=VID&N

Identity and Access Management

DirX Identity

Connectivity Administration Guide
Version 8.10.13, Edition October 2025

All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.

Table of Contents

Copyright
Preface
DirX Identity Documentation Set
Notation Conventions
1. Managing DirX Identity Connectivity
1.1. Managing Connected Directories
1.1.1. Managing Provisioning Workflows
1.2. Managing Passwords
1.3. Managing DirX Identity Servers
1.4. Managing the Connectivity System
1.5. About Java-based Configuration Objects
1.6. About Tcl-based Configuration Objects
2. Planning for DirX Identity Connectivity
2.1. Identify the Source Systems
2.2. Decide on Source System Workflows
2.3. Identify the Target Systems
2.4. Decide on Target System Workflows
2.5. Decide on Password Synchronization
2.6. Define the System Architecture
2.7. Define System Maintenance
3. Managing Connected Directories
3.1. Setting Up the Connected Directory Structure
3.2. Setting Up Connected Directory Authentication Information
3.3.Schema and Attribute Configuration Handling
3.3.1. Schema Handling for LDAP Directories
3.3.2. Schema Handling for Other Databases
3.3.3. Schema Handling for Fixed Directories and Databases
3.3.4. Schema Handling for Files
4. Managing Provisioning Workflows
4.1. Managing Java-based Provisioning Workflows
4.1.1. Java-based Workflow Runtime Operation
4.11.1. General Runtime Operation
4.1.1.2. Server Support for Runtime Operation
4.1.2. Target System Provisioning Workflow Operation
4.1.3. Error Handling and Retry Operation
4.1.4. Using Cluster Workflows
4.1.4.1. Setting Up Non-clustered and Clustered Workflows
4.1.4.2. Configuring Cluster Workflows
4.1.4.2.1. About Workflow Configuration Attributes

O 3 00 0O 00 o1 U1 U1 N N — =

ANDANZZI O3 O0O0O0O0 00 dDMNDAMEANEWENDNNII DD DD

4.1.4.2.2. About Connector Configuration Attributes
4.1.4.2.3. About Environment Configuration Attributes
4.1.4.3. Scheduling Cluster Workflows
4.1.5. Copying Java-based Provisioning Workflows
4.1.5]1. Copying Java-based Workflows in the Global View
4.1.5.2. Copying Java-based Workflows in the Expert View
4.1.6. Starting Java-based Provisioning Workflows
4.2. Managing Tcl-based Provisioning Workflows
4.2.1. Runtime Operation
4.2.1.1. Basic Runtime Operation
4.21.2. Agent Controller Runtime Tasks
4.2.1.3. Workflow and Activity Execution Status Values
4.2.1.4. Workflow Execution Status
4.2.1.5. Activity Execution Status
4.2.1.6. Checkpoints
4.2.1.7. File Paths and Areas
4.2.2. Configuration Files and Tcl Scripts
4.2.3. Object Naming
4.2.3.1. Object Identifiers (common names)
4.2.3.2. Display Names
42.4. Linking Objects
4.2.5. Understanding Notifications
4.2.51. Change Notifications
4.2.5.2. E-mail Notifications
4.2.5.3. Notify if not OK
4.2.5.4. Data Notification
4255, Creating Your Own Notifications
4.2.6. Workflow Design Rules
4.2.6.1. Rules for Algorithms
4.2.6.1.1. Single Master System Design
4.2.6.1.2. Multi Master System Design
4.2.6.2. Rules for Schedules
4.2.6.2.1. Starting the Same Workflow Twice
4.2.6.2.2. Starting Workflows after the Server Starts
4.2.6.2.3. Basic Rules for Central Configuration Object Parameters
4.2.6.2.4. Rule 1. Polling time
4.2.6.2.5. Rule 2: Time Interval
4.2.6.2.6. Rule 3: Schedule Sync Interval
4.2.6.2.7. Basic Rules for Schedule Object Parameters
4.2.6.2.8. Rule 4: Time Interval
4.2.6.2.9. Rule 5: Deviation
4.2.6.2.10. Combined Rules

25
26
26
26
26
27
28
28
28
29
30
32
32
33
34
35
37
38
38
39
39
40
40
40
42
42
43
43
44
YA
YA
44
45
45
45
45
45
45
46
46
46
46

4.2.6.2.11. Rule 6: Non overlapping start times for workflows
4.2.6.2.12. Rule 7: Non overlapping execution of workflows
4.2.6.3. Rules for Backup and Restore
4.2.7. Copying Tcl-based Provisioning Workflows
4.2.7.1. Copying Workflows in the Global View
4.2.7.2. Copying Workflows in the Expert View
4.2.8. Starting Tcl-based Provisioning Workflows
5. Managing Passwords
5.1. Understanding Password Management
5.2. Password Changes from Windows Domains
5.2.1. Password Changes via the Windows Password Listener
5.2.2. About the Windows Password Listener
5.3. Password Changes from Web Applications
5.4. Configuring the Password Synchronization Workflows
5.5. Understanding Password Synchronization Workflow Operation
5.6. About the Password Change Algorithms
6. Managing DirX Identity Servers
6.1. Managing the Message Broker
6.1.1. Planning the Message Broker Deployment
6.1.2. About the Message Broker Components
6.1.3. Starting the Message Broker
6.1.4. Configuring the Message Broker
6.1.5. Monitoring the Message Broker
6.1.6. Message Broker Logging
6.1.7. Message Broker Instance Naming
6.1.8. IMX Access to the Message Broker
6.1.9. Understanding the Java Messaging Service
6.1.10. Using Messages in DirX Identity
6.1.10.1. Queues of the Java-based Server
6.1.10.2. Topics of the Java-based Server
6.1.10.3. Topics of the C++-based Server
6.1.10.4. Topics of the Password Listener
6.1.10.5. About Message Sizes
6.1.10.5.1. Password Messages
6.1.10.5.2. Real-time Events
6.1.10.5.3. Command and Status Messages
6.1.10.5.4. File Transfer Messages
6.1.10.6. Messaging Subscriptions
6.1.10.6.1. Java-based Server
6.1.10.6.2. C++-based Server
6.1.10.6.3. Meta Controller
6.1.10.6.4. Manager

47
48
48
49
49

51

51
53
53
55
55
56
57
58
60

61
64
64
65
65
66
66
66
67
67
68
68
69
69

71
72
72
73
73
73
73
74
74
75
75
75
76

6.2. Managing the Java-based Server 76

6.2.1. Server Components 77
6.2.1.1. Administration Components 77
6.2.1.2. Adapters 78
6.2.1.3. Request Workflows 78
6.2.1.4. Workflow Engine and Connectors 79
6.2.1.5. Handlers 79

6.2.2. Server Processes 80
6.2.2.1. Starting the Processes 80
6.2.2.2. Configuring the Processes 80

6.2.2.2.1. Java-based Server INI File Parameters 80
6.2.2.2.2. Java-based Server Startup Script on Linux 81
6.2.2.2.3. Java-based Server Password File Parameters 81
6.2.2.3. Starting the Java-based Server in Suspended Mode 83

6.2.3. Recovery 84

6.2.4. Auditing 84

6.2.5. Statistics 85

6.2.6. Logging 85

6.2.7. Naming Schemes 86
6.2.7.1. Java-based Server Object Naming 86
6.2.7.2. Service Naming 86
6.2.7.3. File Folder Naming 87

6.2.8. Resource Families 87
6.2.8.1. Understanding the Pre-Configured Resource Families 87

6.2.9. IMX Access to the Java-based Server 88

6.3. Managing the C++-based Server 89

6.3.1. Server Components 89
6.3.1.1. Starting Up the Server Components 89
6.3.1.2. Configuring the C++-based Server 90
6.3.1.3. Changing the Service Login Account (Windows) 91
6.3.1.4. Server Password Handling 92

6.4. Distributed Deployments and Scalability 92

6.4.1. All on One Machine 93

6.4.2. Distributing Java-Based Servers 93
6.4.2.1. Distribution Criteria 94
6.4.2.2. Configuring One Java-based Server per Domain 95
6.4.2.3. Configuring Multiple Java Servers per Domain 95

6.4.3. Separating Traffic for Selected Connected Systems 96

6.4.4. Distributing C++-based Server Components 99
6.4.4.1. All Items on Central Server 99
6.4.4.2. Target Activity Is Distributed 101

6.4.4.3. All Items on Target Server 102

Vi

6.4.4.4. Reduce File Handling in Status Area
6.4.4.5. Setting Up a Shared File System for Distribution
6.4.5. Distributing Message Broker Instances
6.5. High Availability and Recovery
6.6. Diagnostic Information
6.7. Managing Daylight Savings Time
6.8. Connector Frameworks
6.8.1. Identity Connector Framework for Java
6.8.2. Identity Connector Framework for C/C++
7. Managing the Connectivity System
7.1. Managing Administrative Accounts
7.1.1. Changing the DomainAdmin Password (Provisioning)
7.1.2. Changing the SystemAdmin Password (Provisioning)
7.1.3. Changing the Connectivity server_admin Password
7.1.4. Changing the Connectivity admin Password
7.1.5. Changing the Embedded Tomcat admin Password
7.1.6. Changing the ActiveMQ admin Password
7.2. Managing Connectivity Security
7.2.1. Securing DirX Identity Data
7.2.1.1. Securing Control Data
7.2.1.2. Securing Password Changes
7.2.1.3. Securing Configuration Data
7.2.1.4. Securing Administrative Passwords
7.2.1.5. Securing Data to be Synchronized
7.2.1.6. Securing Auditing Information
7.2.1.7. About the Crypto Algorithms used by DirX Identity
7.2.2. Managing Data Encryption
7.2.2.1. How DirX Identity Data Encryption Works
7.2.2.2. Handling Specific Encryption Requirements
7.2.2.3. Setting up Data Encryption
7.2.2.3.1. Extending/Creating Workflows for Encrypted Synchronization
7.2.2.3.2. Initially Encrypting Administrative Passwords
7.2.2.3.3. Initially Encrypting Attributes
7.2.3. Setting up Audit Signature
7.2.4. Generating a Personal Security Environment (PSE)
7.2.5. Managing Anonymously Readable Attributes
7.2.6. Managing Keys
7.2.6.1. Managing Keys for Data Encryption
7.2.6.2. Using the Key Migration Tool
7.2.6.3. Managing Keys for Audit Signature
7.3. Establishing Secure Connections with SSL
7.3.1. Securing Connectivity Database Connections with SSL

Vii

103
104
104
104
105
106
106
107
108
1o
1o
11
n2
n3
n3
N4
N4
ns
ns
ns
16
16
16
16
n7
n7
n7
n7
19
120
121
122
122
123
123
125
126
126
127
128
128
129

7.3.1.1. Setting up the LDAP Server 130

7.3.1.1.1. Managing Keys 130
7.3.1.1.2. Preparing the LDAP Server for SSL 130
7.3.1.1.3. Important Locations 130
7.3.1.2. Setting up DirX Identity with Initial Configuration 130
7.3.1.2.1. Managing Keys 130
7.3.1.2.2. Preparing the Certificate Stores 131
7.3.1.2.3. Using Initial Configuration to Set up DirX Identity 132
7.3.1.2.4. Important Locations 132
7.3.1.3. Setting up Identity Manager 132
7.3.1.3.1. Managing Keys 132
7.3.1.3.2. Setting up Manager for SSL (server-side SSL) 133
7.31.3.3. Important Locations 133
7.3.1.4. Setting up Web Center 133
7.3.1.4.1. Managing Keys 133
7.31.4.2. Important Locations 134
7.3.1.5. Setting up the Java-based Server 134
7.3.1.5.1. Managing Keys 134
7.3.1.5.2. Setting up the Java-based Server for SSL 135
7.31.5.3. Important Locations 135
7.3.1.6. Setting up the C++-based Server 135
7.3.1.6.1. Managing Keys 135
7.3.1.6.2. Setting up the C++-based Server for SSL 135
7.3.1.6.3. Important Locations 136
7.3.1.7. Setting up the Java-based Configuration Wizard 136
7.3.1.7.1. Managing Keys 136
7.3.1.7.2. Setting up the Java-based Configuration Wizard for SSL 136
7.3.1.7.3. Important Locations 136
7.3.2. Securing Provisioning Database Connections with SSL 137
7.3.2.1. Setting up the LDAP Server 137
7.3.2.2. Setting up DirX Identity with Initial Configuration 137
7.3.2.3. Setting up ldentity Manager 137
7.3.2.4. Setting up Web Center 137
7.3.2.4.1. Managing Keys 137
7.3.2.4.2. Setting up Web Center for SSL (server-side SSL) 138
7.3.2.4.3. Setting up Web Center for Password Management for SSL (server-
side SSL) 138
7.3.2.5. Setting up the Java-based Server 138
7.3.2.6. Setting up the Web Services 138
7.3.2.6.1. Managing Keys 138
7.3.2.6.2. Setting up the Web Services for SSL 139

