a specified subset of attributes is exported. The syntax is:

ExportAllltems=switch
where switch is one of the following values:

- 0 - Export only the entry attributes specified in the Exportltems section of the
configuration file
- 1- Export all of the entry attributes (default)

This is an optional field. If it is not specified in the configuration file, NotesAgent exports
all entry attributes for entries of the selected document type.

SearchDocuments

The SearchDocuments field controls whether or not NotesAgent searches for and
exports specific entries ("documents", in Notes terminology) of the document type
specified in the FormName field. The syntax is:

SearchDocuments=switch

207

where switch is one of the following values:

- 0 - All entries are exported (no attribute selection criteria are established for entry
export) (default)

- 1- Export only the entries described by the SearchltemName and SearchltemValue
fields

If SearchDocumentsissetto 1:

- The ModifiedAddresses field is ignored

- Values must be supplied for the SearchltemName and SearchltemValue fields

This is an optional field. If it is not present in the configuration file, NotesAgent exports all
entries of the selected document type.

SearchltemName

The SearchltemName field specifies an attribute within an entry to search for. The
syntax is:

SearchltemName=attribute_name

where attribute_name is a Notes attribute name for an attribute ("item") that can be
present in an entry of the document type specified in the FormName field. For example:

SearchItemName=Department

directs NotesAgent to search all entries of the selected document type for the
Department attribute. The entry is exported if it has the value specified in the
SearchltemValue field.

This field is optional unless SearchDocuments is set to 1.

SearchltemValue

The SearchltemValue field specifies a value to search for (case exact match), given an
attribute name to search for that is specified in the SearchltemName field. The syntax is:

SearchltemValue=attribute_value
For example:

SearchItemName=Department
SearchItemValue=Iris

directs NotesAgent to search all entries in the Notes address book for the Department
attribute, and export entries whose value for the Department attribute is Iris.

This field is optional unless SearchDocuments is set to 1.

Separator

The Separator field specifies a value to be used to separate the individual attribute
values of a multivalued attribute. The syntax is:

208

Separator=[character]
where character is a character or a string used as a multi-valued attribute separator.

This field is optional. If it is not specified (or not present in the configuration file),
NotesAgent uses the comma (,) as the multi-valued attribute separator.

Trace

The Trace field controls whether NotesAgent performs program flow tracing on an
export operation. The syntax is:

Trace=[switch]
where switch is one of the following values:

- 0 - Do not perform program flow tracing on the export operation (default)

- 1- Perform program flow tracing on the export operation

If 1is specified, NotesAgent writes information about the export operation to the
pathname specified in the TraceFileName field. The type of information stored in the
trace file depends upon the settings of the TraceLevel_1, TraceLevel_2, and TracelLevel_3
fields. If Trace is set to 1, one of the trace level fields must also be set to 1.

TracelLevel_1

The TraceLevel_1 field controls whether NotesAgent writes level 1 tracing information
about the export operation. Level 1 tracing information includes a dump of the
configuration file, number of documents, and other program flow variables.

The syntax is:
Tracelevel_1=[switch]
where switch is one of the following values:

- 0 - Do not write level 1trace information (default)

- 1- Write level 1 trace information

If 1is specified, NotesAgent writes level 1 trace information about the export operation to
the pathname specified in the TraceFileName field.

Tracelevel_2

The TraceLevel_2 field controls whether NotesAgent writes level 2 tracing information
about the export operation. Level 2 tracing provides more detailed information about
program flow than is provided in level 1 tracing.

The syntax is:
TracelLevel_2=[switch]

where switch is one of the following values:

209

- 0 - Do not write level 2 trace information (default)

- 1- Write level 2 trace information

If 1is specified, NotesAgent writes level 2 trace information about the export operation to

the pathname specified in the TraceFileName field.

TracelLevel_3

The TraceLevel_3 field controls whether NotesAgent writes level 3 tracing information
about the export operation. Level 3 tracing provides more detailed information about
program flow than is provided in level 2 tracing The syntax is:

Tracelevel_3=[switch]
where switch is one of the following values:

- 0 - Do not write level 3 trace information (default)

- 1- Write level 3 trace information

If 1is specified, NotesAgent writes level 3 trace information about the export operation to

the pathname specified in the TraceFileName field.

TraceFileName

The TraceFileName field specifies the pathname of the trace file to which NotesAgent is
to write information about the export operation. The syntax is:

TraceFileName=pathname
where pathname is the name for the trace file. For example:
TraceFileName=c:\ibmnotes\ExportTraceFile

This field is optional unless Trace is set to 1. NotesAgent does not evaluate this field if
Trace is set to O.

3.5.3.2.3. The Password (Password) Section

The Password section consists of fields that define the parameters for NotesAgent
automated password authentication. The next sections describe these fields.

PathFilePassword

The PathFilePassword field is only used for the old password handling mechanism.

For a description of the old password handling mechanism, see the section "Password
Configuration File Formats".

The syntax for this field is:
PathFilePassword=pathname

where pathname is the path to the password configuration file NotesPassword.ini. For
example:

210

PathFilePassword=a:\NotesSync\NotesPassword.ini

For security reasons, it is recommended that the password configuration file not be
stored on disk, since it contains human-readable representations of Notes address book
administrator and registered user passwords.

AutomaticPW

The AutomaticPW field specifies the password that NotesAgent (in conjunction with a
NotesAgent DLL) is to use to decode the admin.id certificate; this is the certificate that
grants it the credentials to log in to the Notes server

The "PathAndFileOfNotesIDFile" field can alternatively be indicated.

If the field "PathAndFileOfNoteslIDFile" is available for a ID file, it has higher priority.
The syntax is:

AutomaticPW=password

For example:

AutomaticPW=notes

PathAndFileOfNotesIDFile

The PathAndFileOfNotesIDFile field specifies the password that NotesAgent (in
conjunction with a NotesAgent DLL) is to use to decode the admin.id certificate; this is
the certificate that grants it the credentials to log in to the Notes server

For this Notes ID file the Notes Agent needs a pair of "Path and file name of ID file" and
the "corresponding password".

Path and file Name of notes.id=password

For example:

C:\\IBM\Notes\admin.id=notes

The "AutomaticPW" field can alternatively be indicated.

If the field "PathAndFileOfNoteslIDFile" is available for a ID file, it has higher priority

3.5.3.2.4. The Export Items Section

The Export Items section is an optional section of the export configuration file that specifies
a set of entry attributes to be exported from a Notes address book. The section is only
present if the ExportAllltems field in the Export section is set to 1. The syntax is:

attribute_name=switch

where attribute_name is the name of an entry attribute and switch is one of the following
values:

21

- 0 - Do not export the attribute value for attribute_name

- 1- Export the attribute value for attribute_name

For example:

[ExportItems]

LastName=1
FirstName=1

Location=0

Use the switch parameter to select or exclude attributes in the list for export. See the
installed NotesExport.ini file for a list of attribute names known to the NotesAgent.

3.5.3.3. Import Configuration File Format

The NotesAgent import configuration file consists of the following sections:

- The Version section (required)

- The Import section (required)

- The Registered User (RegUser) section (optional)
- The Password (Password) section

- The EncryptedAttributes (EncryptedAttributes) section
The next sections describe these sections.

3.5.3.3.1. The Version Section

The Version section consists of a single field that specifies the import configuration file
version. The syntax is:

Version=version_number

where version_number is the version number assigned to the configuration file, in the
format n**nn. The current version is:

Version=1.02

This is a mandatory field. This document describes the latest version of the NotesAgent
import configuration file. There are no differences between import configuration file
versions.

3.5.3.3.2. The Import Section

The Import section consists of fields that define the parameters of the import operation for
NotesAgent. The next sections describe these fields.

212

Server

The Server field specifies the name of the Notes server that contains the Notes address
book to which entries are to be imported. It has the same syntax and default as the
Server field in the export configuration file and is a mandatory field.

AdrBook

The AdrBook field specifies the name of the Notes address book to which entries are to
be imported. It has the same syntax and default as the AdrBook field in the export
configuration file and is a mandatory field.

FormName

The FormName field specifies the Notes document type to be imported into the target
Notes address book. It has the same syntax as the FormName field in the export
configuration file and is a mandatory field.

ItemlidentityName[1,2,3]

The ItemldentityName fields control how NotesAgent matches entries in the target
Notes address book with entries to be imported into the address book. The syntax is:

ItemlidentityNamel=attribute_name | ViewSearchName
ItemldentityName2=qattribute_name
ItemldentityName3=qattribute_name

where attribute_name is the name of a Notes attribute in an import entry whose value
NotesAgent is to use match against entries in the Notes address book. NotesAgent uses
case-exact match unless the CaseSensitive field is set to 0. Specifying wildcards is not
supported.

If the Update field is set to 1, at least one ItemldentityName field must be specified.
When multiple ItemldentityName fields are specified, NotesAgent "ANDs" the fields;
there is no "OR" function.