7.3.2.6.3. Important Locations 139

viii

7.3.2.7. Setting up the Meta Controller 139

7.3.2.7.]. Important Locations 139
7.3.2.8. Setting up the Java-based Configuration Wizard 139
7.3.3. Securing Identity Server Connections with SSL 140
7.3.3.1. Setting up the X.509 Certificates 140
7.3.3.1.1. Configuring the Certificate Generation Scripts 141
7.3.3.1.2. Setting up a Certificate Authority 141
7.3.3.1.3. Setting up the Host Server Key 142
7.3.3.1.4. Signing the Server Certificate Request 142
7.3.3.1.5. Importing the Server's Certificate into the Shared Key Store 142
7.3.3.1.6. Converting the Server Key to PEM 143
7.3.3.1.7. Setting up the Client Key 143
7.3.3.1.8. Signing the Client Certificate Request 143
7.3.31.9. Importing the Client Certificate into the Shared Key Store 143
7.3.3.1.10. Converting the Client Key to PEM 144
7.3.3.1.11. Importing the Certificate into the Java for DirX Identity 144
7.3.3.2. Securing the Identity Services 145
7.3.3.2.1. Securing DirX Identity Manager with SSL 145
7.3.3.2.2. Securing the Java-based Server with SSL 145
7.3.3.2.3. Securing the C++-based Server with SSL 145
7.3.3.2.4. Securing the Message Broker and Web Console with SSL 146
7.3.3.2.5. Securing Web Admin and Server Admin with SSL 147
7.3.3.2.6. Securing Web Center with SSL 147
7.3.3.2.7. Securing the Supervisor with SSL 149
7.3.3.2.8. Securing Provisioning Web Services with SSL 149
7.3.3.2.9. Securing the Business User Interface with SSL 150
7.3.3.2.10. Securing the Windows Password Listener with SSL 150
7.3.3.2.11. Securing the Meta Controller with SSL 150
7.3.3.2.12. Securing JMX Clients with SSL 151
7.3.3.2.13. Securing UNIX Scripts with SSL 151
7.3.4. Securing Connections between Web Services Clients and Web Services with
SSL 151
7.3.4.1. Managing Keys for Server-Side SSL 151
7.3.4.2. Managing Keys for Client-Side SSL 152
7.3.4.3. Setting up SSL for Web Services Clients for Server-Side SSL 152
7.3.4.4. Setting up SSL for Web Services Clients for Client-Side SSL 152
7.3.4.5. Important Locations 152
7.3.5. Securing Connections to Tomcat Web Applications with SSL 152
7.4. Understanding File-Handling Mechanisms 153
7.4.1. Path Handling 154
7.4.2. File Preservation Mechanisms 154

7.4.3. File Transfer Mechanisms 155

7.4.3.1. Local Machine File Handling
7.4.3.2. Distributed Machines with Shared File Systems
7.4.3.3. Distributed Machines with No Shared File System Set Up
Appendix A: Context-Sensitive Help
Al. General
All. Content
Al.2. Data File
A3 Files
Al4. File ltem
A15. Query Folder
Al.6. Specific Attributes
Al7.Tcl Content
A1.8. XML Content
A19. XML File
A1.10. Object Descriptions
Al111. Wizards
A2. Agents
A2.1. Agent
A2.2. Agents
A.3. Collections
A3.1. Collection
A.4. Collections
A.4.1. Collection Rule
A.4.2. Collection Rules
A5, (Central) Configuration
A5.1. Agent Types
A511. Agent Type
A5.2. Connected Directory Types
A5.2]1. Connected Directory Type
A.5.3. Connector Types
A.5.3.1. Connector Type
A5.4. DirX Identity Servers
A5.4.1. Java-based Server
A5.41]1. Adaptor - General
A5.412. Adaptor - Limits
A5.41.3. Adaptor - Configuration
A5.4.1.4. Java-Based Server - General
A5.415. Java-based Server - Domain
A5.4.1.6. Java-based Server - Connectors
A5.417. Java-based Server - Repository
A.5.4.1.8. Java-based Server - Limits
A.5.4.1.9. Java-based Server - Resource Families

155
155
156
157
157
157
157
159
160
161
163
164
164
165
165
166
166
166
168
168
168
169
170
173
174
178
178
179
179
180
181
182
182
182
183
184
185
186
187
187
189

191

Xi

A.5.4.1.10. Java-based Server - HA (High Availability)
A5.4111. Java-based Server - Status and Auditing
A5.4.1.12. Java-based Server - Configuration
A5.4.1.13. Domain for Identity Servers

A5.4114. Manage Servers - Adaptors

A5.4115. Manage Servers - Request Workflow Timeout Check

A5.4116. Manage Servers - Supervision
A5.4117. Manage Servers - Schedule
A5.4.2. C++-based Server
A5.4.21. C++-based Server - General
A5.4.2.2. C++-based Server - SOAP Listener
A5.4.2.3. C++-based Server - SPML Receiver
A5.42.4 C++-pbased Server - Configuration
A5.425 C++-based Server - Paths
A5.4.2.6. C++-based Server - Agents
AL5.427. C++-based Server - Agent Server State
A5.4.2.8. C++-based Server - IMX Access
A5.4.2.9. C++-based Server - Connector
A5.4.210. Get Server State
A55. GUI
A.5.5.1. Extensions
A.5.52. Report
A5.5.3. Report Definition
A5.5.4. Report Properties
A.5.55. Reports
A.5.6. JavaScripts
A.5.6.1. JavaScript Content
A5.6.2. JavaScript File
A5.7. Messaging Services
A.5.7.1. Messaging Service - Failover Transport Options
A5.7.2. Message Broker
A5.7.3. Message Broker - Transport Options
A5.7.4. Status Tracker (Topic)
A.5.8. Resource Families
A5.8.1. Resource Family
A.5.9. Services
A5.9.1. Service
A59.2. Services
A.5.10. Standard Files
A5.11. Supervisors
A5.11.1. Supervisor
A5.11.2. Supervisor - Configuration

192
192
195
195
196
196
196
197
197
197
198
199
200
201
202
203
203
204
205
206
207
207
208
209
209
209
210
210
211
211
212
212
213
213
214
214
214
216
216
217
217
218

A.5.11.3. Java Supervisor Mail 219

A5.11.4. Supervisor - Server 219
A.5.11.5. Supervisors 220
A.512. Systems 220
A512.1. System 220
A512.2. Systems 222
A513. Tcl 222
A5.13.1. Mapping Function 222
A.513.2. Mapping Functions 223
A513.3. Tcl Folder 224
A5.14. Topics 224
A514.1. Topic 225
A.6. Connected Directories 225
A6.1. Attribute Configuration - Details 225
A.6.2. Attribute Configuration - General 229
A.6.3. Attribute Configuration Template 229
A.6.4. Bind Profile 230
A.6.5. Bind Profile Container 232
A.6.6. Bind Profiles 232
A.6.7. Channels 233
A.6.8. Connected Directories 233
A.6.9. Connected Directory 233
A.6.9.1. Configuring the Viewer Command 235
A.6.10. Operational Attributes 236
A.6.11. Provisioning Attributes 238
A.6.12. SAP ECC UM Parameters 241
A.6.13. Proxy Server 242
A.6.14. Schema - Object Classes and Attribute Types 242
A.6.15. Schema - General Properties 244
A.6.16. Specific 244
A.6.16.1. JDBC - Configuration 244
A.6.16.2. GoogleApps - Google API 244
A.6.16.3. Office 365 - Graph API 245
A.6.16.4. Salesforce - Salesforce 246
A.6.16.5. OICF - OpenlICF Connector Server 246
A.7.Jobs 247
A7.]1. Authentication 247
A7.2. Attribute Mapping 248
A.7.3. Control Scripts 248
A7.4. Default Values 249
A7.5. Delta Handling 249

A7.6. Tcl-based Event Manager - Operation 250

Xii

A7.7. Tcl-based Event Manager - Tracing 253

A7.8. Tcl-based Event Manager - Workflows 255
A.7.9. HDMS Parameters 255
A7.10. INI Content 256
A711. INI File 256
A7.12.Job 257
A.7.13. Jobs 259
A7.14. Mapping ltem 259
A.7.15. Mapping Script 260
A7.16. Mapping Scripts 261
A.7.17. Notification (Object) 261
A.7.17.1. Notification Tab 262
A717.2. Content Tab 262
A.7.18. Notification (Tab) 263
A.7.19. Notifications 264
A.7.20. Operation 264
A7.21. Other Operation Parameters 266
A7.22. Other Scripts 268
A.7.23. Profile Scripts 269
A7.24. Tcl Script 269
A.7.25. Tcl Scripts 270
A7.26. Tracing 271
A.8. Monitoring 275
A.8.1. Activity Status Data 275
A.8.2. Monitor Folder 276
A.8.3. Process Table 277
A.8.4. Process Table Server 277
A.8.5. Workflow Status - Data 277
A.8.6. Workflow Status - Structure 279
A.8.7. Workflow Status - Statistics 279
A.8.8. Activity Status - Config 281
A.8.9. Status Data 281
A.8.10. Activity Status - Statistics 282
A.8.11. Activity Status Trace 283
A.9. Password Change 284
A9.1. Password Change Event Manager - Workflow 284
A.9.2. Password Change Event Manager - Activity 285
A.9.3. Password Change Application - Workflow 286
A9.4. Password Change Application - Activity 287
A95. Error Activity 288
A.9.6. Error Notification 288

A.10. Java-based Workflows 289

xiii

A10.1. Combined Java-based Workflow
A10.1.1. The Workflow Table
A10.1.2. The Toolbar
A10.2. Java-based Workflow
A10.3. Real-time Activity
A10.3.1. General
A10.3.2. Controller
A10.3.3. Notification (optional)
A10.4. Real-time Port
AJ10.5. Real-time Filter
A10.6. Real-time Channel
A10.6.1. General
A10.6.2. Import
A10.6.3. Export
A10.6.4. Delta
A10.6.5. Mapping
A10.6.6. Operational Mapping
A10.6.7. Join
A10.6.8. Primary Channel
A10.7. Content Tabs
A10.8. Real-time Java Mapping
A10.9. Java Mapping Editor
A10.9.1. The Mapping Table
A10.9.2. The Tool Bar
A10.10. Simple Expression Mapping
A10.11. Joining
A10.12. Service-Specific Pages
A10.12.1. Policy - Job Parameters
A10.12.2. Policy - Rule Search Parameters
A10.12.3. Policy - Object Search Parameters
A10.12.4. Service - Job Parameters
A10.12.5. Service - Import Properties
A10.12.6. Service - Requested Attributes
A10.12.7. Service - Limits
A10.13. Transport Workflows
A10.13.1. Transport - Connection
A10.13.2. Transport - Export
A10.13.3. Transport - Delete
A10.13.4. Transport - Import
A10.13.5. Transport - Domain Mapping
A10.13.6. Transport - Attribute Configuration New
A10.13.7. Transport - Attribute Configuration Old

289
290
290
290
293
293
294
295
295
302
303
304
305
305
308
310
311
311
311
312
313
314
314
316
318
319
323
323
324
325
326
327
327
327
328
328
328
329
330
331
332
332

Xiv

XV

A10.13.8. Transport - Attribute Mapping Choice
A10.14. Workflow-Specific Pages
A10.14.1. Campaign Generator Workflows
A10.14.1.1. Campaign Generator - Initiator
A10.14.1.2. Campaign Generator - Roles
A10.14.1.3. Campaign Generator - Permissions
A10.14.1.4. Campaign Generator - Groups
A10.14.2. Consistency Check Workflows
A10.14.2.1. User Resolution Workflow
A10.14.2.2. Mark Affected Users Workflow
A10.14.2.3. Consistency Check Workflow
A10.14.3. Event-based Maintenance Workflows - Event Attributes
A10.14.3.1. Event-based User Resolution Workflow
A10.14.3.2. Event-based Persona Resolution Workflow
A10.14.3.3. Event-Based Functional User Resolution Workflow
A10.14.3.4. Maintenance Workflows for Business Objects
A10.14.3.5. Maintenance Workflows for Accounts
A10.14.3.6. Generic Maintenance Workflows
A10.14.4. Event-based Maintenance - User Hook
A10.14.5. Joint Backup - Parameters
A10.14.6. Joint Backup - Post Operation
All. Schedules
A11.1. Schedule
AT1.2. Ranges
A13. Target System Cluster
A2. Scenarios
Al12.1. Workflow Line
Al2.2. Connected Directory Icon
Al2.3. Scenario
Al2.4. Scenarios
Al3. Tcl-based Workflows
Al3.1. Tcl-based Activities
Al3.2. Tcl-based Activity
Al13.3. Tcl-based Channel
Al3.4. Data Flow Viewer
A13.5. Data Flow Editor
Al3.6. Entry Handling
Al3.7. Export Properties
A13.8. Import Properties
A13.9. Input/Output Channels
A13.10. Import to Identity Store Properties
A13.10.1. Standard Scripts

335
338
338
338
339
340
342
344
344
345
346
348
348
349
350
352
352
352
353
353
354
354
355
357
358
358
358
359
360

361

361
362
362
364
366
368
369
372
379
384
385
385

A13.10.1.1. Join Expressions and Filtering 387

A13.10.2. Previously Used Scripts 388
A13.11. Join to Identity Store Properties 390
A13.12. Other Properties of a Channel 391
A13.13. Register User 393
Al3.14. Selected Attributes 394
A13.15. Superior Info 395
Al3.16. Tcl-based Workflow 395
A13.17. Workflow - Operation 399
A13.18. Workflow - General Properties 400
A13.19. Workflows 400

Appendix B: Mapping Functions 401
B.1. addAttributes 401
B.2. deleteAttributes 401
B.3. hdmsCmd2dmsid 401
B.4. hdmsdata2dn 402
B.5. hdmsData2telno 402
B.6. ifEqual 402
B.7. ifNotEqual 403
B.8. IADSpathCreate 403
B.9. IBaseDNreplace 404
B.10. IBool2Integer 404
B.11. IDate2GMT 404
B.12. IDNcreate 405
B.13. IDNsplit 406
B.14. liInteger2Bool 407
B.15. listFirst 407
B.16. listLast 408
B.17. IListAppend 408
B.18. IListFirst 408
B.19. IListLast 408
B.20. IListNth 409
B.21. IListRest 409
B.22. IPA2String 409
B.23. IString2PA 409
B.24. IStringAppend 410
B.25. IStringCompose 410
B.26. IStringConvertChars 410
B.27. IStringEncrypt 412
B.28. IStringEscape 412
B.29. IStringEscapelDIF 413

B.30. IStringEscapeVar 44

XVi

B.31. IStringModify 44

B.32. IStringPrefix 415
B.33. IStringRange 415
B.34. IStringTrim 415
B.35. IStringTrimLeft 416
B.36. IStringTrimRight 416
B.37. IStringUnescape 416
B.38. IStringUnescapeVar 417
B.39. IWordCapitalize 417
B.40. IWordFirst 417
B.41. IWordLast 418
B.42. IWordNth 418
B.43. RDNescape 419
B.44. RDNunescape 419
B.45. replaceAttributes 419
B.46. StringAppend 419
B.47. StringModify 420

Legal Remarks 422

XVii

Preface

This manual describes the concepts and all details to administrate the DirX Identity
Connectivity part.It consists of the following sections:
- Chapter 1 provides an overview about the tasks for managing DirX Identity Connectivity.

- Chapter 2 makes up a planning checklist of the issues that you must take into account
when deciding how to deploy DirX Identity Connectivity in your environment.

- Chapter 3 describes how to manage connected directories.

- Chapter 4 describes how to manage provisioning workflows.
- Chapter 5 describes how to manage passwords.

- Chapter 6 describes how to manage DirX Identity servers.

- Chapter 7 describes how to manage the Connectivity system.

- Appendix A presents the context-sensitive help topics that are provided with DirX
Identity (Connectivity).

- Appendix B provides information about mapping functions.

ch1_manconnectivity.pdf
ch2_planconnectivity.pdf
ch3_manconndirectories.pdf
ch4_manprovworkflows.pdf
ch5_manpasswords.pdf
ch6_manservers.pdf
ch7_manconnsystem.pdf
appa_contsens.pdf
appb_mapping.pdf

DirX Identity Documentation Set

The DirX Identity document set consists of the following manuals:

- DirX Identity Introduction. Use this book to obtain a description of DirX ldentity
architecture and components.

- DirX Identity Release Notes. Use this book to understand the features and limitations of
the current release. This document is shipped with the DirX Identity installation as the
file release-notes.pdf.

- DirX Identity History of Changes. Use this book to understand the features of previous
releases. This document is shipped with the DirX Identity installation as the file history-
of-changes.pdf.

- DirX Identity Tutorial. Use this book to get familiar quickly with your DirX Identity
installation.

- DirX Identity Provisioning Administration Guide. Use this book to obtain a description of
DirX ldentity provisioning architecture and components and to understand the basic
tasks of DirX Identity provisioning administration using DirX ldentity Manager.

- DirX Identity Connectivity Administration Guide. Use this book to obtain a description of
DirX Identity connectivity architecture and components and to understand the basic
tasks of DirX ldentity connectivity administration using DirX Identity Manager.

- DirX Identity User Interfaces Guide. Use this book to obtain a description of the user
interfaces provided with DirX Identity.

- DirX Identity Application Development Guide. Use this book to obtain information how
to extend DirX Ildentity and to use the default applications.

- DirX Identity Customization Guide. Use this book to customize your DirX Identity
environment.

- DirX Identity Integration Framework. Use this book to understand the DirX Identity
framework and to obtain a description how to extend DirX Identity.

- DirX Identity Web Center Reference. Use this book to obtain reference information
about the DirX Identity Web Center.

- DirX Identity Web Center Customization Guide. Use this book to obtain information
how to customize the DirX Identity Web Center.

- DirX Identity Meta Controller Reference. Use this book to obtain reference information
about the DirX Identity meta controller and its associated command-line programs and
files.

- DirX Identity Connectivity Reference. Use this book to obtain reference information
about the DirX Identity agent programs, scripts, and files.

- DirX Identity Troubleshooting Guide. Use this book to track down and solve problems in
your DirX Identity installation.

- DirX Identity Installation Guide. Use this book to install DirX Identity.

- DirX Identity Migration Guide. Use this book to migrate from previous versions.

introduction:prf_identintroduction.pdf
release-notes:ReleaseNotes.pdf
release-notes:HistoryOfChanges.pdf
tutorial:prf_identtutorial.pdf
prov-admin-guide:prf_identprovadm.pdf
conn-admin-guide:prf_connectivity.pdf
user-interfaces-guide:prf_identgui.pdf
appl-dev-guide:prf_appldevgd.pdf
custom-guide:prf_identprovcustom.pdf
integration-framework:prf_identframework.pdf
web-center-ref:prf_identwebref.pdf
web-center-custom-guide:prf_identwebcustom.pdf
metacp-ref:prf_identcontref.pdf
conn-ref:prf_identagent.pdf
troubleshooting-guide:prf_identtrouble.pdf
install-guide:prf_install.pdf
migration-guide:prf_identmig.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

userlD_home_directory

The exact name of the home directory. The default home directory is the home directory of
the specified UNIX user, who is logged in on UNIX systems. In this manual, the home
pathname is represented by the notation user/D_home_directory.

install_path

The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userlD_home_directory/DirX Identity on UNIX
systems and C:\Program Files\DirX\Identity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

dirx_install_path

The exact name of the root of the directory where DirX programs and files are installed. The
default installation directory is userlD_home_directory/DirX on UNIX systems and
C:\Program Files\DirX on Windows systems. During installation the installation directory
can be specified. In this manual, the installation-specific portion of pathname is
represented by the notation dirx_install_path.

dxi_java_home

The exact name of the root directory of the Java environment for DirX Identity. This location
is specified while installing the product. For details see the sections "Installation" and "The
Java for DirX |dentity".

tmp_path

The exact name of the tmp directory. The default tmp directory is /tmp on UNIX systems. In
this manual, the tmp pathname is represented by the notation tmp_path.

tomcat_install_path
The exact name of the root of the directory where Apache Tomcat programs and files are
installed. This location is defined during product installation.

mount_point
The mount point for DVD device (for example, /cdrom/cdromO).

1. Managing DirX Identity Connectivity

Managing DirX Identity Connectivity consists of the following tasks:

- Managing connected directories
- Managing Provisioning workflows
- Managing passwords
- Managing DirX ldentity servers
- Managing the Connectivity system
The next sections give a brief overview of each of these tasks and provide introductory

information about Java-based and Tcl-based DirX Identity component and Provisioning
workflow configuration objects.

1.1. Managing Connected Directories

A connected directory represents all necessary information to access source or target
systems correctly.We use the term connected directory for DirX Identity Connectivity and
the term target system for DirX Identity Provisioning (see the DirX Identity Provisioning
Administration Guide for more information).

Connected directory management consists of these tasks:

- Setting up and maintaining the connected directory structure
- Setting up and maintaining the authentication information (bind profiles)

- Setting up and maintaining the schema and attribute configuration

Administrators carry out these tasks with the DirX Identity Manager.

1.1.1. Managing Provisioning Workflows

Provisioning workflows load data from source systems or update identities in source
systems.They can also perform initial load, synchronization and validation on target
systems.

Provisioning workflow management consists of these tasks:

- Setting up and maintaining the scenario structure
- Copying, changing and deleting workflows (including jobs for Tcl-based workflows)

- Creating, changing and deleting schedules
Administrators carry out these tasks with DirX Identity Manager.

Note that you can copy workflows as a sub-task of the target system wizard when creating
a new target system.See the DirX Identity Provisioning Administration Guide for more
information.

1.2. Managing Passwords

The relevant topic for password management in the Connectivity views group is password
synchronization.

Password synchronization consists of these tasks:

- Setting up and maintaining the password scenario structure

- Setting up and maintaining the password workflows
Administrators carry out these tasks with the DirX Identity Manager.

Note that you can copy workflows as a sub-task of the target system wizard when creating
a new target system.See the DirX Identity Provisioning Administration Guide for more
information.

1.3. Managing DirX Identity Servers

DirX Identity servers handle all automated tasks within the Identity environment.Server
management tasks include:

- Installing servers

- Configuring and maintaining servers and services, including auditing and logging

- Setting up maintenance scripts

Administrators carry out these tasks with DirX Identity Manager or with operating system-
specific tools.

You can also set up distributed environments for DirX Identity servers to distribute the DirX
Identity processing workload.Managing a distributed environment includes the following
tasks:

- Distributed installation of components; for example, servers

- Maintaining the distributed Identity system

Administrators carry out these tasks with DirX Identity Manager or with operating system-
specific tools.

1.4. Managing the Connectivity System

You may need to perform some additional tasks to run the Connectivity system with the
Provisioning system.These Connectivity system management tasks include:

- Managing administrative accounts

- Setting up and maintaining the features that guarantee data security, including key
management for data encryption and signature as well as the creation of secure
connections

Administrators carry out these tasks with the DirX Identity Manager or with operating
system-specific tools.

1.5. About Java-based Configuration Objects

Java-based configuration objects apply to the operation of all DirX Identity components
that are relevant for Java-based Provisioning workflow operations.The following figure
shows the main configuration objects for Java-based Provisioning workflows and their
most important relationships.

Central
Configurat.
: Connected
Scenario Directory T Channel
Workflow Activity - Job » Port
‘lk L 4
Resource | S Bind
Schedule Family | yoRul Profile
,qL
Ja\:;-rl;a;ed «—»| Service »] Connector
?
Messalt_:[lng »| Controller
Service

Figure 1. Java-based Configuration Objects and their Relationships

The description of these objects given in the context-sensitive help for DirX Identity
provides information about the standard properties assigned to the object that are
supplied with DirX Identity.Some of the configuration objects - for example, connected
directories - can be customized to support additional customer-specific properties.

Java-based configuration objects contain information about:

- Scenario configuration objects: combine sets of connected directories and
synchronization workflows and represent them graphically for a better overview and
easier configuration.

- Connected directory configuration objects that represent either source or target system
instances including the Identity Store. Bind profiles hold the user and password

information for a specific target system access. If you assign the connected system to a
Java-based server, then this server runs the Java-based provisioning and import
workflows.

- Java-based workflow configuration objects that consist of activities: procedures that
transfer data from source to target connected directories.

- Java-based activity configuration objects: process steps that are combined to make a
workflow. A Java-based workflow is built from a join and an error activity. The join
activity is responsible for synchronizing the data between two connected systems. The
error activity in event-triggered workflows receives just the entries that could not be
provisioned and typically sends an email with the error information. The type of
provisioning workflow and how the data are synchronized is determined by the
controller configured in the join activity.

- Java-based job configuration objects are not visible at the user interface level but they
exist as part of the XML configuration files. They implement the activity; for example, a
join operation or error handling.

- Port configuration objects represent the access to a connected system for a workflow.
Such a connected system might not only be a target system, but also the message
broker and an email server. The port especially configures the connector to access the
connected system. A provisioning port combines several channel configuration objects
for all the object types that must be provisioned in or from the connected system.