When the ItemldentityName1 field contains the ViewSearchName value and
ViewFolder specifies a Notes view, it indicates that the view specified in ViewFolder has
been sorted by a composite attribute and that the entries in the import data file have a
ViewSearchName attribute that contains the composite attribute value. For example,
suppose the view specified in ViewFolder has been sorted by the composite attribute:

LastName, FirstName

The ItemldentityNamel field must specify:

ltemldentityNamel=ViewSearchName

and each entry in the import data file contains a ViewSearchName attribute type. For

example:

FirstName: Thomas

LastName: Diaz

213

ViewSearchName: Diaz , Thomas

The composite attribute format used in the import data file must match exactly with the
format used in the sorted view. NotesAgent uses the sorted view and the
ViewSearchName attribute values to match entries in the import data file against entries
in the Notes address book. The ViewSearchName value is only relevant when the
ViewFolder field is used.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

Update

The Update field controls whether or not existing Notes entries are modified with
imported information or whether a new entry with the imported information is created,
even if a matching entry already exists in the address book. The syntax is:

Update=[switch]
where switch is one of the following values:
- 0 - Always create a new Notes entry for an imported entry (create a new Notes ID),
even if a Notes entry that matches it already exists in the address book
- 1- Modify matching Notes entries in the address book and create new Notes entries

if there are no matches for them in the address book (default)

NotesAgent uses the values supplied in the ItemldentityName fields to determine
whether matching entries exist.

This is an optional field. If it is not specified (or not present in the configuration file)
NotesAgent updates existing Notes entries and creates non-existent Notes entries.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

ExactAction

The ExactAction field controls whether or not the ChangeType and the IltemType fields
are used exactly as defined in the import data file.

Exact action for ChangeType means that the agent does not create an entry if
ChangeType is set to modify but the entry does not exist. Otherwise a new entry is
created.

Exact action for ltemType means also that the agent does not import an entry if the item
in the import data file does not exist in the Notes database or has another ItemType as
Text, Number or DateTime. Otherwise the item is created with item type "Text".

The syntax is:

214

ExactAction =[switch]
where switch is one of the following values:

- 0 - No exact action for ChangeType, no exact action for ItemType (default).
- 1- Exact action for ChangeType, no exact action for ltemType.
- 2 - No exact action for ChangeType, exact action for ltemType.

- 3 - Exact action for ChangeType, exact action for ltemType.
This is an optional field.

Replaceltem

The Replaceltem field controls whether or not existing attribute values of Notes entries
in the address book are overwritten with imported values. The syntax is:

Replaceltem=[switch]
where switch is one of the following values:

- 0 - Add imported attribute values as multiple attribute values for the attribute (create
a multi-valued attribute) (default)
- 1- Replace existing attribute values with imported attribute values
This is an optional field. If it is not specified (or is not present in the configuration file),

NotesAgent adds the imported attribute values to the existing attribute or performs
operations on attributes as specified in a "modify" changetype entry.

If the Replaceltem field is set to 1, NotesAgent reads the full entry and sorts it according
to the attribute modification operations present in the entry. If an attribute has more
than one attribute modification specified for it, NotesAgent performs a "replace"
attribute modification operation, regardless of the attribute modification operation
specified in the import data file.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

SaveOrgDB

The SaveOrgDB field controls whether or not NotesAgent backs up the target Notes
address book before performing the import operation. The syntax is:

SaveOrgDB=switch
where switch is one of the following values:

- 0 - Do not back up the target Notes address book before import

- 1- Back up the target Notes address book before import

If SaveOrgDB is set to 1, NotesAgent writes the contents of the target Notes address

215

book to the file specified by the SaveDBName field on the Notes server specified in the
SaveServerName field.

This is an optional field. If it is not specified (or is not present in the configuration file),
NotesAgent does not perform a backup.

SaveServerName

The SaveServerName field specifies the name of a Notes server that NotesAgent is to
use as a storage target when backing up a Notes address book before an import
operation. The syntax is:

SaveServerName=[server_name]

where server_name is the name of the Notes server to which the Notes address book is
to be written, in the syntax:

"CN=server_name/O=organization_name]/..]"
For example:
SaveServerName="CN=Cambridgel/O=Notes/O=IBM"

If no value is specified for this field, NotesAgent writes the contents of the Notes address
book to the Windows system on which it is running.

This is a mandatory field.

SaveDBName

The SaveDBName field specifies the name of the file to which NotesAgent is to write the
contents of a target Notes address book before an import operation. The syntax is:

SaveDBName=[filenamel.nsf]]

When specifying a filename, you can omit the .nsf file extension; it is automatically
supplied by NotesAgent if you do not specify it explicitly. (You cannot supply a different
extension, or Notes will be unable to open the saved file). For example:

SaveDBName=namessave.nsf

This is a required field if SaveOrgDB is set to 1.

DeleteEntries

216

The DeleteEntries field controls whether or not entries that exist in the Notes address
book are to be deleted if matching entries exist in the import data file. The syntax is:

DeleteEntries=switch
where switch is one of the following values:

- 0 - Do not delete entries in the Notes address book that match entries to be
imported (default)

- 1- Delete entries in the Notes address book that match entries to be imported

NotesAgent uses the ItemldentityName field(s) to determine whether entries in the
address book match entries to be imported. If you plan to set DeleteEntries to 1, it is
strongly recommended that you use all three ItemldentityName fields and that you
back up the Notes address book before performing the import.

The DeleteEntries field takes precedence over the Update field. That is, if Update is set
to 0, and DeleteEntries is set to 1, NotesAgent will delete entries from the Notes address
book that match entries to be imported. This field has a higher precedence than any
per-entry "changetype" operations specified in the import data file.

This is an optional field. If it is not specified (or is not present in the configuration file),
NotesAgent does not delete any entries in the Notes address book when it performs the
import.

CreateTestAddresses

The CreateTestAddresses field is used to implement a test function on the import
process. The syntax is:

CreateTestAddress=number | 0

You can append a 5-digit "test" address to one or more attributes in a Notes import data
file. Initially, the number is set to O. For example:

LastName: KawellQ0000

Specifying a number in number directs NotesAgent to process the import data file that
number of times. On each processing cycle, NotesAgent increments the 5-digit test
addresses you have inserted. You can use the test address function to distinguish the
imported entries from the entries that exist in the Notes address book.

This is an optional field. If it is not specified (or is not present in the configuration file),
NotesAgent does not increment test addresses.

Separator

The Separator field specifies a value to be used to separate the individual attribute
values of a multi-valued attribute. It has the same syntax as the Separator field in the
export configuration file.

RegisterUser

The RegisterUser field controls whether or not NotesAgent registers imported entries as
Notes users. The syntax is:

RegisterUser=switch
where switch is one of the following values:

- 0 - Do not register imported entries as Notes users (default).

- 1- Register imported entries as Notes users and create corresponding mail files
immediately. (Internally the C++-APl is called: LNCertifier.RegisterUser.)

217

218

- 2 - Register imported entries as Notes users and create requests for the
Administration Process to create corresponding mail files. (Internally the API is called:
REGNewWorkstationExtended.)

- 3 - Register imported entries as Notes users and select whether mail files shall be
created immediately or only requests to create corresponding mail files for the
Administration Process shall be created. In this mode you can set the mail template
and quota for mail files. (Internally the APl is called: REGNewUser)

- 4 - Register imported entries as Notes users and select whether mail files shall be
created immediately or only requests to create corresponding mail files for the
Administration Process shall be created. In this mode you can set the mail template
and quota for mail files. Furthermore mail replica servers can be defined. (Internally
the APl is called: REGNewPerson.)

If the RegisterUser field is set to 1, 2, 3 or 4 and the Update field is set to O, NotesAgent
always registers all imported entries as Notes users. If the RegisterUser field is set to 1, 2,
3 or 4 and the Update field is set to 1, NotesAgent only registers an entry as a Notes user
if the entry has not already been registered.

Notes uses a distributed architecture and so several Notes servers participate in the user
registration operation. If RegisterUser is set to 1, the operation is synchronous and
completes successfully only if all of the required Notes servers are available. NotesAgent
receives a response about successful or unsuccessful completion.

If RegisterUser is set to 2, the user registration operation is asynchronous: NotesAgent
registers the users and then submits request documents (to create the mail files) to the
Notes Administration Process (adminp) request database. When the Administration
Process starts (the administrator specifies a time interval for startup), it consults its
database and attempts to perform the request. If one of the necessary Notes servers is
not available, the Administration Process tries the operation again the next time it starts
up. NotesAgent does not receive a response about successful or unsuccessful
completion.

If RegisterUser is set to 3, you can select wether mail files shall be created immediately
or only requests to create corresponding mail files (CreateMailDBNow) for the Notes
Administration Process shall be created. In this mode you can set the mail template
(MailTemplate), quota for mail files (DbQuotaSizeLimit, DbQuotaWarningThreshold), the
SMTP Host Domain for the internet address of the user (SMTPHostDomain), and the mail
parameters (MailOwnerAccess, MailSystem, MailACLManager, MailForwardAddress).