- Java-based channel configuration objects. A channel represents an object type or an
object-to-object relation for a provisioning workflow to a connected system. Typical
channels are for accounts and groups and for account-group memberships. A channel
describes how to find objects of this type in the connected system, which attributes to
read and write, and how to map them from the other connected system.

- Schedule configuration objects that define when to run workflows.

These configuration objects refer to other configuration objects in the central configuration
folder:

- Connector type objects and the XML files that describe their presentation at the user
interface level.
- The Java-based Identity Servers (IdS-J servers) that run the workflows.

- The server objects that refer to service and system objects to define important
information for access.

- The messaging service that allows for transferring Java Messaging Service (JMS)
messages between DirX |[dentity components.

- Resource family objects that allow for distributing provisioning activities over several
Java-based ldentity servers.

- Topic configuration objects that define JIMS message types.

Note: Some of these objects are marked with a red border and the text "This object might
be shared because it belongs to the Configuration folder".Be careful when editing these
objects because your changes can affect other objects, too.For details about the
Configuration folder, see the topic "(Central) Configuration" in the context-sensitive help.

1.6. About Tcl-based Configuration Objects

Tcl-based configuration objects apply to the operation of all DirX Identity components that
are relevant for Tcl-based Provisioning workflow operation.The following figure shows the
main configuration objects for Tcl-based Provisioning workflows and their most important
interrelationships.

Bind
Profile
h £]
| Connected Central
Scenario Directory | Channel Configurat
F 1
v
Workflow o
& Schedule [* »| Activity > Job »| Agent
L J I
C++-based . Meta N e
ldent. Server « Service » System — controller »| Motification
£]
Messaging
Service

Figure 2. Tcl-based Configuration Objects and their Relationships

The description of each configuration object given in the context-sensitive help for DirX
Identity provides information about the standard properties assigned the object that are
supplied with DirX Identity.Some of the configuration objects - for example, connected
directories and jobs - can be customized to support additional customer-specific
properties.

Tcl-based configuration objects contain information about:
- Scenario configuration objects: specific sets of connected directories and

synchronization workflows used for Tcl-based workflows.

- Connected directory configuration objects that represent either source or target system
instances including the Identity Store. Bind profiles hold the user and password
information for a specific target system access.

- Tcl-based workflow configuration objects that consist of activities: procedures that
transfer data from source to target connected directories.

- Tcl-based activity configuration objects: sequential process steps that are combined to
make a workflow. Tcl-based activities can represent jobs or complete workflows.

- Tcl-based job configuration objects: fully configured agents that can be used by Tcl-

based activities in workflows.

- Agent configuration objects defined by an agent type: un-configured programs or

procedures that are called by a job. The meta controller acts as special agent and
represents the join engine.

- Tcl-based channel configuration objects.

- Schedule configuration objects that define when Tcl-based workflows are to run.

All these configuration objects access specific configuration in the central configuration
folder:

10

- Agent type objects and the XML files that describe their presentation at the user

interface level.

- All central notification definitions used by meta controller jobs.
- Definitions for standard files that are recognized by the agent controller.
- Central Tcl files used by meta controller jobs.

- C-based Identity Servers (IdS-C servers) - the DirX Identity component that must exist

on each host server on which an agent or a C connector is to run.

- The server objects that refer to service and system objects to define important

information for access.

- The messaging service that allows for the transfer of IMS messages between DirX

Identity components.

Some of these objects are marked with a red border and the text "This
object might be shared because it belongs to the Configuration folder". Be

0 careful when editing these objects because your changes can affect other
objects, too. For details about the Configuration folder, see the topic
"(Central) Configuration" in the context-sensitive help.

2. Planning for DirX Identity Connectivity

This chapter provides a planning checklist of the issues that you must take into account
when deciding how to deploy DirX Identity Connectivity in your environment.

Planning tasks include:

- ldentify the source systems

- Decide on source system workflows
- Identify the target systems

- Decide on target system workflows

- Decide on password synchronization
- Define the system architecture

- Define system maintenance

2.1. Identify the Source Systems

- What are the source systems that create and maintain identity information?

- What are the characteristics of the source systems in terms of authentication and
authorization?

- What is the best connected directory template that can be used for source system
integration?

2.2. Decide on Source System Workflows

- What is the best workflow template that can be used for source system integration?

- Is it necessary to set up secure connections?

2.3. Identify the Target Systems

- What are the target systems that must be integrated?

- What are the characteristics of the target systems in terms of authentication and
authorization?

- How should these target systems be migrated into the DirX Identity Connectivity
environment?Can there be an initial load of accounts and/or groups into DirX Identity?

- Is there a need for virtual target systems?

- What is the best connected directory template that can be used for target system
integration?

2.4. Decide on Target System Workflows

- Which technology shall be used: Java-based real-time workflows or Tcl-based

n

technology or both?
What is the best workflow template that can be used for target system integration?

Is it necessary to set up secure connections?

2.5. Decide on Password Synchronization

- Which target systems shall be synchronized with the central password solution?

- What are the possible sources for password changes: the Windows login, a web solution

or both?

- Shall the messaging connections be secured via SSL?

2.6. Define the System Architecture

- How many Identity domains shall be handled?

- Shall all Identity domains be handled by separate Connectivity domains or do you plan

to handle all Identity domains by a single Connectivity domain?

- Which connections should be secured, for example via SSL?

- Which attributes are required to be encrypted?

- Shall your administrative (bind) passwords be encrypted?

2.7. Define System Maintenance

- How often shall your administrative passwords be changed?

- Define a procedure to change your administrative passwords consistently.

- What is the interval at which to change your certificates for data and administrative

password encryption?

- Define a procedure to change your certificates from time to time.

12

3. Managing Connected Directories

Connected directory management tasks include:

- Setting up and maintaining the connected directory structure
- Setting up and maintaining the authentication information (bind profiles)

- Setting up and maintaining the schema and attribute configuration

The next sections discuss these tasks in more detail.

3.1. Setting Up the Connected Directory Structure

A connected directory represents a single data store in an Identity environment.The
connected directory configuration object holds all the data required to describe the
properties of the respective directory or database that is common for access by all
workflows or services.

Connected directories can reside under the connected directories folder (or one of its
subfolders) or under a job object.In the latter case, the connected directory is an
intermediate connected directory that is used to store information between two related
activity steps of a workflow.

The folder structure under the connected directory folder depends on the scenario
structure you intend to create.lf you use the Provisioning view's target system wizard, the
wizard creates the structure automatically.If the wizard-generated structure is not correct,
you can create your own folders and move objects to them accordingly.Be aware that the
target system wizard creates additional objects in the default folder structure.You must
move these objects after using the wizard.

For source system provisioning, you must create and maintain your own scenario and
folder structure.You can include the same connected directory instance into several
scenarios (use the Assign menu item) to separate specific workflow groups from each
other.

3.2. Setting Up Connected Directory Authentication
Information

Connected directories allow you to define the authentication information via bind profiles.A
connected directory can have one or more bind profiles that can be used by several
workflows.

Bind profiles let you define the user and password information, where the password can
either be stored in a simple scrambled format or in encrypted format.Be aware that the
scrambled format is simply not readable but nevertheless not secure at all.lt is easy to
crack.To protect the information in your connected directories, we recommend using
encrypted storage of bind profile passwords.

Bind profiles also define the security level for all access information (for example SSL/TLS).

13

3.3. Schema and Attribute Configuration Handling

Connected directory configuration objects can contain schema information, but only the
information that is necessary to configure the synchronizations properly.This type of
schema information consists mainly of the directory objects and their related attributes,
which are necessary for attribute selection and mapping.

DirX Identity requires the schema information to be in a specific "attribute configuration"
format that is mainly used by the meta controller.This format allows for the description of
the schema information required for any directory type.Supported directory types are:

- LDAP directories with a flexible and extensible schema (for example, DirX and Active
Directory).

- Other databases (for example, ODBC) with a flexible and extensible schema
- Databases and directories with a fixed schema (for example, the Windows NT directory)

- File directories, which keep a collection of files in the same format.

3.3.1. Schema Handling for LDAP Directories

For LDAP directories, the DirX Identity Manager (at the administrator’'s request) can read
the relevant part of the schema directly from the directory.

Administrators must explicitly update this schema information with DirX Identity Manager
after making schema changes or extensions. Note that a schema read from Active
Directory requires the presence of a bind profile in the connected directory configuration
object.

After a schema update, DirX Identity generates the attribute configuration information for
the LDAP directory automatically from the schema information after requesting
confirmation by the user.

DirX Identity provides a comprehensive mechanism to customize the LDAP schema
update. See "Using the Schema Displayer" in the chapter "Using DirX Identity Manager" in
the DirX Identity User Interfaces Guide.

3.3.2. Schema Handling for Other Databases

For ODBC databases or other similar types, the administrator uses the DirX Identity
Manager to enter the schema information into the configuration database. The
administrator uses the Attribute Configuration Editor to enter the information by hand or
uses the editor's import selection to import the information from an existing attribute
configuration file.

A schema configuration object is not required for these kinds of directories. The attribute
configuration information is sufficient.

14

3.3.3. Schema Handling for Fixed Directories and Databases

Some databases-for example, Windows NT - have a fixed schema. DirX Identity stores these
schemas in the central configuration object underneath the connected directory type
configuration object. A reference points from the connected directory instance to these
entries.

3.3.4. Schema Handling for Files

Connected directories can also be a collection of files with the same format; that is, the
same schema description. If you want to model files with a different schema description,
you need a separate connected directory definition for each file.

This common description is held in the attribute configuration object. No schema object is
necessary. In contrast to the information for LDAP directories, additional information for
field, record and multi-value separators is necessary.

The administrator uses the Attribute Configuration Editor in the DirX Identity Manager to
enter this information by hand or by an import from an existing attribute configuration file.
For details about the Attribute Configuration Editor and DirX Identity Manager, see the DirX
Identity User Interfaces Guide.

15

4. Managing Provisioning Workflows

This chapter discusses how to manage:

- Java-based Provisioning workflows

- Tcl-based Provisioning workflows

4.1. Managing Java-based Provisioning Workflows

This section provides information about managing Java-based Provisioning workflows for
real-time synchronization, including:

- Runtime operation

- Target system Provisioning workflow operation

- Error handling and retry

- Cluster workflows

- Target system attributes for cluster workflows

- How to copy Java-based Provisioning workflows

- How to start Java-based workflows

For trouble shooting hints in a real-time workflow scenario see the section "Real-time
Synchronization" in the DirX Identity Troubleshooting Guide.

4.1.1. Java-based Workflow Runtime Operation
This section describes Java-based workflow runtime operation, including:

- The general concept of runtime operation for real-time (event-based) and scheduled
workflow execution

- Java-based Server support for real-time event handling and message flow

4.1.1.1. General Runtime Operation

The following figure illustrates the general concept of runtime operation for a Java-based
workflow for real-time synchronization:

16

Change

Event Run

Workflow

Workflow /
Activity

Output
Messages

Figure 3. Java-Based Workflow Runtime Operation

Java-based workflows are started by messages. These can convey an entry change, a
request to change a password or a request to start a workflow.

An important example is the change of an account or a group. In this case, the event
contains the DN of the changed entry within the input store, typically the DirX Identity
domain. The workflow reads this object from the input store, transforms it into the format
of the output store and performs the necessary operation at the output store. If necessary,
it can create additional messages to trigger other real-time workflows.

You can also start Java-based workflows at a specific time via schedules or immediately
using DirX Identity Manager. In this case, the workflow works on all objects in the input
store that are identified by the search filters in the corresponding channels.

The general runtime concept can be used in a variety of applications.

4.1.1.2. Server Support for Runtime Operation

The following figure illustrates the logical structure of the Java-based DirX Identity server
components.

17

Administrative Configuration Hotification
3
Certificate I Certificate
Request Listener Update Handler

Password Change
Listener

Provisioning
Request Listener
Notification
Listener
{Internal) Event
Listener

Figure 4. Logical Server Structure

The Java-based Server contains two workflow engines: one for real-time provisioning
workflows and one for request workflows (see the DirX Identity Provisioning Administration
Guide for more information about request workflows).

Provisioning workflows are started by events. The Java-based Server uses functions called
adaptors to read events from Java Messaging Service (JMS) queues.

The Java-based Server can handle the following types of events (not all of them are shown
in the figure):

- Administrative Requests (Admin Request Handler) - currently only the Load 1dS-J
Configuration request from the DirX Identity Manager is handled.