If RegisterUser is set to 4, the same options as for option 3 apply. Furthermore you can
define the following additional attributes: MailReplicaServer, PreferredLanguage,
AltLanguage, OnDuplicate, .PasswordKeyWIdth, KeyWidth, InetKeyWIdth,
PasswordQuality. Note that this option should be used if you want to define mail replica
servers. Calling the API REGNewPerson sets the mail replica servers. The API
REGNewPerson internally requires the additional attributes listed above.

You can use the Notes Client user interface to configure the Notes Administration
Process. You will find the configuration parameters in the section "Administration
Process" in the Server/Servers document of the address book.

This field can be in each entry in the import data file. If it is specified it acts as a default
value. This means that the value in the import data file can override this default setting.

PathFileTargetCertld

The PathFileTargetCertld field specifies the pathname to the certificate ID file of a
target organizational unit. The file contains the certificate that grants NotesAgent the
right to create registered users for the organizational unit. The syntax is:

PathFileTargetCertld=pathname
where pathname is the pathname to the certificate ID file. For example:
PathFileTargetCertId=a:\German.id

This is a required field if the import operation is to process the "MoveUserInHier"
changetype operation. See the section "Import Data File Format" for further details
about these operations.

This field can be in each entry in the import data file. If it is specified it acts as a default
value. This means that the value in the import data file can override this default setting.

Trace

The Trace field controls whether NotesAgent performs program flow tracing on an
import operation. The syntax is:

Trace=[switch]
where switch is one of the following values:

- 0 - Do not perform program flow tracing on the import operation (default)

- 1- Perform program flow tracing on the import operation

If 1is specified, NotesAgent writes information about the import operation to the
pathname specified in the TraceFileName field. The type of information stored in the
trace file depends upon the settings of the TracelLevel_1, TracelLevel_2, and TraceLevel_3
fields.

TracelLevel_1

The TraceLevel_1 field controls whether NotesAgent writes level 1 tracing information
about the import operation. It has the same syntax as the TracelLevel_1field in the
export configuration file and is an optional field.

TracelLevel_2

The TracelLevel_2 field controls whether NotesAgent writes level 2 tracing information
about the import operation. It has the same syntax as the TracelLevel_2 field in the
export configuration file and is an optional field.

TracelLevel_3

The TracelLevel_3 field controls whether NotesAgent writes level 3 tracing information
about the import operation. It has the same syntax as the TraceLevel_3 field in the

219

export configuration file and is an optional field.

TraceFileName

The TraceFileName field specifies the pathname of the trace file to which NotesAgent is
to write information about the import operation. It has the same syntax as the
TraceFileName field in the export configuration file and is an optional field unless the
Trace field is specified.

TraceltemTypes

The TraceltemTypes field controls whether NotesAgent writes all item types of all items
of the data base (AddrBook) in trace file.

The syntax is:
TraceltemTypes=[switch]
where switch is one of the following values:

- 0 - Do not write item types in trace file (default)

- 1- Write item types in trace file

For example:

Item data types:

PhoneNumber = TEXT

Form = TEXT
PasswordChangeInterval = NUMBER
PasswordChangeDate = TIME

AdminReqgDB

The AdminReqgDB field specifies the name of the Notes Administration Process (
adminp) request database to which NotesAgent is to send request documents during
"DeleteUser" changetype processing. The syntax is:

AdminRegDB=[filenamel.nsf]]

When specifying a filename, you can omit the .nsf file extension; it is automatically
supplied by NotesAgent if you do not specify it explicitly. (You cannot supply a different
extension, or Notes will be unable to open the saved file). For example:

AdminReqgDB=admin4.nsf

This is a required field if the import data file to be processed contains "DeleteUser"
changetype entries.

AdminRegAuthor
The AdminRegAuthor field specifies the author name of the Notes Administration

220

Process (adminp) request database to which NotesAgent is to send request documents
during "DeleteUser" changetype processing. The syntax is:

AdminRegAuthor=name
where name is the author name in canonical format. For example:
AdminReqAuthor=CN=Thomas Diaz/OU=USA/O=Iris

This is a required field if the import data file to be processed contains "DeleteUser"
changetype entries.

SearchUniversallD

The SearchUniversallD field controls whether NotesAgent uses the Universal identifier
to match entries to be updated in the target Notes address book with entries to be
imported into the address book. The syntax is:

SearchUniversallD=switch
where switch is one of the following values:

- 0 - Do not use the Universal identifier to search for a matching entry (default)

- 1- Use the Universal identifier to search for a matching entry

If SearchUniversallD is set to 1, NotesAgent uses the Universal identifier
(UniversallDPartl: to UniversallDPart4:) of an entry in the import data file as a search key
for finding a matching entry in the Notes address book. Using the Universal identifiers to
match import data file entries with their counterparts in the Notes address book results
in faster import operations.

This is an optional field. If it is not specified (or is not present in the configuration file),
NotesAgent uses the SearchNotelD functionality to match entries. If SearchNotelD is not
specified, NotesAgent uses the ViewFolder field to match entries. If ViewFolder is not
specified, NotesAgent uses the ItemldentityName fields to match entries.

SearchNotelD

The SearchNotelD field controls whether or not NotesAgent uses the Notes identifier to
match entries to be updated in the target Notes address book with entries to be
imported into the address book. The syntax is:

SearchNotelD=switch
where switch is one of the following values:

- 0 - Do not use the Notes identifier to search for a matching entry (default)

- 1- Use the Notes identifier to search for a matching entry
If SearchNotelD is set to 1, NotesAgent uses the Notes identifier of an entry in the import
data file as a search key for finding a matching entry in the Notes address book. Using

the Notes identifiers to match import data file entries with their counterparts in the
Notes address book results in faster import operations.

221

This is an optional field. If it is not specified (or is not present in the configuration file),
NotesAgent uses the ViewFolder field to match entries. If ViewFolder is not specified,
NotesAgent uses the ItemldentityName fields to match entries.

ViewFolder

The ViewFolder field controls whether NotesAgent uses a Notes view sorted by the
Notes attribute specified in the ItemldentityNamel field to match entries to be updated
in the target Notes address book with the entries to be imported into the address book.
The syntax is:

ViewFolder=[view_name]
where view_name is a Notes view. For example:
ViewFolder=People

The specified Notes view must contain the sorted column that has been sorted by the
attribute specified in the ItemldentityName1 field. For example, if ViewFolder specifies
"People", and ItemldentityNamel specifies "LastName", the "People" view must contain
a column that has been sorted by the "LastName" attribute. The ltemlidentityNamel
field can also specify the value ViewSearchName to indicate that the view has been
sorted by a composite attribute, for example, FirstName , LastName. See the
ItemldentityName field description for further details.

NotesAgent uses the view specified in ViewFolder sorted by the Notes attribute
specified in ItemldentityNamel to match the entry when SearchNotelD is set to O, or
when SearchNotelD is set to 1 but a Notes identifier does not exist for the entry.

This is an optional field. If it is not specified (or is not present in the configuration file),
and the SearchNotelD field is set to O, NotesAgent uses the values specified in
ItemldentityNamel, ItemldentityName2, or ItemldentityName3 fields to match entries.

CaseSensitive

The CaseSensitive field controls whether or not NotesAgent uses case-exact match
when using a sorted Notes view to match entries in the target Notes address book with
entries to be imported. The syntax is:

CaseSensitive=switch
where switch is one of the following values:

- 0 - Do not use case-exact match
- 1- Use case-exact match (default)
When CaseSensitive is set to O, NotesAgent uses case-insensitive matching when

matching the values in the sorted view against Notes address book entries. When
CaseSensitive is set to 1, NotesAgent uses case-sensitive matching.

This is an optional field and is only relevant if the ViewFolder field is used. If it is not
specified (or is not present in the configuration file), NotesAgent uses case-sensitive
matching.

222

ComputeWithFormignoreErrors

The ComputeWithFormignoreErrors field specifies the way the Notes-API
“ComputeWithForm” is called before the Notes document is saved.
(“ComputeWithForm” calculates computed fields and evaluates validation formulas
defined in the form used by the Notes document.)

The syntax is:
ComputeWithFormlgnoreErrors=switch
where switch is one of the following values:

- 0 - if you want the function to stop at the first error

- 1-if you do not want the function to stop executing if a validation error occurs

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting. ++ If ComputeWithFormlgnoreErrors is not defined then
the Notes-API “ComputeWithForm” is not called.

3.5.3.3.3. The Registered User (RegUser) Section

NotesAgent can register entries that it imports into a Notes address book as Notes users
with their own mailboxes during the import process. The Registered User section provides
the information that NotesAgent needs in order to perform this task and is only required if
the RegisterUser field in the Import section isset to 1, 2, 3 or 4. The next sections describe
the fields of the Registered User section.

MailboxName

The MailboxName field specifies the mailbox name. The syntax is:
MailboxName=mailbox_name

where mailbox_name is the name of the mailbox. For example:
MailboxName=mail/thcook, nsf

If the MailboxName field is specified then it is used to setup the mname of the mailbox;
in this case the ItemMailboxName field is ignored.