- Configuration Requests (Configuration Handler) - the Windows Password Listener (or
any other component that needs a current certificate) requests the initial certificate and
a list of available messaging services. The Configuration Handler sends the requested
information via a IMS message to the requester (broadcast). If update requests cannot
be handled, the event is put into the Dead Letter Queue.

- Notification Requests (Mail Listener) - all components can send notification requests.
These requests are centrally handled by a Notification Handler, which sends the
messages to the mail server. If messages cannot be sent, the event is put into the Dead
Letter Queue.

- Real-time Events - various listeners read events for specific topics and put them into
the Batch Queue for further processing. After delivery to this queue, the JMS event is
confirmed and deleted from the JMS queue. If an event does not have the correct
format, it is put into the Dead Letter Queue.

18

Real-time event listeners are:
o Account Password Change Listener - reads all account password change events.

o Entry Change Listener - reads all events resulting from entry changes.

o

Password Change Listener - reads all user password change events.

o

Provisioning Request Listener - reads all provisioning request for connected
systems.

o

SetAccountPasswordListener - reads password events from the User Password
Event Manager to update accounts.

- Start Workflow Requests - reads all requests for starting event-based processing and
provisioning workflows listeners. Start workflow requests listeners and adapters are:

o Entry Change Start Workflow Listener - reads all requests for starting event-based
processing workflows, automatically collocated with the Entry Change Listener.

- Provisioning Request Start Workflow Listener - reads all requests for starting
provisioning workflows, automatically collocated with the Provisioning Request
Listener.

o Resolve User requests — resolves the assignments of the selected user to the access
rights in the target systems. This function is performed by the Resolution Adapter.

For efficient processing, events of the same type are bundled as batch requests if requests
are arriving at a high rate. The Workflow Dispatcher reads these batch requests and
assigns them to already running but waiting Workflow Threads. If it is not possible to find a
suitable workflow thread, the Workflow Dispatcher places the request in the Dead Letter
Queue.

The Workflow Threads try to resolve the requests. If successful, they send a response
message to the Workflow Dispatcher indicating that the task was successful and the
request is deleted from the queue. If the request cannot be resolved after a configurable
number of retries, the Workflow Threads place it in the Dead Letter Queue.

Workflow Threads can create additional events. For example, the Password Event Manager
creates a set of Password Synchronization Requests for the related target systems and
stores them in the Internal Event Queue. The (Internal) Event Listener reads these
requests, bundles them as batch requests and places them in the Batch Queue.

Requests stored in the Dead Letter Queue are not handled automatically again because
normally administrative action is necessary before further processing is worthwhile. An
administrator can

- Solve the related problem (for example, there was no workflow set up for specific
request types or the target system was not available). He can then process the stored
events again. The Dead Letter Queue Handler bundles them as batch requests and
puts them into the Batch Queue.

- Decide to delete stored requests if further processing no longer makes sense (for
example, because the parameters of the requests are wrong).

19

4.1.2. Target System Provisioning Workflow Operation

This section explains the general concept of operation for the real-time Provisioning
workflows between the Identity Store and target systems. The following figure illustrates
how request and real-time (Java-based) workflows cooperate to process a user creation
request.

'E' Enter %ﬂaaign
: Attributes Frivileges ! | |
i * i # Process O |
| '%éppr?ve oy ' PEHENN |
: reation reation E et |
Zhanges m1 |
i # Process © i
i —» 152 et |
: Changes m2 .

Feal-time Workfl owes

Figure 5. Request and Real-Time Workflow Interaction

The example shown in the figure assumes that a request workflow for user creation with
several interactive activities results at the end in the automatic activity Apply Creation:

- The Apply Creation activity creates the user entry and calculates based on the assigned
privileges during the privilege resolution the necessary set of accounts and group
memberships in various target systems. This information is written into the Identity
Store and in parallel sent as events to the JMS messaging service (TS n Change).

- The corresponding adaptor (Provisioning Request Listener) reads the events from an
external queue. It puts the events into the Internal Event Queue (permanent queue)
and deletes them from the external queue.

- A workflow dispatcher component (not shown in the figure) analyzes the event in the
Internal Event Queue and starts the workflows that can handle these types of events. In
this case, the relevant target system Provisioning workflows are started.

- After start, the target system workflow analyzes the event’s content (the event contains
typically only the DN of the relevant object):

- The target system workflow reads the object from the Identity Store, performs mapping
and join operations and writes it to the target system. If this operation is successful, the
status of the relevant object in the Identity Store is updated accordingly.

20

- The workflow engine retries unsuccessful requests that are the result of temporary
errors (for example, the network was temporarily unavailable) until the retry limit is
reached. It then passes the requests and their responses to the error activity, which
issues e-mail notifications. The failed request is stored in the Java-based Server’'s dead
letter queue, where administrators can evaluate it and perform another retry operation
once the cause of the error has been eliminated.

- The target system workflows write logging, auditing and statistics information to be
processed by the corresponding handlers.

- At the end of each workflow, successful or not, the requests are removed from the
Internal Event Queue.

4.1.3. Error Handling and Retry Operation

Each activity within a Java-based workflow has two channels that the Java-based Server's
real-time workflow engine uses to combine unsuccessful requests with their responses: an
error channel and a retry channel. The choice depends on the error code that the
connector returns in its SPML response.

- An error code FAILURE indicates a permanent error. This type of error typically results
from incorrect bind credentials or a non-existent base node for searches. The Java-
based Server's real-time workflow engine places permanent error SPML responses into
the error channel.

- An error code TEMP_ERR indicates a temporary error. This type of error typically results
from a lost connection. The Java-based Server's real-time workflow engine places
temporary error SPML responses into the retry channel.

After a configurable waiting period, the workflow engine restarts the activity with the
requests in the retry channel. If the configured retry limit is reached, it puts the requests
and error responses into the error channel.

If an error activity is configured, it receives the requests and responses from the error
channel and notifies the affected user with an e-mail.

If this fails or if no error activity is configured, the real-time workflow engine places the
request in the Java-based Server's dead letter queue. Administrators can use the Java-
based Server's Web Admin interface to view the failed requests and responses in this
gueue and to delete or re-process them. For details about dead letter queue handling, see
the "Server Support for Runtime Operation" section. For details about Web Admin, see the
chapter "Using Web Admin" in the DirX Identity User Interfaces Guide.

An activity usually processes a batch of requests. The entire activity is classified as failed
only when one of its components is unable to process any request. This means that the
workflow is classified as successful when some requests have temporarily failed or when
the error activity has successfully handled permanent errors.

4.1.4. Using Cluster Workflows

Typically, you set up one workflow type for provisioning from a target system to a
connected system. Setting up many similar target systems of the same type requires you to

21

set up the corresponding number of workflows. Changing the behavior of these workflows
can be cumbersome because you need to adapt all these definitions by hand. If the
properties of the connected systems are similar (except for the address and bind
information and a few specific properties), you can use cluster workflows, which allow you
to set up one workflow that is controlled by properties of the target system instances. Using
cluster workflows allows you to set up and maintain a single workflow (or one set of
workflows for synchronization, validation and password synchronization) for a cluster of
target systems. The following figure illustrates the cluster workflow concept.

Web Services
for Target
Systems

1
|
|
|

(host, bind
profile, ...}

& J

LD AP
- Workflow for
Cluster L

: mhnf target systems
~ (join engine, mapping, ...)

Figure 6. Cluster Workflow Operation

As shown in the figure, you can set up one workflow that handles the entire set of clustered
target systems. To use this method, the target systems must have identical configurations
regarding most of the parameters (for example, attribute mapping).

The next sections describe the cluster workflow concept in more detail, including:

- A comparison of non-clustered and clustered solution configurations

- The individual parameters to access the target system of the cluster are defined at the
target systems in the Provisioning view group. Typical parameters are host, port and
bind profile.

- The workflows can run in event-based or scheduled mode. For schedule setup
information, see the section "Scheduling Cluster Workflows".

4.1.4.1. Setting Up Non-clustered and Clustered Workflows

This section explains the differences between the non-clustered and clustered setup of
Java-based workflows. The following figure illustrates the non-clustered workflow and
target system configuration:

22

Web Services
for Target
Systems

LDAP
Workflow

SAP
Workflow

ADS
Workflow

SETEEEE s mEE
- "

Connectivity

Provisioning

Figure 7. Non-clustered Solution

To set up a non-clustered solution, set up one workflow definition between the connected
directory Identity Store and each connected directory that represents your connected
system (here: LDAP, SAP, ADS). Set up each workflow independently. When the workflow
subsequently runs between the target system and the connected system, it takes all
configuration information from the workflow definition and the connected directory and all
data from the target system and/or from the connected system.

The following figure illustrates the clustered workflow and target system configuration:

23

s
rkflow setup for Web Services

rget systems for Target
it ! Systems

i i ! Connected
¥ | Systems
5 5; | (host, bind -.-
| o i profile,...) oL -
: LDAP | A i LDAP

i w Cluster e : Cluster

: Workflow L] : Workflow

| | 3 |

| Connectivity ' Provisioning '

Figure 8. Clustered Solution

To set up a clustered solution, set up one workflow definition between the Identity Store
connected directory and one connected directory that represents all instances of your
connected system (in this example, LDAP). The workflow setup is valid for all systems in the
cluster. When the workflow subsequently runs between the target systems and the
connected systems, it takes the static part of the configuration information from the
workflow definition and the dynamic part from the target system definition and from the
Workflow Configuration, Connector Configuration and Environment Properties tabs.

Depending on the data to be transferred from right to left or left to right, the correct
individual parameters are evaluated by the workflow instance and used for accessing the
connected system.

4.1.4.2. Configuring Cluster Workflows

Cluster workflows read their target system-specific options only from the target system in
the DirX Identity domain. While other workflows read these options from the connected
directory, this is not possible for a workflow that supports a number of target systems.

Therefore, the target system allows for setting a number of new attributes for the workflow
configuration. The target system provides a set of standard attributes and a "specific
attribute" feature to configure additional attributes without the need for extending the
LDAP schema. These configuration options can be separated into workflow configuration
attributes, connector configuration attributes and environment configuration attributes.
The next sections provide more information about these attributes.

4.1.4.2.1. About Workflow Configuration Attributes

Workflow configuration attributes are a set of fixed properties that contain the address and

24

bind information to access the connected system. Since most connectors share a set of
common configuration parameters, DirX Identity has defined a standard set of options:
address, data port and secure data port, SSL, authentication mode, path to key store and
trust store files and key store alias name.

For binding of the target system connector, you must reference an account in the domain.
The attributes "dxrName" and "dxmPassword" of this account are used as user name and
(encrypted or scrambled) password.

4.1.4.2.2. About Connector Configuration Attributes

Connector configuration attributes define additional target system-specific configuration
options for the target system connector. These attributes must be defined as environment
properties in the Connector Configuration tab and are stored as tag/value pairs in the LDAP
attribute "dxmSpecificAttributes".

For example, if you want to specify some connection-specific properties of a connector, like
the following connection section properties for the SapR3UMConnector:

General:

<property name="client" value="800"/>

<property name="language" value="en"/>

For connecting without load-balancing:

<property name="systemID" value="08"/>

For connecting via gateway :

<property name="systemIDgateway" value="08"/>
<property name="gwhost" value="host"/>

<property name="gwserv"' value="server"/>

For connecting via load-balancing (messaging service):

<property name="r3SystemName" value="sysname"/>

<property name="group" value="group"/>

Other parameters, for example, access to CUA:

<property name="accessToCUA" value="FALSE"/>

25

<property name="combinedRoleProfileSubsystem" value="FALSE"/>

For more options, see the content of object “ts” (section connection) in a configured real-
time SAP workflow.

Specify them as tag/value pairs (for example, "client/800") in the Connector Configuration
tab of the provisioning target system object.

4.1.4.2.3. About Environment Configuration Attributes

Environment configuration attributes define options for the workflow mapping. Since
these options vary significantly from workflow to workflow, there are no standard attributes
defined. Instead, they are all stored in the LDAP attribute "dxrEnvironmentProperties" as
tag/value pairs. Parameters that are used in many workflows include account and group
base both in DirX Identity and in the target system, domain name, "no_members" for the
default group member if creating a group without account members. As a default rule,
take all specific attributes of the connected directory and store them in the target system
as environment properties.

Note that some logically equivalent attributes were entered both in the target system and
the connected directory: the base nodes for accounts and groups in DirX Identity. The
attributes of the connected directory are used in workflow configuration, the attributes in
the target system are referenced in the object descriptions when creating accounts and
groups. The latter ones are stored as tag/value pairs in the LDAP attribute "dxrOptions". The
parameters for workflow configuration are now stored in "dxrEnvironmentProperties". You
can avoid this duplicate storage by either changing the object descriptions of accounts and
groups or by changing the workflow configuration, typically the export section and the
identifier mapping.

4.1.4.3. Scheduling Cluster Workflows

If you use the scheduler, you can set up additional parameters in the tab Target System
Cluster. Set the Search base and Filter parameters to define the set of target systems the
schedule shall handle.

4.1.5. Copying Java-based Provisioning Workflows

You can copy Java-based workflows either in DirX Identity Manager's Global View or in its
Expert View. The next sections describe how to perform these tasks. For details about DirX
Identity Manager, see the chapter "Using DirX Identity Manager" in the DirX Identity User
Interfaces Guide.

4.1.5.1. Copying Java-based Workflows in the Global View

To make copy operations easier and more intuitive, DirX Identity provides a complex copy
method that is activated in DirX Identity Manager using the Configure method for
connected directories and the New method for workflows. Both methods work closely
together.

First, you create new connected directory icons that represent your connected directories.

26

With the Configure method, you can configure these objects based on other existing
connected directories that act as templates in this case. This template is copied to
represent your new connected directory. Note that the related service object is also copied,
which avoids interference with the original object.

To avoid copying files and channels that will never be used, the copy
operation does not copy files and channels of connected directories of type

0 File. Instead, the data files and channels are created when a workflow is
copied. As a result, it does not make sense to create data files during such a
copy operation.

When two or more of these connected directories exist, you can link these objects via
workflow lines. Next, you can either link existing workflows to these lines (using the Assign
method) or create copies of existing workflows (using the New method) that act as
templates. This template is copied to represent your new workflow.

Copying these templates is a complex procedure that handles all types of Java-based
workflows in addition to the password synchronization workflows.

- DirX Identity tries to find all workflows that fit between the two connected directories. If
no workflows can be found, an error message is displayed.

- The wizard tries to identify the corresponding target system in the Provisioning view
group to fill the Cluster and Domain parameters. If the target system could not be
found the error message "No associated target system for targetsystem" is displayed.
You can ignore this message (click Yes) and set the two parameters by hand later on.

- The workflow is copied, including all activities and ports.

- All referenced channels are copied to the related new connected directories and linked
to the corresponding ports. The procedure uses existing channels where possible.

- A channel folder is created beneath the connected directory that represents the target
system if -n workflows refer to it but have different Identity Stores.

Some types of workflows cannot be copied with the New method and thus must be copied
in the Expert View:

- Password synchronization workflows with JavaScript Mapping (you can identify this
type of workflows by the blue flag symbol).

Both the Configure method for connected directories and the New method for workflows
keep the original folder sub structure in the scenario to which the objects are copied. You
can change these structures at any time with the Move method in the Expert View if
required.

4.1.5.2. Copying Java-based Workflows in the Expert View

If you copy an object in the Expert View, the complete sub-tree is copied. For example,
copying a workflow copies the workflow object and all activities with all links to other
objects. Linked objects - channels, in this case - are not copied. As a result, you must copy
the linked objects separately and change the links accordingly.

27

For example, if you copy workflow W1 with activity Al that points to a channel C1, this results
in workflow W2 with activity Al that points to channel C1. The activity name can remain the
same because it resides under a different workflow object.

In this example, you must copy channel C1 separately, which results in channel C2 with the
relevant Java-mapping objects. Now you must relink activity Al from workflow W2 to
channel C2. This action makes the two workflows (W1 and W2) independent down to the
channel level. If other channels are referenced after this copy, you must repeat this
procedure for all of these objects.

Because this is a difficult and error-prone procedure, we recommend that you use the copy
procedures provided in the Global View whenever possible.

Because password synchronization workflows have a simple structure with only a few links,
it is safe to copy these workflows in the Expert View.

4.1.6. Starting Java-based Provisioning Workflows
You can start Java-based Provisioning workflows in two different ways:

- DirX Identity clients can send real-time events that trigger the workflows.

- You can set up schedules to run the workflows regularly at specific times or time
periods.This method is especially useful for validation workflows, which are typically not
triggered by events.

For more information about Java-based workflow runtime operation and the Java-based
Server’s real-time event handling operations, see the section "Java-based Workflow
Runtime Operation".

4.2. Managing Tcl-based Provisioning Workflows
This section describes how to manage Tcl-based Provisioning workflows, including:

- Runtime operation

- Configuration files and Tcl scripts
- Object naming

- Linking objects

- Understanding notifications

- Tcl-based workflow design rules
- Copying Tcl-based workflows

- Starting Tcl-based workflows

4.2.1. Runtime Operation

This section describes Tcl-based workflow runtime operation, including:

- How DirX Identity handles the workflows and how the Tcl- and C++-based components

28

work together
- DirX Identity agent controller runtime tasks
- The execution status values generated during Tcl-based workflow and activity runs
- The checkpoints

- File paths and areas for Tcl-based workflow runtime operation

4.2.1.1. Basic Runtime Operation

The following figure shows the interactions between DirX ldentity components during a
run of an example Tcl-based provisioning workflow with two activities (Active Directory
export and identity store import). The example assumes that the administrator starts the
workflow by hand from the DirX Identity Manager.

Graphical
Manager

Weorkflow Engine

: Meta Activity
(2]

—_ 2 E

- Meta
cp

‘ File Service

Conf <—~| Configuration Access Layer

Figure 9. Component Runtime Operation
As shown in the figure:
1. The DirX Identity administrator configures the workflow using the DirX Identity
Manager Global or Expert view.

2. The DirX Identity administrator starts the workflow from the DirX Identity Manager.

3. The workflow engine (WFE) reads the workflow configuration data (the activities to be
started and the sequence in which to start them).

4. The WFE notifies the start of the workflow to the status tracker (STT). A workflow status
entry is created in the configuration database.

5. The WFE starts the C++-based DirX Identity server’'s agent controller (AGC) to run the
Active Directory (AD) activity.

6. The AGC reads the activity configuration data for the AD activity and prepares the ADS
agent environment (creates the agent configuration "ini" file).

29

7. The AGC starts the ADS agent.

8.
19.
20.
21.

22.
23.
24.

25.
26.
27.
28.
29.
30.

3l

. The AGC notifies the STT again.

. The ADS agent reads the Active Directory according to the "ini" file configuration.
10.
1.
12
13.
14.
15.
16.
17.

The ADS agent writes an intermediate data file and a trace file.

The ADS agent exits and reports this action to the AGC.

The AGC moves all required files to the status area specified by the status path.
The AGC notifies the STT about the completion of this activity.

The AGC exits and reports to the WFE. The WFE finishes the AD activity.

The WFE starts the AGC again to run the meta activity.

The AGC reads the configuration data for the meta activity.

The AGC starts the file service if the activities ran on different machines and if there is no
shared file system configured.

The file service reads the file from the source location.
The file service copies the file to the required target location.
The file service exits and reports this action to the AGC.

The AGC prepares the meta controller environment (creates the Tcl and attribute
configuration files) and starts the meta controller.

The AGC notifies this to the STT.
The meta controller reads the intermediate file.

The meta controller imports the information from the intermediate file into the identity
store.

The meta controller exits and reports this action to the AGC.

The AGC moves all relevant files to the status area.

The AGC notifies the STT about this action.

The AGC then exits and reports to the WFE.

The WFE finishes the meta activity and reports this action to the STT.
The WFE exits and reports to the DirX Identity Manager.

The DirX Identity Manager can read the complete monitor information including the
information in the status area. Of course you can view status information throughout
the workflow run to watch the progress of the operation.

4.2.1.2. Agent Controller Runtime Tasks

The C++-based Server's agent controller component performs three main tasks during an
agent run:

1.

30

Produces the files that the agent requires. These files can be "ini" files, Tcl script files, or
attribute configuration files. During this step, the agent controller resolves all references
to the property settings of other objects in the configuration database that are
contained in these files.

2. Runs the agent on the correct C++-based server using the command line defined in the
job. The command line can also contain references (for example, to file name definitions
in other objects); the agent controller resolves these references before it runs the agent.

3. Transfers the agent’s exit code (through the status tracker) to the corresponding status
entry after the agent terminates. Next, the agent controller copies all required files-
configuration files, input files, output files, trace file, and report files-into the status area
specified by the status path in the C++-based Server configuration object. (You can use
the file configuration object to configure this behavior for each file; by default, all files
are copied). The agent controller notifies the Status Tracker about these copy operations
and the locations of the files and writes this information into the corresponding status
entry. The agent controller deletes all files in the work area that the administrator has
defined to be temporary in the configuration database.

The following figure illustrates these tasks.

| Step 1: Preprocessing I | Step 2: Agent Control I | Step 3: Postprocessing !
Components Agent Controller + Configuration Access Layer + File Service I

? | Workflow
: O Server Ay A
Configuration ini TCL — Actvity &
Database i i ' TN File
Agent it cade lraceFile
Messages

Wiork Area

Agent -:;T\\ .

5

_|

()

| e
HEr
g
N '
: i
VB '
L '
1 = .
v s !
LI &
I5> { }
l: '
Vs :

-0
Tl
1 B ik
:g '

=}

-

e

o

(1]

i 1 y ¥ hd h 4 '
Save Area i { ini 1: (TC Lg (cfg { ©utput ((report (trace(i
Figure 10. Agent Controller Operations

When errors or warnings occur during these steps, agent controller transfers the
information to the status tracker, which writes it into the Remark field of the status entry.

The agent controller writes a "processinfo" file that contains information about internal
details of this run, such as the executable that was called and the command line and the
delta information that was passed back and forth.

The processinfo file contains the following fields:

- Return - the exit code that the agent returned
- Remark - messages that the agent controller generated for this agent

- DeltaOutputData - the delta information that DirX Identity extracted from the job
object to deliver to the agent controller or the agent

31

- ExpirationTime - the defined timeout in the job definition for this agent

- DeltalnputData - the delta information that the agent has delivered to be stored in the
DirX Identity database after a successful run

- CommandLine - the command line for this agent run

- Executable name - the name of the executable that was used for this run

- ProcessUserName - the user name under which this agent run was started (note: the
password that was used is not displayed here)

- ProcessDomain - the domain under which this agent run was started

- JobPath - the path of the work area where this agent has been run

DirX ldentity also catches any stdout and stderr output and reports it if present in the

processinfo file.

4.2.1.3. Workflow and Activity Execution Status Values

This section describes the status values that can occur during the run of a Tcl-based
workflow or activity. These values are displayed in the DirX Identity Manager Monitor View
in the Result field of a workflow or activity status entry.

4.2.1.4. Workflow Execution Status

The following figure illustrates workflow status changes that can occur during workflow

execution.

Completion
no emo

Completion
with warnings)

open.notRunning.
notStarted

execute

open.running

Completion
{with error)

Abort request:

- by user

- by system
- by timeout

request

Closed.completed.
ok

Closed.completed.
warning

Closed.completed.

error

Figure 11. Workflow Execution Status Flow

\

Abort
regquest

Closed.ahorted

The possible workflow execution values shown in the figure are:

- open.notRunning.notStarted - The workflow's initial state.

- open.running - The normal state of the running workflow.

- closed.completed.ok - All workflow activities have run successfully. This message

32

indicates a successful workflow run.

- closed.completed.warning - One ore more activities in the workflow have reported a
warning. The workflow is not aborted.

- closed.completed.error - One activity in the workflow has not run successfully and the
workflow has been aborted at this point. This message indicates an erroneous workflow
run.

Note: You can ignore this state when setting the Ignore Errors flag in the activity
definition.

- closed.aborted - The workflow was aborted by a request from the DirX Identity
Manager (the administrator has initiated the abort) or by the C++-based Server due to a
fatal error condition or a timeout.

4.2.1.5. Activity Execution Status

The following figure illustrates activity status changes that can occur during activity
execution.

npen.notst arted

Startcondition
fullfilled

Abort request:
- by user

- by system
- by timeout

open.notRunning

request

Open.running

Completion CumpletiurD Cumpletiurg
{no emor ith warnin {with error)
b 4
Clos et noBiRahle closed.completed. closed.co r_npleted. closed.completed. CloREE O
ok warning error

Figure 12. Activity Execution Status Flow

The possible activity execution values shown in the figure are:

- open.notStarted - The activity's initial state.

- open.notRunning - The start condition is satisfied, but the activity is still not running.
- closed.notRunnable - A start condition exists that does not allow the activity to run.

- open.running - The normal state of the running activity.

- closed.completed.ok - The agent has returned an exit code that indicates no errors or
warnings which DirX Identity treats as a successful run. Please note that the incomplete
generation of status entries is treated as a warning that is only reported in the remark
field of the status entry. See the OK Status fields in the Agent and Job objects to setup

33

the required behavior.