IltemMailboxName

The ItemMailboxName field specifies the attribute to use as the mailbox name. The
syntax is:

ItemMailboxName=attribute_name
where attribute_name is the name of a Notes attribute whose value NotesAgent should
use as a mailbox name when registering the entry as a Notes user and creating a

mailbox for it. For example:

ItemMailboxName=ShortName

223

If the ItemMailboxName field is specified, the entries in the import data file must
contain values in the attribute specified in attribute_name.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

Internally the following value for the mailbox name is generated:
Mail/value_of_attribute_name.nsf
The ItemMailboxName field is ignored if the MailboxName field is specified.

ItemUserld
The ItemUserld field specifies the attribute to use as the User ID. The syntax is:

ItemUserld=attribute_name

where attribute_name is the name of a Notes attribute whose value NotesAgent should
use as a user ID when registering the entry as a Notes user and creating a mailbox for it.
For example:

ItemUserId=ShortName

If the ItemUserld field is specified, the entries in the import data file must contain values
in the attribute specified in attribute_name.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

PathFileCertld

The PathFileCertld field specifies the pathname to the certificate ID file cert.id, which is
a binary file that is supplied with the Notes Server installation software. This file contains
the certificate that grants NotesAgent the right to create registered users. The syntax is:

PathFileCertld=pathname
where pathname is the pathname to the certificate ID file. For example:
PathFileCertId=a:\cert.id

This is a required field if the import operation is to process the "RenameUser" and
"RecertifyUser" changetype operations or if the RegisterUser field is set to 1, 2, 3 or 4. This
is a required field that must specify the pathname to the certificate ID file of the source
organizational unit if the import operation is to process the "MoveUserInHier"
changetype operation.

See the section "Import Data File Format" for further details about these operations.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can

224

override this default setting.

PathFileCertLog

The PathFileCertLog field specifies the pathname to the certifier logging file certlog.nsf
on the server. This file contains the certifier logging entries of the registered users. The
syntax is:

PathFileCertLog=pathname

where pathname is the pathname to the certifier logging file. For example:
PathFileCertLog=d:\ibm\domino\data\certlog.nsf

This is a required field if the RegisterUser field is set to 1, 2, 3 or 4.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

PathUserld

The PathUserld field specifies the directory in which NotesAgent is to store Notes user
IDs created during the user registration process. The syntax is:

PathUserld=directory
where directory is a directory pathname. For example:
PathUserId=e:\notes\data

Notes User IDs are binary user certificate files that NotesAgent creates during the
registration process if CreateldFile is set to 1. NotesAgent writes these user ID files to the
directory specified in the PathUserld field if SaveldInFile field is set to 1.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

RegistrationServer

The RegistrationServer field specifies the name of the Notes registration server that is to
register the users in the Notes server address book. The syntax is:

RegistrationServer=server_name

where server_name is a the name of a Notes server in the format:
"CN=server_name/O=organization_namel/..]"

For example:
RegistrationServer="CN=Cambridge3/0=Notes/0=IBM"

This field can be in each entry in the import data file. If it is specified in the configuration

225

file it acts as a default value. This means that the value in the import data file can
override this default setting.

MailServer

The MailServer field specifies the name of a Notes server on which NotesAgent is to
create user mailboxes during the user registration process. The syntax is:

*MailServer=/server_name

where server_name is a the name of a Notes server in the format:
"CN=server_name/O=organization_name]/..]"

For example:

MailServer="CN=Cambridge4/0=Notes/0=IBM"

Entries in the import data file can also specify (as an attribute of the entry) the name of
the Notes server on which to create user mailboxes. Mailboxes specified in import
entries override the specification in the MailServer field.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

MinPasswordLength

The MinPasswordLength field specifies the minimum number of characters that a user
password must have. The syntax is:

MinPasswordLength=number

For example:

MinPasswordLength=5

NotesAgent sets the specified value as an attribute of the registered user entry.
If the value is set to O the SaveldinAddressBook field also must be set to O.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

CreateAddressBookEntry

The CreateAddressBookEntry field controls whether NotesAgent creates Notes entries
in the target Notes address book for Notes users that it registers during the import
process. The syntax is:

CreateAddressBookEntry=switch

where switch is one of the following values:

226

- 0 - Register Notes users, but do not create Notes entries for them

- 1- Register Notes users and create Notes entries for them

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

CreateMailDatabase

The CreateMailDatabase field controls whether NotesAgent creates user mailboxes for
Notes users that it registers during the import process. The syntax is:

CreateMailDatabase=switch
where switch is one of the following values:

- 0 - Register Notes users, but do not create mailboxes for them

- 1- Register Notes users and create mailboxes for them

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

CreateldFile

The CreateldFile field controls whether NotesAgent creates a user ID file for Notes users
that it registers during the import process. The syntax is:

*CreateldFile=+switch
where switch is one of the following values:

- 0 - Register Notes users, but do not create a user ID file for them

- 1- Register Notes users and create a user ID file for them

If CreatelDFile is set to 1, either the SaveldlnAddressBook field or the SaveldInFile field
(or both) must be set to 1to specify where NotesAgent is to store the user ID files it
creates.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

SaveldinAddressBook

The SaveldinAddressBook field controls whether or not NotesAgent saves the user ID
files it creates as attachments of the Notes entries for the registered users. The syntax is:

SaveldinAddressBook=switch
where switch is one of the following values:

- 0 - Do not save user ID files as attachments of the Notes entries for the registered

227

users
- 1- Save user ID files as attachments of the Notes entries for the registered users in
the Notes address book

If SaveldinAddressBook is set to 1, NotesAgent creates the user ID file and stores it as an
attachment of the corresponding Person entry for the registered user. If
SaveldlinAddressBook is set to 1, the registered user must have got a password.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

SaveldInFile

The SaveldInFile field controls whether or not NotesAgent saves the user ID files it
creates in individual files. The syntax is:

SaveldInFile=switch
where switch is one of the following values:

- 0 - Do not save user ID files in individual files

- 1-Save user ID files in individual files

If SaveldInFile is set to 1, NotesAgent creates the user ID files and stores them in the
directory specified in the PathUserld field.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

SavelnternetPassword

The SavelnternetPassword field controls whether or not NotesAgent saves the user ID
password also for use as an Internet password. The syntax is:

SavelnternetPassword=switch
where switch is one of the following values:

- 0 - Do not save user |ID password also as Internet password

- 1- Save user ID password also as Internet password

If SavelnternetPassword is set to 1, NotesAgent saves the user ID password also in the
field for the Internet password.

This field can be contained in each entry in the import data file. If it is specified in the
configuration file it acts as a default value. This means that the value in the import data
file can override this default setting.

CreateNorthAmericanld
The CreateNorthAmericanld field controls whether or not NotesAgent creates United

228

States security encrypted User ID files. The syntax is:
CreateNorthAmericanld=switch
where switch is one of the following values:

- 0 - Do not create U.S.-encrypted user ID files
- 1- Create U.S.-encrypted user ID files
If CreateNorthAmericanld is set to 1, the Notes registered user can only be used within

the United States. This field is disabled for NotesAgent installations outside the United
States.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

ClientType

The ClientType field specifies the type of Notes client that NotesAgent is to associate
with the registered users it creates during the import process. The syntax is:

ClientType=number
where number is one of the following values:

- 1- Create registered users of client type "desktop"
- 2 - Create registered users of client type "complete"

- 3 - Create registered users of client type "mail"
The client types correspond to the different kinds of licenses available for Notes clients.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

SMTPHostDomain

The SMTPHostDomain field specifies the domain name of the internet addresses of the
user. The syntax is:

SMTPHostDomain=domain name

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

MailTemplate
The MailTemplate field specifies the name of the mail template database. The syntax is:

MailTemplate=name of the template data base

229

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

DbQuotaSizeLimit

The DbQuotaSizeLimit field specifies the size limit of the mail file. The syntax is:
DbQuotaSizeLimit=number
where number is the size in MB.

This field can be in each entry in the import data file. If it is specified in the configuration file
it acts as a default value. This means that the value in the import data file can override this
default setting.

DbQuotaWarningThreshold

The DbQuotaWarningThreshold field specifies the size of the mail file at which a
warning is displayed. The syntax is:

DbQuotaWarningThreshold=number
where number is the size in MB.

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

CreateMailDBNow

The CreateMailDBNow field specifies that the mail file is created during the registration.
The syntax is:

CreateMailDBNow=number
where number is one of the following values:

- 0 - Create mail file later with the administration process

- 1- Create mail file during the registration

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

MailOwnerAccess

The MailOwnerAccess field specifies the mail owner's ACL privileges. The syntax is:
MailOwnerAccess=number
where number is one of the following values:

- 0 - Manager (default)

- 1- Designer

230

- 2 - Editor

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

MailSystem
The MailSystem field specifies the type of the mail system. The syntax is:

MailSystem=number
where number is one of the following values:

- 0- NOTES (default)
- 1- CCMAIL
- 2-VINMAIL
- 99 - NONE
This field can be in each entry in the import data file. If it is specified in the configuration

file it acts as a default value. This means that the value in the import data file can
override this default setting.