- open.completed.warning - The agent has returned an exit code that is defined as a
warning. In this case the workflow is not aborted, but the warning is reported. A
warning is also reported when the agent controller detects stdout or stderr output. See
the Warning Status fields in the Agent and Job objects to setup the required behavior.

- closed.completed.error - The agent has returned a non-zero exit code, which is treated
as an erroneous run. The workflow will be aborted.

- closed.aborted - The workflow was aborted by request from the DirX Identity Manager
(the administrator has initiated the abort) or by the system due to a fatal error condition
or a timeout.

4.2.1.6. Checkpoints

You can use the checkpoint feature for workflows that contain either the meta controller or
framework-based jobs. Framework-based agents are Dashboard, SAP R3 UM and SAP EP
UM.

This feature is especially useful for workflows that run for many hours. If a temporary error
occurs during such a run, the workflow ends with an error. If it is re-started later on, it
performs all operations from the beginning regardless of whether the job runs in delta or
full mode.

If checkpointing is enabled, the relevant jobs write a checkpoint after a definable number
of correctly-processed records. If the workflow runs into an error, the checkpoint value is
stored via DirX Identity's delta mechanism. If the workflow is re-started, it starts the job
where the error occurred and the job itself begins processing records starting from the last
checkpoint value. This might result in processing some records again.

To enable the feature, set the parameters at the workflow object and/or the related
parameters at the corresponding job objects. Checkpointing for the workflow and one or
more jobs are independent of each other. If you only enable the workflow for
checkpointing, the workflow starts with the erroneous activity on the next run. If you only
enable one job for checkpointing, this job starts with the saved checkpoint of the last run. If
the last job run finished without errors, no checkpoint is written and the job starts from the
beginning.

The checkpointing mechanism also works with hierarchical workflows, meaning that the
activity to be restarted can also be a sub workflow, whose activities can be also be
configured for checkpointing.

The relevant workflow parameters for checkpoint control are visible in the Operations tab:

Enabled

the workflow works in checkpoint mode. One or more jobs can also be enabled for
checkpointing. If no job is enabled for checkpointing, only the “Restart at Activity”
mechanism becomes operative.

Retry Limit (default is 3)

the maximum number of retries. If the limit is reached, the workflow runs again in

34

complete full or delta mode (as defined). It also informs all jobs to start from the
beginning even though checkpoints might have been saved. (It sets a
“ignoreCheckpoint” flag in the “create” message of the activity.)

Workflow parameters that display the checkpoint status are:

Retry Count
the number of retries already performed.

Restart Activity

displays one or more activities that are started in parallel during a retry operation. This
field is read-only.

The corresponding job parameters are visible in the Operation tab:

Checkpointing Enabled
if this flag is set, the job writes checkpoints regularly.

Checkpoint Frequency

the number of processed records after which a checkpoint is written. After a serious
agent problem, this activity can start at the last checkpoint (and not from the beginning
again).

Events where Checkpoints are Saved for the Next Run

Checkpoints are saved if the workflow completes with errors (for example, at least one
activity ends with an error) or the workflow or an activity is aborted. The delta information is
only saved in each job configuration entry if the workflow ends without errors.

If both delta and checkpointing are enabled for one job, the delta info item containing
either delta or checkpoint information is saved at the end of the workflow regardless of
whether the workflow ended with or without error.

4.2.1.7. File Paths and Areas

The DirX Identity runtime environment requires three file paths for each C++-based Server
to work properly:

- Installation path - the path to the installation area where DirX Identity is installed. For
example: C:\Program Files\Atos\DirX Identity

Do not change this field because it is handled automatically by the installation routine.

- Work path - the path to a work area that stores all files created during the execution of
an activity when relative paths are used. For example: C:\Program Files\Atos\DirX
Identity\work

- Status path - the path to a status area that stores all permanent files after the execution
of an activity for each workflow run. For example: C:\Program Files\Atos\DirX
Identity\status

You can set up the work and status paths to conform to your requirements. You can also

35

distribute both areas on different disks to ensure that full status areas do not disturb the
runtime environment.

stop further workflow runs and does not regard this as erroneous result of a

0 When the status area is inaccessible or full, the C++-based Server does not
workflow run. However, it logs and reports the problem.

Work Area
The structure of this storage area is:
work\workflowFolderStructure_workflow__activity_

Where workflowFolderStructure is equal to the structure of the workflow folder in the
Connectivity configuration under the object Workflows, for example for the workflow

Workflows\Default\LDIFfile\LDIFfile2Meta

the work area path is
..work\Default\LDIFfile\LDIfile2Meta

Below this path additional activity folders are created. In this case:
..work\Default\LDIFfile\LDlIfile2Meta\LDIFfile2Meta_MetaCP

This file directory contains all input, output, delta, configuration, report and trace files of a
specific workflow and activity (DirX Identity uses the display names of the objects) that are
flagged with Save mode = PERMANENT. For example:

..work\Default\LDIFfile\LDlIfile2Meta\LDIFfile2Meta_MetaCP\control.tcl

Status Area

The structure of this storage area is:
status\workflow.starttime_activity.starttime_

For example for the workflow
Workflows\Default\LDIFfile\LDIFfile2Meta

the status area path for the workflow is
..status\LDlIfile2Meta.20030113142011Z

Below this path additional activity folders are created. In this case:
..LDIfile2Meta.20030113142011Z\LDIFfile2Meta_MetaCP.20030113145822

This activity folder contains all copied input, output, delta, configuration, report and trace
files from a specific agent run (the files that are flagged with Copy to status area. For

36

example:

..LDIFfile2Meta_MetaCP.20030113145822\control.tcl

4.2.2. Configuration Files and Tcl Scripts

DirX ldentity Connectivity stores all of the configuration information that an agent requires
in attributes (object properties) within the configuration. Agents typically require this
configuration information to be made available to them through files. The DirX Identity
agent programs (which use " .ini" configuration files) and the meta controller (which is
controlled by Tcl scripts) read their operating instructions from these files, which must exist
prior to their execution. The meta controller also requires attribute configuration files that
describe the input and output format information.

For example, for import to a DirX Identity store via the meta controller, the agent
configuration information is contained in Tcl scripts. For import into an Active Directory
connected directory, the agent configuration information is contained in an "ini" file.

The meta controller Tcl scripts (called the synchronization profile) are generally separated
into a well-defined structure. The most important parts are:

- The control script, which is called from the command line. The control script contains a
list of variables that define all of the necessary parameters for connecting to directories
or opening files in read or read/write mode, the attribute configuration and selected
attributes for both the source and target directory, the export and import parameters,
and so on. The control script calls the profile script, which in turn calls the mapping
procedure.

- The profile script, which contains the main code of the synchronization procedure. Its
structure can vary dependent on the synchronization scenario and it is normally based
on a lot of standard code delivered with DirX Identity.

- The mapping script, which contains the entire code for performing an attribute
mapping according to the settings made at the user interface level, for example by
filling a table with appropriate assignments of target attributes via mapping procedures
to source attributes.

Central use of mapping scripts is only possible for Tcl Mapping Scripts.
0 Table based mapping scripts must be located directly under the job
object and cannot be centralized!
For details, see the section "Tcl-based Connectivity Standard Script" in the DirX Identity
Application Development Guide. The pre-configured objects contained in the default
applications delivered with DirX Identity use this Tcl script structure.

The meta controller needs attribute configuration files in addition to the Tcl scripts.
Attribute configuration files describe the static content of the connected directories, such
as the objects and attributes of a database (for LDAP, ODBC or other formats) or the format
and content of files (for tagged files like LDIF or non-tagged files like CSV and XML). See the
DirX Identity Meta Controller Reference for further details.

37

A DirX ldentity Connectivity job can handle:

- Oneinifile

- One control Tcl script

- One profile Tcl script

- One mapping Tcl script

- An unrestricted number of additional Tcl scripts

A DirX Identity connected directory provides one attribute configuration object, which is
used by the meta controller to generate the corresponding attribute configuration file.

The number and kind of configuration files depends on the type of agent. The generic
agent type, which is the basic agent type that DirX Identity provides (and from which all
other agents are derived), contains all of these files. Consequently, the number of
configuration files that DirX Identity can handle is not restricted.

The agent configuration files contain a lot of information that already exists in the
properties of configuration objects in the configuration database. For example, the "server"
parameter in an agent configuration file can map to the TCP/IP address of a particular
service object.

You can set references to these object properties in the agent configuration file to
guarantee consistency between the parameter in the configuration file and the setting for
the property in the configuration database.

At each runtime, DirX Identity regenerates the agent configuration file from the property
information in the configuration database. At this time, it resolves the references contained
in the configuration file and updates the file with any configuration changes made since
the last run. Thus configuration information is always up-to-date.

4.2.3. Object Naming

DirX Identity supports two object naming mechanisms:

- Object identifiers

- Display names

4.2.3.1. Object Identifiers (common names)

When administrators work with several instances of DirX Identity Manager in parallel on
the same configuration database, it is possible that the two different Manager instances
can create the same object identifiers (the common names in the LDAP directory) at the
same time because both administrators choose the same name. To avoid this problem, the
DirX Identity Manager creates unique object identifiers (IDs). These IDs are difficult for users
to read and remember (you can see them in the data view of the DirX I[dentity Manager
when looking at newly created configuration objects in the Connectivity configuration
tree). For example:

uid-c0671bf6:1ac93:e734b95f23:-7ff9

38

You can define a readable display name for each configuration object, which is stored in
the attribute dxmDisplayName. You can rename this display name as necessary without
disturbing the internal structure of the configuration database, because the ID is used for
all references (with the exceptions described in the topic "Display Names").

If you delete an object and create it again with the same display name, it has a different ID
but looks to be the same. References contained in the configuration database that pointed
to the old object will not point to the new object. You must set all references manually
again to the new object. Use the Show References feature to find all incoming references.

You may notice that a lot of objects in the Connectivity configuration have readable
common names; for example, BA_ADS for the connected directory that has the display
name ADS. This readable naming results from the creation method used in the beginning.

4.2.3.2. Display Names

DirX Identity Manager administers unique display names in a specific subtree of the
configuration database because it would be very confusing to see two different objects
with the same name at the user interface level.

However, there are circumstances in which display names are used outside of the
configuration database:

- DirX Identity uses the activity and workflow display names as part of the work and
status area paths. If your activities keep any files that affect the next run of the
workflow-for example, a delta database-and you change the display names of either of
these two objects after you have run the workflow for the first time, DirX Identity
relocates the work path to the new display name(s) and the delta database remains in
the old location. As a result, your workflow will perform a full operation instead of a delta
run. Currently DirX Identity does not warn you if you rename an activity or workflow
name. You must know if there will be a problem (if the workflow has never been
executed you will not have a problem) or you must solve the problem (for example, by
moving the delta database to the new work path).

- The DirX Identity reference mechanism (see the chapter "Customizing Object
References" in the DirX Identity Customization Guide) is built so that references are as
stable as possible and remain independent from values in the configuration database.
Sometimes you must use other attributes in references to specify a particular value of a
multi-valued attribute, for example, for distinguished names (DNs). Do not use the
display name because the reference is broken when you change the display name or
when it is set automatically during a copy operation because the reference is not
updated automatically. DirX Identity detects the break during the next workflow run,
resulting in an error. DirX Identity cannot detect the effect on reference definitions in
configuration files in advance because this action would be extremely time-consuming.
You should avoid this behavior in many cases by using the dxmAnchor attribute, which
is not changed during copy operations in contrast to the display name.

4.2.4. Linking Objects

DirX ldentity supports different mechanisms to use objects; for example, attribute
configuration or Tcl files. You can locate objects either locally under the parent object or in

39

a central place.

Objects are used by setting a link from the parent object to the required object. Depending
on the location, the result will be different:

- When you reference a central object, changes to this object will affect all parent objects
and their workflows. This behavior is nice when you need a central place to change
parameters. On the other hand, changes to the object (especially when performed with
a wizard, where you don't see the object structure) may affect workflows that you do
not intend to change. DirX Identity displays a red border with the text "This object
might be shared since it belongs to the Configuration Folder" to indicate the use of
central objects.

- Referencing a local object allows you to set all parameters individually. However, when
you need to change a central parameter (which is contained in several local objects),
you must make the change multiple times, and you may miss making the change to
one of the objects

- Local objects can also be used by several parent objects, which creates a type of quasi-
central object (shared objects). The same problem can arise as with central objects
regarding the change of attributes. In addition, you may unintentionally delete an
object that is still used by another one. Use the option "Check references to avoid
broken links" when deleting objects to avoid such situations.

4.2.5. Understanding Notifications

DirX ldentity provides two types of notifications in the Tcl-based environment:

- Change notifications - the meta controller calculates all necessary actions and changes
to update the directory. Optionally it can send a IMS message that contains all change
information. You can set up Java-based workflows to interpret and process these
messages.