MailACLManager

The MailACLManager field specifies the manager name of the access control list of the
mail file. The syntax is:

MailACLManager=name
where name is the manager name in canonical format. For example:
MailACLManager=CN=Administrator/0=MyCompany

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

MailForwardAddress

The MailForwardAddress field specifies the forwarding address of a Domino domain or
foreign mail gateway. The syntax is:

MailForwardAddress=name of the forwarding address

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

CreateMailFullTextIndex

The CreateMailFullTextIndex field specifies that a full text index is created when
creating the mailbox. The syntax is:

23]

CreateMailFullTextindex=number
where number is one of the following values:

- 0 - Do not create mail full text index

- 1- Create mail full text index

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

If absent, then the mail full text index is created. (That default behavior is compatible
with older releases of the NotesAgent where that parameter was not configurable.)

CreateMailReplicas

The CreateMailReplicas field specifies that the mail replicas should be created with the
administration process. The syntax is:

CreateMailReplicas=number
where number is one of the following values:

- 0 - Do not create mail replicas

- 1- Create mail replicas with the administration process

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

If absent, then no mail replicas are created. (That default behavior is compatible with
older releases of the NotesAgent where that parameter was not configurable.)

MailReplicaServer

The MailReplicaServer field specifies the Notes servers that holds a mail replica. The
syntax is:

MailReplicaServer=server_name 1| server_name 2 | ... | server_name n

where server_name is a the name of a Notes mail server in the format:
"CN=server_name/O=organization_name]/..]"

For example:

MailReplicaServer="CN=Cambridge4/0=Notes/0=IBM | "CN=New York/O=IBM"

In the INI file, the mail replica servers are defined on a single line and are separated by "|".
A"|" at the end of the definition will be accepted, but ignored.

This field is an optional field and will only be evaluated if the RegisterUser field is set to 4.

232

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

In the import data file, the definition looks a little bit different. Each mail
replica server is defined in a seperate line. The syntax is as follows:

MailReplicaServer:server_name 1

0 MailReplicaServer:server_name 2

MailReplicaServer:server_name n

PreferredLanuage
The PreferredLanguage field specifies the user's language. The syntax is:

PreferredLanguage=/anguage
where language is the user's preferred language. For example:
PreferredLanguage=de

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

AltLanguage

The AltLanguage field specifies a user’s alternate language. The syntax is:
AltLanguage=/anguage

where language is the user’s alternate language. For example:
AltLanguage=de

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting.

OnDuplicate

The OnDuplicate field specifies the action to execute in case the new user is already
available. The syntax is:

OnDuplicate=option
where option is one of the following values:

- 0 - terminate without creating the user (REG_FILE_DUP_STOP); default
- 1- create a unique user (?) (REG_FILE_DUP_UNIQUE)

233

- 2 - overwrite the existing user (REG_FILE_DUP_OVERWRITE)
For example:
OnDuplicate=0

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting. If this attribute is neither specified in the import data file
nor in the configuration file, then the default value 0 applies.

PasswordKeyWidth

The PasswordKeyWidth specifies the encryption strength of the user's password in bits.
The syntax is:

PasswordKeyWidth=encryption_strength
where encryption_strength is one of the following values:

- 0 - default; (means 64 bits for PasswordKeyWidth <1024 else 128 bits)
- 64
- 128

For example:
PasswordKeyWidth=0

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting. If this attribute is neither specified in the import data file
nor in the configuration file, then the default value 0 applies.

KeyWidth
The KeyWidth field specifies the key width in bits. The syntax is:

KeyWidth=width
where width is one of the following values:

-0

- 630 - Compatible with all releases

- 1024 - Compatible with R6 and later
- 2048 - Compatible with R7 and later

For example:
KeyWidth=0

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can

234

override this default setting. If this attribute is neither specified in the import data file
nor in the configuration file, then the default value 0 applies.

InetKeyWidth
The InetKeyWidth field specifies the width of the internet key in bits. The syntax is:

InetKeyWidth=width
where width is one of the following values:

- 0 - default width
- 1024

For example:
InetKeyWidth=0

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting. If this attribute is neither specified in the import data file
nor in the configuration file, then the default value 0 applies.

PasswordQuality

The PasswordQuality field specifies the quality of the user's password required for this
server. The syntax is:

PasswordQuality=quality

where quality is a value between 0 and 16.
For example:

PasswordQuality=0

This field can be in each entry in the import data file. If it is specified in the configuration
file it acts as a default value. This means that the value in the import data file can
override this default setting. If this attribute is neither specified in the import data file
nor in the configuration file, then the default value 0 applies.

3.5.3.3.4. The Password (Password) Section

The Password section consists of fields that define the parameters for NotesAgent
automated password authentication. The next sections describe these fields.

PathFilePassword
The PathFilePassword field is only used for the old password handling mechanism.

For a description of the old password handling mechanism, see the section "Password
Configuration File Formats".

The syntax for this field is:

235

PathFilePassword=pathname

where pathname is the pathname to the password configuration file NotesPassword.ini.
For example:

PathFilePassword=a:\NotesSync\NotesPassword.ini

For security reasons, it is recommended that the password configuration file not be
stored on disk, since it contains human-readable representations of Notes address book
administrator and registered user passwords.

AutomaticPW

The AutomaticPW field specifies the password that NotesAgent (in conjunction with a
NotesAgent DLL) is to use to decode the admin.id certificate; this is the certificate that
grants it the credentials to log in to the Notes server.

The "PathAndFileOfNotesIDFile" field can alternatively be indicated.

If the field "PathAndFileOfNotesIDFile" is available for a ID file, it has higher priority.
The syntax is:

AutomaticPW=password

For example:

AutomaticPW=notes

PathAndFileOfNoteslIDFile

A certifier Notes ID can be protected with up to three passwords. The standard is the
protection with just one password. For each certifier Notes ID file the Notes Agent needs
a pair of "Path and file name of ID file" and the "corresponding password". The syntax is:

Path and file Name of notes.id{[_1|_2|_3]}=password{[1|2|3]}
For example:

C:\\IBM\Notes\certs\cert.id=notes
to protect the certifier Notes ID with just one password

or

C\IBM\Notes\certs\cert.id_1=notes]
C\IBM\Notes\certs\cert.id_2=notes2
to protect the certifier Notes ID with two passwords.

UserPassword

The UserPassword field specifies the default password that NotesAgent is to assign to
any registered user it creates during the import process. The syntax is:

UserPassword=password

236

For example:

UserPassword=notes

NotesAgent uses the default password supplied in this field for entries in an import data

file that do not contain a Password attribute value. If an entry in an import data file

contains a Password attribute value, NotesAgent assigns this value as the user password

when it creates the registered user.

This is an optional field unless the NotesAgent is to create registered users (the
RegisterUser field is set to 1 or 2).

3.5.3.3.5. The EncryptedAttributes (EncryptedAttributes) Section

The EncryptedAttributes section is an optional section that lists attributes which are
encrypted in the import data file and have to be decrypted by the agent before they are
passed to the Notes Interface. This functionality only works correctly in an appropriate
security environment like in the DirX Identity environment configured in security mode.
(See DirX Identity Connectivity Administration Guide). The attributes are listed in the
format:

attribute=1
where attribute specifies the attribute names to be imported.
For example:

[EncryptedAttributes]
Password=1

3.5.3.4. Password Configuration File Formats

This chapter is provided only for compatibility reasons. It describes the old
password handling mechanisms of the NotesAgent.

NotesAgent uses password configuration files to:

- Supply the password that grants it the credentials to log in to a Notes server from an

installed Notes client. NotesAgent must use password authentication to a Notes server

in order to export data from an address book or import data into it. The password can

be supplied at login:
o Manually, at the user prompt

o Automatically, through the use of password configuration files

- Supply the password that grants it the credentials to register users during an import

operation

- Provide a default password for registered users created during an import.

Templates of the password configuration files are provided with the NotesAgent
installation. The filenames are:

237

- NotesPathPWIni.ini

- NotesPassword.ini

The next sections describe the password configuration file formats.

3.5.3.4.1. Notes Password Pathname Configuration File

The Notes password pathname file specifies the pathname to the password configuration
file that contains:

- The password that NotesAgent is to use to automate the granting of credentials to log
in into a Notes server

- The password(s) that NotesAgent is to use to obtain the credentials required to register
users

- The default password that NotesAgent is to assign to any registered users that it creates
during an import. NotesAgent must be able to assign a password to a registered user in
order to create a user ID file for it in the Notes address book.

The Notes Password Pathname configuration file consists of one section - Password -
which contains one field-PathFilePassword. The syntax for this field is:

PathFilePassword=pathname

where pathname is the pathname to the password configuration file NotesPassword.ini.
For example:

PathFilePassword=a:\NotesSync\NotesPassword.ini

For security reasons, it is recommended that the password configuration file not be stored
on disk, since it contains human-readable representations of Notes address book
administrator and registered user passwords.

3.5.3.4.2. Password Configuration File

The Password configuration file stores passwords used by NotesAgent. It contains two
sections - Password and certifierPW (only up to version 1.03). The next sections describe
the fields within these sections.

The Password Section (up to Version 1.03)

AutomaticPW
The AutomaticPW field specifies:

- The password that NotesAgent (in conjunction with a NotesAgent DLL) is to use to
decode the admin.id certificate; this is the certificate that grants it the credentials to
log in to the Notes server

- The password that NotesAgent is to use to decode the cert.id certificate; this is the
certificate that grants it the credentials to register users

0 The password to decode the cert.id certificate must be the same as the

238

password to decode the admin.id certificate in order to be able to use
the AutomaticPW field for automating authenticated login. There are
also steps that must be followed during the NotesAgent installation to
enable automatic password authentication at login; see the DirX Identity
Release Notes for details.

The syntax is:
AutomaticPW=password
For example:
AutomaticPW=notes

CertifierPW

The CertifierPW field specifies the password that NotesAgent is to use to decode the
cert.id certificate (the certificate that grants it the credentials to register users) during
RenameUser, RecertifyUser, DeleteUser and MoveUserlnHier operations and during user
registration where the RegisterUser field is set to 2, 3 or 4. The syntax is:

CertifierPW=password
For example:
CertifierPW=notes

This is an optional field. If it is not specified (or is not present in the configuration file), the
agent uses the password from the CertifierPW section (see below). If there the password
for the cert.id is also not specified, the user is prompted for the password.

TargetCertifierPW

The TargetCertifierPW field specifies the password that NotesAgent is to use to decode
the cert.id certificate (the certificate that grants it the credentials to register users) of the
target organizational unit during "MoveUserInHier" operations. The syntax is:

TargetCertifierPW=password
For example:
TargetCertifierPW=notes

This is an optional field. If it is not specified (or is not present in the configuration file), the
agent uses the password from the CertifierPW section (see below). If there the password
for the cert.id is also not specified, the user is prompted for the password.

UserPassword

The UserPassword field specifies the default password that NotesAgent is to assign to
any registered user it creates during the import process. The syntax is:

UserPassword=password

239

For example:
UserPassword=notes

NotesAgent uses the default password supplied in this field for entries in an import data
file that do not contain a Password attribute value. If an entry in an import data file
contains a Password attribute value, NotesAgent assigns this value as the user password
when it creates the registered user.

This is an optional field unless the NotesAgent is to create registered users (the
RegisterUser field is set to 1 or 2).

The CertifierPW Section (only up to version 1.03)

If the agent registers users in several organizational units and each unit uses an own
cert.id (with password), the agent needs for each cert.id a password.

In this section each line is a pair of "Path and file name of cert.Id" and the "corresponding
password".

Path and file Name of cert.id=password
For example:

[CertifierPW]
C:\IBM\Notes\certs\cert.id=notes

This is an optional field. If it is not specified (or is not present in the configuration file), the
user is prompted for the password.

The Password Section (version 1.04 and newer)

The Notes Agent needs to provide ID files and the corresponding passwords so that it
enables the Notes client to decode the certificates that are stored in the relevant ID files.

The following ID files and passwords are needed:

- Full path name of administrator ID file for connecting to the IBM Domino Server and
its relevant password

- Full path name of cert.id and its relevant password

- Full path name of other certifier ID files and their relevant passwords

These certifier ID files are needed if you plan to move users to different organizational
units.

That information is stored in the bind profiles of a Notes target system.

The Notes Agent needs to know which one of the ID files is the one it could use for
connecting to the Domino server. Therefore the display name of bind profile is part of
the entries in the password section. The Notes Agent uses the entry with display name
“Admin” for connecting to the Domino Server.

240

The format of the Password section is as follows:
[Password]
display_namelfull_path_name_of_ID_files=password

Example:

[Password]

Admin|c:\Program Files\ ibm\notes\data\ids\admin.id=pwdl
Certifier| c:\Program Files\ ibm\notes\data\ids\cert.id=pwd2
Sales-0OU| c:\Program Files\ ibm\notes\data\ids\sales.id=pwd3

3.5.4. Export and Import Data File Format

The NotesAgent import and export data files use a tagged file format. The next sections
describe the:

- General characteristics of export and import data file formats
- Delta export data file format

- Import data file format

3.5.4.1. General Data File Format

The NotesAgent export and import data files have the following characteristics:

- Each entry attribute is contained on one line; line continuation is not permitted.

- The representation of each attribute is:
attribute_name:attribute_value(s)

- Leading and trailing whitespace between attribute_name and attribute_value is
ignored. For example, in the attribute:

FullName: Timothy Michael Halvorsen

The white space between the colon () and the start of the attribute value is ignored, but
the white space within the attribute value is returned

- The form-feed character (OxOc) is used as a record (entry) separator
- The form-feed character can optionally appear as the first line in the file

- There is no special character processing (there is no "escaping" mechanism)
Here is an example of a person entry:

NotelD: 8453
Form: Person

241

Type: Person

Department: ENG,eng3

FullName: Alan Eldredge

City: Westford

ShortName: aeldredge

FirstName: Alan

LastName: Eldredge

Password: secret

State: MA

CompanyName: Iris Associates
InternetAddress: aeldredge@eng.iris.com
(OxOc is here as the record (entry) separator)
NotelD: 8454

Form: Person

Type: Person

Here is an example for a group entry:

NotelD: 8498

Form: Group

Type: Group

GroupType: O

Form: Group

ListName: IrisAdminGroup

LocalAdmin: CN=Alan Eldredge/O=ENG3
$UpdatedBy: CN=Alan Eldredge/O=ENG3
GroupTitle: O

Members: lan Gillan,Roger Waters
ListOwner: CN=Alan Eldredge/O=ENG3
DocumentAccess: [GroupModifier]
AvailableForDirSync: 1

The following group attributes have numeric values:

- GroupType - specifies the use of the group and can have the values:
O (multi purpose)
1 (mail only)
2 (access control list only)
3 (deny list only)

- GroupTitle - specifies the title of the group and can have the values:
O (group)
1 (mailing list)
2 (access list)
3 (deny access list)

- AvailableForDirSync - specifies whether the group is available for synchronization (so
that NotesAgent can export it) and can have the values:
O (not available for synchronization)
1 (available for synchronization)

242

mailto:aeldredge@eng.iris.com

3.5.4.2. Delta Export Data File Format

The delta export data file ("modify/delete") generated when ModifiedAddresses is set to 1
uses LDIF per-entry "changetype" attributes to indicate the type of modification made to
the entry since the last full export. The "modify" changetype attribute is applied to new or
modified entries, and the "delete" changetype attribute is applied to entries that have been
deleted. For example:

Changetype: delete

NoteID: 5430

Form: Person

Type: Person

Department: ENG,eng3
FullName: Jack Ozzie

City: Westford

ShortName: jozzie

FirstName: Jack

LastName: Ozzie

Password: secret

State: MA

CompanyName: Iris Associates
InternetAddress: jozzie@eng.iris.com
(0x0c 1s here as the record (entry) separator)
Changetype: modify

NoteID: 5478

Form: Person

Type: Person

Department: ENG,eng2
FullName: Len Kawell

City: Westford

ShortName: lkawell
FirstName: Len

LastName: Kawell

Password: secret

State: MA

CompanyName: Iris Associates

InternetAddress: lkawell@eng.iris.com

3.5.4.3. Import Data File Format

An entry in an import data file can contain the following optional attributes:

243

- An optional (text format) attribute UniqueOrgUnit, whose value is used as an additional
value for OrganizationUnit to distinguish between entries with identical names; that is,
identical values for the FirstName, Middlelnitial, LastName attributes.

- An optional (integer) attribute Validity, whose value specifies the lifetime, in days, for
which the user certificate is valid (the default is 730 (2 years)).

The import data file format supports the LDIF per-entry "changetype" attribute that
indicates the type of modification to be made to the entry in the Notes address book. The
value for "changetype" is one of "add", "modify", "delete", "RenameUser", "RecertifyUser",
"DeleteUser" or "MoveUserlnHier". The changetype attribute name and its values are case-
insensitive.

The attributes for a multivalued attribute specified in a "modify" changetype operation
appear on separate lines. For example:

add: OfficeFaxPhoneNumber
OfficeFaxPhoneNumber: 123458
OfficeFaxPhoneNumber: 345892

Entries with a "modify" changetype contain attributes that indicate one or more "add",
"delete", or "replace" attribute value modifications. The "replace" modification has a higher
precedence than the "add and "delete" modifications; if it is present for an attribute, it is the
only modification evaluated. For the "modify" changetype, NotesAgent adds a new entry in
the Notes address book if it does not find a matching entry.

The "RenameUser" changetype renames a registered user. The user may need to confirm
renaming when he logs on to Notes the next time. The entry must contain the
OldUserName (in canonical format) and LastName attributes. The FirstName, Middlelnitial,
UniqueOrgUnit. and Validity attributes are optional. For example:

OldUserName: CN=Armen Varteressian/OU=USA/O=MyCompany
LastName: Varteressian
Validity: 365

To perform this operation, the PathFileCertld field in the RegUser section of the import
configuration file must be specified.

The "RecertifyUser" changetype re-certifies a registered user. The re-certification is
completed when the user logs on the next time using the new certificate. The entry must
contain the UserName (in canonical format) attribute and the PathFileCertld field in the
RegUser section of the import configuration file must be specified.

The "DeleteUser" changetype deletes the user in "Person Documents", "Access Control List"
and in "Reader/Author" fields and deletes his mail file subject to confirmation in the request
database (approve file deletion) by the Notes Administrator. The following attributes must

244

be present in the import entry:

- UserName (in canonical format)

- MailServer (in canonical format)

- MailFile (mail file name including path relative to the Notes data directory)

- DeleteMailFile (O=don’t delete mail file;1=delete just mail file specified in person

record;2=delete mail file specified in person record and all replicas)

For example:

UserName: CN=Armen Varteressian/OU=USA/0=MyCompany
MailServer: CN=Neptune/O=MyCompany

MailFile: mail\Varteres

DeleteMailFile: 2

In order to perform this operation, the AdminRegDB and AdminReqgAuthor fields in the
Import section of the import configuration file must be specified, and the DeleteEntries
field must be set to O. If DeleteEntries is set to 1 or a "delete" changetype entry is processed,
the user is deleted in the Notes address book only and his mail file is retained.

The "MoveUserInHier" changetype moves a user to a different organizational unit and
renames the full username. In order to perform this operation:

- The Notes Client V5.0 must be installed

- The source and target organizational units must have different certificate ID (cert.id)
files

- The PathFileTargetCertlID field specifies the pathname to the certificate ID file of the
target organizational unit, for example:

PathFileTargetCertID: a:\German.id

- The PathFileCertlID field specifies the pathname to the certificate ID file of the source
organizational unit, for example:

PathFileCertlID: a:\cert.id

- The password configuration file must contain the passwords for both source and target
organizational unit certificate IDs in the Password section, for example:

CertifierPW=*password_for_source_organization
TargetCertifierPW=*password_for_target_organization

or in the CertifierPW section, for example:

C:\IBM\certs\source_cert.id=password_for_source_organization
C:\IBM\certs\target_cert.id=password_for_ target_organization

245

- The FullName and TargetCertifier attributes must be present in the import entry in
canonical format. For example:

FullName: CN=Armen Varteressian/O=MyCompany
TargetCertifier: OU=Germany/O=MyCompany

The values in the relevant fields in the import configuration file have a higher precedence
than the changetype operations specified in the import data file. For example, if
DeleteEntries is set to 1, NotesAgent deletes entries that match entries in the import data
file from the Notes address book regardless of the change types specified for the entries in
the import data file.

The import data file can contain comments, which are identified by a # character at the
beginning of a line.

For Person entries, the LastName attribute must be the first attribute for the entry, the
FirstName attribute must be the second attribute, and the Middlelnitial attribute must be
the third attribute. For Group entries, the ListName attribute must be the first attribute for
the entry. The ordering for all other attributes for Person and Group entries is arbitrary.

3.5.5. Import Error File Format

During the import process, NotesAgent writes the original attributes and values of entries
that it is unable to import into the error file specified on the command line along with an
error message that describes the error. Each line in the import error file generated by
NotesAgent on an import operation has the following format:

source_entry
#error_code
Herror_message

where source_entry is the original entry that NotesAgent was unable to import, error_code
is the code for the error that occurred, and error_message is a description of the error. For
example:

FirstName: Armen

LastName: Varteressian
CompanyName: Digital

Type: Person

FullName: Armen Varteressian
ShortName: avart

City: Nashua

Department: PUBS,VMSpubs
State: New Hampshire
#ProcessAddress error:

#Find more as one document with the following ItemIdentityName(s):

246

FirstName, LastName

Any entry that cannot be imported into the Notes address book is written into the import
error file. Consequently, you can use the file as an input file and re-run the import
operation, after first fixing the errors reported in the file.

3.5.6. Notes Agent Import Procedure

If NotesAgent encounters a single-valued attribute in an import data file that has more
than one value defined, it takes the first value.

The order of operation on attributes is arbitrary. An import entry should not contain
inconsistent attribute operations for the entry.

NotesAgent creates groups with GroupType 0-2 in the Groups folder of the Notes address
book. It creates groups with GroupType 3 in the Server/Deny Access Groups folder.

The import configuration fields RegisterUser, ClientType, PathFileCertld and
PathFileTargetCertld can be present as attributes of an entry to be imported. The syntax is:

field_name** field_value

The colon character () is the name and value separator. For example:

RegisterUser: 1

ClientType: 1

PathFileCertId: d:\notes\data\certs\cert.id
PathFileTargetCertId: d:\notes\data\certs\sales.id

When present in the entry, the values in these attributes override the values specified in
the fields of the import configuration file. When absent from the entry, NotesAgent uses
the fields' default values from the configuration file.

3.6. Microsoft ADS Agent

ADSAgent is the DirX Identity agent that handles the import and export of Active Directory
user and group objects to and from a Microsoft Windows Active Directory. ADSAgent uses
the ADSI LDAP provider to bind to the Active Directory and runs on Windows.

ADSAgent can:

- Perform a full or a delta export of object classes from an Active Directory, including
multiple attribute values and using LDAP search filters

- Perform a full or a delta import of object classes into an Active Directory, including
multiple attribute values

- Generate an import error file that records all user and group entries that it fails to

247

import

- Generate a log file (for tracing)

The following figures illustrate the components of the ADSAgent export and import
operations.

Conneced

ADS Server

T

cammand line options —FMicrOSOft .'E".DS —— display

- A
— | —] Agent .
canfiguration trace
file B file
exceplion export data
fila file

Figure 11. ADSAgent Export Components

Conneced

ADS Server

T

cammand line options —FMicrOSOft .'E".DS —— display

- A
— | —] Agent .
canfiguration trace
file file
exceplion import data
fila file

Figure 12. ADSAgent Import Components
This section describes:

- ADSAgent command line format for export and import operations
- ADSAgent configuration files for export and import operations

- The export data file format that ADSAgent generates

- The import data file format that ADSAgent recognizes

- ADSAgent import error file format

- How to create Exchange mail-enabled and mailbox-enabled users in Active Directory

248

Sample ADSAgent configuration files and scripts are provided in the \Samples\ADS
directory of the DirX Identity installation. See the file ADSReadme.txt for a description of
these files and scripts.

3.6.1. Command Line Format
The command line format to invoke ADSAgent is as follows:

AdsAgent.exe sync_switch data_file configuration_file error_file [/al>initial_error_file
[-Enc encryption_mode -Timeout timeout_value -AuditLevel audit_level -CryptLoglLevel
crypt_level]

3.6.1.1. Parameters

sync_switch

Specifies the type of directory synchronization that ADSAgent is to perform. Possible
values are:

/e Invokes the ADSAgent export function
/i Invokes the ADSAgent import function

data_file

For export: specifies the pathname of the target export data file that is to contain the
entries that ADSAgent extracts from an Active Directory.*

For import:* specifies the pathname of the source file that contains the data to be
imported into an Active Directory.

configuration_file

Specifies the name of the file that contains the specifications for the export and import

procedure.

If the file is located in the working directory, you must explicitly indicate
this fact by using the .\ notation before the file name, as shown in the
example. It is not sufficient to specify only the file name, as it is for the
data_file and error_file parameters.

error_file

Specifies the name of the file to which ADSAgent is to write error messages about errors

that occur during the export or import process. For export errors, the format is:

H##H#Hdate_and_time command_line
Error! error_message
##H#Hdate_and_time command_line

where error_message contains the function name that failed and an error code and
error text.

For example:

249

04/07/2001 08:16:57 AM AdsAgent /e Data\ExportDirx.adr
\ExportDirx.ini1 ExportDirx. log

Error! ADsOpenObject failed. Error Code: 80005000 Error Text:
An invalid Active Directory Pathname was passed.

04/07/2001 ©08:16:58 AM End

See "Import Error File Format" for a description of import error format.

/a (On export only)

Specifies that ADSAgent is to append the results of the export operation to data_file and
error_file and write a timestamp at the start and end of the results. Use this switch on an
export operation to append extracted entries to an existing export data file and to
append error information to an existing error log file.

If the switch is not specified, ADSAgent overwrites the contents of the specified data_file
and error_file, if they already exist.

initial_error_file

Specifies the name of the file to which ADSAgent is to write error messages for errors
that occur before it creates error_file.

-ENC encryption_mode
Specifies the security mode. Valid modes are ATTRIB_ADMIN_PW or ADMIN_PW.

This functionality only works correctly in an appropriate security environment like in the
DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide).

-Timeout timeout_value

Specifies the timeout value for the security mode. Values must be given in
microseconds.

This functionality only works correctly in an appropriate security environment like in the
DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide).

-AuditLevel audit_level

Specifies the audit level value for the security mode. Valid values are in the range of O
and 4.

This functionality only works correctly in an appropriate security environment like in the
DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide).

-CryptLoglLevel crypt_level

Specifies the logging level of the crypt library for the security mode. Valid values are
greater or equal to O.

250

This functionality only works correctly in an appropriate security environment like in the
DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide).

The following table describes the codes provided when ADSAgent.exe finishes running:

Exit Description

Code

0 ADSAgent completed successfully.

1 ADSAgent completed with errors, which are described in the specified error_file
unless this file cannot be created due to a file exception error.

60 ADSAgent completed with warnings, which are described in the specified
error_file.

3.6.2. Configuration File Formats
ADSAgent uses the following configuration files:

- ADS export configuration file - controls the export of data from an Active Directory

- ADS import configuration file - controls the import of data into an Active Directory

Templates of these configuration files are provided with the ADSAgent installation. The
filenames are:

- ExportAds.ini (to export all object classes (Users, Groups, Sites, Services, Computers,
Schema Objects))

- ImportAds.ini (to import all User and Group object classes to Active Directory)

In general, you must customize these files to support the requirements of your Active
Directory import and export operations.

This section also describes the general structure of a configuration file.

3.6.2.1. General Structure of a Configuration File

An ADSAgent configuration file consists of sections and fields defined within those
sections. A configuration file has the following structure:

[SectionName]

<comment> _
sectionField_*=*fieldValue

[SectionName]

<comment>

251

sectionField=fieldValue

SectionName is a keyword enclosed in square brackets ([]) that identifies the purpose of
the section. sectionField is a keyword that identifies the field and fieldValue is the value
assigned to the section field, preceded by the equal sign (=). For example:

SearchScope=2

Comments can be inserted anywhere in a configuration file and are identified by any
character-for example, a # character or a semicolon (;)-that appears at the beginning of a
line.

3.6.2.2. Export Configuration File Format

The ADSAgent export configuration file consists of the following sections:

- The Version section (required)

- The Connection section (required)

- The SearchPreferences section (optional)
- The SearchFilter section (optional)

- The SelAttributes section (optional)

- The Attributes section (optional)

- The Configuration section (optional)

- The DeltaExport section (optional)

3.6.2.2.1. The Version Section

The Version section consists of a single field that specifies the export configuration file
version. The syntax is:

Version=version_number

where version_number is the version number assigned to the configuration file, in the
format n**nn. The current version is:

Version=1.05

This is a mandatory field. This document describes the latest version of the ADSAgent
export configuration file. The ADSAgent is able to process configuration files with version
number 1.05 or lower as well as "old" files that do not contain a Version section. The
following table provides information about the differences between export configuration
file versions and about the support of older export configuration file versions for
compatibility reasons:

252

"old" 1.00 1.01 or higher
Tracelevel Supported Not supported Not supported

Trace Not supported Supported (1) Supported

(1) TraceLevel has been replaced by Trace.

The following new sections or section fields have been added to the
specified version and do not conflict with older versions. These sections and
fields are optional: if present, they are performed, if not, the default
behavior is performed.

Version 1.03:

[Connection]

0 UseSealing

Version 1.04:

[SearchPreferences]
ChaseReferrals

Version 1.05:

[Connection]
UseSigning
UseDelegation

3.6.2.2.2. The Connection Section

The Connection section is a mandatory section that consists of fields that define the
parameters of an export operation for ADSAgent. The next sections describe these fields.

SearchBase

The SearchBase field specifies the base within the Active Directory from which to export
entries. The syntax is:

SearchBase=LDAP://host_namel[:port_number][/distinguished_name]
where:

- host_name specifies a computer name, an IP address, or a domain name. This is an
optional component when ADSAgent is running on a Windows system. If it is not
specified, the ADSI protocol locates the best domain controller in the system’s site
(the local area network to which the machine belongs) and connects to that
controller.

- port_number specifies the port on host_name on which the Microsoft Active
Directory LDAP server listens for requests. If port_number is not specified, ADSAgent
uses the default LDAP port number 389.

- distinguished_name specifies the name of the target Active Directory root, in top-

253

down (DAP-style) or bottom-up (LDAP-style) naming format.
For example:
SearchBase=LDAP://Saturn/DC=MyCompany/DC=DirXIdentity/OU=Development
or:
SearchBase=LDAP://DC=MyCompany/DC=DirXIdentity/OU=Development

on Windows systems. Any comma (,) and forward slash (/) characters that are present in
naming attribute values of distinguished_name must be "escaped" with the backslash
character. For example:

SearchBase=LDAP://Venus/DC=0pTech\, Inc./DC=Talk2/0U=Sales

Active Directory supports the concept of "server-less" binding, which means that you
can bind to Active Directory on the default domain without having to specify the name
of a domain controller. When processing a server-less binding call, ADSI finds the "best"
Windows domain controller in the default domain, which is the domain associated with
the current security context of the thread that is performing the bind (the logged-on
user on the machine on which the ADSAgent runs). ADSI uses DNS to find the domain
controller and first looks in the client's computer's site, which is usually defined as an IP
subnet.

The SearchBase field is a mandatory field.

UserName

The UserName field specifies the Windows account that ADSAgent is to use when
binding to the Active Directory server during the export procedure. The syntax is:

UserName=Windows_account_name
For example:
UserName=Smith@dirxidentity.mycompany

This is an optional field; if it is not specified or is not present in the configuration file,
ADSAgent uses the Windows account that invoked it when binding to the Active
Directory server. If you specify a UserName field value, you must also specify a Password
field value.

You can specify UserName in user principle name (UPN) format (which is the
recommended form) as in the example just shown, or in a DN format, like
cn=Smith,ou=sales,dc=dirxidentity,dc=mycompany or in the format of previous Windows
versions like dirxidentity\Smith, where dirxidentity is the domain_name and Smith the
account_name. If you use this format, you must set the UseSecureAuthentication field
tol

If ADSAgent runs on a Windows NT system, you must specify the
UserName in the form for previous Windows versions or specify no

254

UserName (and consequently set UseSecureAuthentication field to 1) if
you want to set passwords for the users to be imported to ADS.

On Windows XP you must also set the UseSecureAuthentication field to
1if you want to set passwords for the users to be imported to ADS. For
further hints concerning password setting for users see the section
Import Data File Format » Setting a Password for a User.

If you want to get the deleted objects in a delta export the account
0 specified under UserName must be a member of the DomainAdmin
group of the domain from which the entries are exported.

Password

The Password field specifies the password for the Windows account name specified in
the UserName field. The syntax is:

Password=password
For example:
Password=fidlajsks

This is an optional field; if no value is specified in this field or the field is not present in the
configuration file, ADSAgent uses the password used with the Windows account that
invoked it when binding to an Active Directory server during an export procedure. If you
specify a Password field value, you must also specify a UserName field value.

UseSecureAuthentication

The UseSecureAuthentication field controls the level of authentication that ADSAgent
uses when binding to an Active Directory server during the export procedure. The syntax
is:

UseSecureAuthentication=switch
where switch is one of the following values:

- 0 - Use simple authentication (default)

- 1- Use secure authentication

The UseSecureAuthentication field is used in conjunction with the UseEncryption field
to set the level of security services used during the export procedure. If the
UseSecureAuthentication field is set to 1, a secure authentication is requested using the
Security Support Provider Interface (SSPI). In Windows 20xx, an SSP for Kerberos and an
SSP for NT LAN Manager (NTLM) is included. Either of these protocols can be used for
authentication. The SSP used depends on the capabilities of the computer on the other
side of the connection, but Kerberos is always the first choice. When the UserName and
Password are NULL, ADSI binds to the object using the security context of the calling
thread, however in simple binds when using NULL credentials, ADSI does an anonymous
bind.

255

The UseSecureAuthentication field must be set to1on Windows NT and
Windows XP systems in order to set user passwords. However, on
Windows NT (due to a bug in the Adsi NT version), a bind to the deleted

0 objects container fails if this field is set. As a result, you must use
different bind settings for ADSAgent import (set
UseSecureAuthentication to 1) and ADSAgent export (set
UseSecureAuthentication to 0).

UseEncryption

The UseEncryption field controls whether or not the Secure Socket Layer (SSL) port is
used to provide a secure channel during the export procedure. The syntax is:

UseEncryption=switch
where switch is one of the following values:

- 0 - Do not use SSL encryption (default)
- 1- Use SSL encryption

The UseEncryption field is used in conjunction with the UseSecureAuthentication field
to set the level of security services used during the export procedure. If the
UseEncryption field is set to 1 data will be encrypted using SSL. Active Directory requires
that the Certificate Server is installed to support SSL encryption.

ADSI is designed to use simple binds when using SSL. Simple binds send
UserName and Password in clear text across the network. Without using
SSL this is not acceptable method under security aspects, but using SSL
the network traffic is encrypted and the UserName and Password are
protected. Because ADSI| does an anonymous bind when using NULL
credentials in simple binds, which would result in not having sufficient
permissions to view and modify objects in the Active Directory, we
recommend the following combination of the flags if a secure

G connection is wanted:

Set the UseSecureAuthentication field to 0 and the UseEncryption field
to 1to establish an SSL connection and pass a UserName and a
Password. You can pass the UserName either in DN form, such as
cn=Smith,ou=Development, dc=dirxidentity,dc=mycompany o