- E-mail notifications - if program logic cannot solve outstanding issues or for
informational purposes, you can produce e-mail notifications.

4.2.5.1. Change Notifications

Before performing updates at the directory server, the meta controller calculates all
necessary actions and changes. It can optionally send this information in the form of a IMS
message for further processing. Set the relevant change notification parameters to enable
this feature.

4.2.5.2. E-mail Notifications

DirX Ildentity provides a notification agent, which is a separate executable that can be used
to send an e-mail message from within a Tcl script using the metacp exec operation. You
control the notification agent through a simple command sequence and a configuration
file in XML format that defines all parts of the message. As with Tcl or "ini" files, the agent
controller writes the notification XML configuration file to the work area. All the operations
for files (for example, deleting files in the work area and moving them to the status area)
are also available for notification files.

40

You can send a notification from within a Tcl script with the following command sequence:

proc calculatedavaPath § 1 §

global env

regsub -all "\\\\" $env(DIRXMETAHUB_INST_PATH) "/" install_path

source "$install_path/basic.input.tcl"”

return $DXI_JAVA_HOME
5
regsub -all "\\\\" $env(DIRXMETAHUB_INST_PATH) "/" install_path
set java_dir [calculateJavaPath]
if {$tcl_platform(platform) == "windows"? then §

set cmd "exec \"$java_dir/bin/java\" -Duser.language=en -cp
\"$install_path/1lib/java/ext/javax.activation.jar;$install_path/1lib/j
ava/ext/mail.jar;$install_path/lib/java/notify.jar;$install_path/1lib/
java/dxcCrypto.jar;$install_path/1lib/java/dxmUtil. jar"
siemens.dxm.notify.sendmail \"$notify_cfg_file\" "
t else 4§

set cmd "exec \"$java_dir/bin/java\" -Duser.language=en -cp
\"$install_path/1lib/java/ext/javax.activation.jar:$install_path/1ib/j
ava/ext/mail.jar:$install_path/lib/java/notify.jar:$install_path/1lib/
java/dxcCrypto.jar:$install_path/1lib/java/dxmUtil. jar"

n

siemens.dxm.notify.sendmail \"$notify_cfg_file\"

$

In this sequence, DirX Identity evaluates the fully qualified pathname first. It then calls the
notification agent; the calling syntax depends on the platform on which the Tcl script is
executing. The procedure calculateJavaPath computes a representation of dxi_java_home
as needed in Tcl scripts.

The notification agent uses the XML configuration file to process the request. It processes
an e-mail notification, which must contain addresses (From, To, CC (optional)), a subject, a
message text (optional and with references to be resolved) and attachments (optional; for
example, a log or data file). Note that you can configure only one To address because DirX
Identity assumes that there is exactly one entity responsible for the requested action. You
can define as many CC addresses as you like.

The notification agent returns the following exit codes:

- Exit code = 0: The message has been sent correctly.
- Exit code = 50: General error.
- Exit code = 51: The sending of this message has failed.

- Exit code = 52: The commmand line for the notification agent contains an error.

41

Example: java siemens.dxm.notify.sendmail \config.xml

- Exit code = 53: The type is not email.
- Exit code = 54: The XML description contains a syntax error.
- Exit code = 55: One of the following entries is missing:

o Type

o Host

o From

o To

o Subject

The Tcl procedure should handle these exit codes and set an exit code that the agent
controller can process.

You can define any type of notification that can be performed from within a Tcl script. For
example, you can define notifications that send an e-mail with the trace file when a specific
error condition occurs during a workflow run.

Most of the workflows provided with DirX Identity use two standard notifications: Notify if
not OK and data notification (NotifyData). The data files for these notifications are centrally
configured in the Configuration » Standard Files folder for ease of administration. You use
the job’s Notification and Operation tabs to control how these notifications are used
during the metacp job's operation. You can also create customized notifications using the
Notification configuration object. The next sections provide more information about these
features.

4.2.5.3. Notify if not OK

The "notify if not OK" notification sends a message if the workflow runs on a warning or
error condition. This notification is available for all meta controller jobs and is configurable
via the Notify if not OK field in Notification Control in the Operations tab in the job object.
Possible values are:

- 0 - no notification at all

- 1- send notification if warnings occur

- 2 - send notification if errors occur

- 3 - send notification if warnings or errors occur

The Notification tab in the job object also manages notification objects. Click this tab to
define all notification parameters.

4.2.5.4. Data Notification

The data notification feature sends data change information. In the Entry Handling tab of
input or output channels, you can define whether the processed data changes are:

42

- Automatically processed by the relevant agent, or

- Sent via e-mail to an administrator, who then handles the event by hand.
You can also choose automatic processing and in-parallel notification to the administrator.

The data notification feature is controlled by the three drop-down lists in the Entry
Handling tabs of input or output channels. The fields are:

- Add Entries- controls the behavior for add operations:
NONE - no add operation at all
ADD - Adds are performed only automatically
NTF - Adds are performed by notification (no automatic processing)
ADDNTF - Adds are performed automatically and notification is sent

- Modify Entries - controls the behavior for modify operations:
NONE - no modify operation at all
MOD - Modify operations are performed only automatically
NTF - Modify operations are performed by notification (no automatic processing)
MODNTF - Modify operations are performed automatically and notification is sent

- Delete Entries - controls the behavior for delete operations:
NONE - no delete operation at all
DEL - Deletes are performed only automatically
NTF - Deletes are performed by notification (no automatic processing)
DELNTF - Deletes are performed automatically and notification is sent

In a possible scenario, the administrator handles add and delete operations by hand and
modifications are performed automatically.

4.2.5.5. Creating Your Own Notifications

You can extend workflows to perform your own notifications. To extend the workflows:

- Create a notification object under the relevant job object (this is currently only possible
for meta controller jobs) or copy an existing one from a job object (Copy Object) and
move it to the target job object (Move Object). You can also set up a central notification
object in the Configuration » Notifications folder.

- Set all parameters (for example, the From and To fields) and adjust the text in the XML
file (tab Content) to your needs.

- Define all files that are to be sent during the notification as attachments.

- Select the Operation tab in your job object and set the link to the newly created
notification object.

- Call the notification from your Tcl scripts (use, for example, the user hooks uh:Epilog).

4.2.6. Workflow Design Rules

When you create or run Tcl-based workflows, you should follow some basic rules. The next
sections provide information on:

- Rules for algorithms

43

- Rules to set up correct schedules to avoid timing conflicts

- Rules for backup and restore

4.2.6.1. Rules for Algorithms

When you design your synchronizations, you must be sure not to produce conflicts. This
section provides some rules to avoid problems in this area.

4.2.6.1.1. Single Master System Design

If you follow the rules in this topic, your system will be very robust. Conflicts cannot occur
by design.
- Define only one master for entry creation and deletion.

- Run only workflows with non-overlapping execution times. If this is not possible, be sure
that the workflows do not influence each other.

- If workflows create or use the same files (for example, one workflow creates an LDIF file,
the other reads it), be sure that the execution times do not overlap.

4.2.6.1.2. Multi Master System Design

The rules in this topic help to control a multi-master system and minimize conflicts.
- If you need to set up several masters for entry creation and deletion, define unique
criteria to distinguish the corresponding entries. Two examples are:
- Create different trees in your directory that belong to the different masters.

- Set up attributes or object classes that allow for distinguishing between the entries of
the different masters, for example by filtering expressions.

- If you cannot follow the previous guideline, be sure that workflows that create or delete
entries do not run at the same time (avoid overlapping execution time - see the next
topic).

- If workflows create or use the same files (for example one workflow creates an LDIF file,
the other reads it), be sure that the execution times do not overlap.

4.2.6.2. Rules for Schedules

Many issues must be considered when scheduling workflows. This topic explains the rules
and their reasons. Set up schedules so that:

- They do not have unrealistic values; for example, an interval of O, which means that the
workflow would always run - the scheduler ignores schedules with this setting.
- Their possible start times cannot overlap

- Their execution times cannot overlap

DirX Identity has some built-in features to handle conflicting situations, but only when the
parameters are set correctly. For example, the DirX Identity default applications use the
dxmOprMaster attribute to distinguish he mastership of different source connected

44

directories.

4.2.6.2.1. Starting the Same Workflow Twice

The C++-based Server does not allow starting the same workflow twice (for example from
the scheduler and from the DirX Identity Manager by hand). Both workflows would try to
open, read and write the same files in the work area, which cannot work properly.

A message is written into the server logging and an extra status entry is written for the
second instance.

4.2.6.2.2. Starting Workflows after the Server Starts

At the time when the C++-based Server is started, all workflows are started where the start
time has passed and the deviation time is not over.

In this case, it can happen that a workflow was previously aborted (during the stop
sequence of the C++-based Server). The messaging service keeps the related start message
and resends it after C++-based server startup. The scheduler at the same time tries to start
the same workflow. This operation will fail, because the same workflow was already started
(a message is written into the server log and a status entry that indicates a double workflow
start is created). In this way, DirX Identity ensures that the workflow is only started once.

4.2.6.2.3. Basic Rules for Central Configuration Object Parameters

This section describes the basic rules for setting the values of parameters in the central
configuration object.

4.2.6.2.4. Rule 1: Polling time

- The Polling Time in the central configuration object must be greater than 0. Otherwise,
the scheduler will assume a default of 5 seconds.

Reason: a timer based on the polling time activates the scheduler. A polling time of O
would result in heavy system load. Therefore we do not permit you to set this value.

4.2.6.2.5. Rule 2: Time Interval

- The Time Interval in the central configuration object must be greater than O.
Otherwise, the scheduler will assume a default of 1 day (86400 seconds).

Reason: this value determines the interval at which the status tracker removes status
entries from the database. A Time Interval of O would result in heavy system load.
Therefore, we do not permit you to set this value.

4.2.6.2.6. Rule 3: Schedule Sync Interval

- The Schedule Sync Interval of the central configuration object must be greater than 0.
Otherwise, a default of 1 hour (3600 seconds) will be assumed.

Reason: normally the DirX Identity Manager automatically informs the scheduler when
schedule information is changed. If this operation fails, this mechanism reads the

45

schedules regularly from the configuration database. A Schedule Sync Interval of O
would result in heavy system load (the schedule reread would happen always).
Therefore we do not permit you to set this value.

4.2.6.2.7. Basic Rules for Schedule Object Parameters

This section describes the basic rules for setting the values of parameters in the schedule
object.

4.2.6.2.8. Rule 4: Time Interval

The Time Interval in a schedule object must be

- Greater than O.

Reason: this value determines the interval after which this workflow has to be started
again. A Time Interval of O does not make sense. Therefore we do not permit you to set
this value.

- Greater than the polling time (see central configuration object). The scheduler will
ignore schedules that do not satisfy this condition. Related error messages will be
written into the logs (event log or log files).

Reason: A time interval that is smaller than the polling time could result in missed starts
of workflows.

- Greater than the sum of deviation + timeout + 5 * polling time. The time buffer of 5 *
polling time is recommended because multiple server components (scheduler,
workflow engine, agent controller, messaging service) are involved in aborting a
workflow when timeout is exceeded. Here, timeout is the sum of all job timeouts of the
related workflow, multiplied with (1 + latency-factor /100).

Example: Suppose that a workflow consists of 2 jobs running in a sequence, both with a
job timeout of 10 minutes, and the latency factor is 20. Then timeout (of the workflow) is
24 minutes.

Reason: The schedule might miss start times when this condition is not satisfied.

4.2.6.2.9. Rule 5: Deviation

- The Deviation of the schedule must be greater than the polling time (see central
configuration object).
Reason: When this condition is not satisfied, the scheduler can miss workflow start
times.

4.2.6.2.10. Combined Rules

These rules must be considered when several workflows that could influence each other
shall not be started simultaneously or may not have overlapping execution times.

To give full control to the C++-based Server (for example, to abort agents after the timeout
has been reached), you must set the Abort Execution allowed flag in the agent object in

46

the Expert View.

4.2.6.2.11. Rule 6: Non overlapping start times for workflows

Suppose you don't want the scheduler to start a set of workflows simultaneously (we

assume that the workflows' runtime is no longer than 30 minutes). Define the related
schedule’s start time, deviation and interval parameters so that the intervals of possible
start times do not overlap. The following table provides an example of non-overlapping

start times.

Example 1. Non-overlapping Start Times

Schedule Start Time Interval Deviation
A 01.01.2001 00:00:00 2h 30 minutes
B 01.01.2001 0O1:15:00 2h 30 minutes

The scheduler will not start the related workflows simultaneously, as the following

figure illustrates.

Woorkflow B

Woorkflow A | |

Figure: Possible start times forworkflow A and B

Figure 13. Non-overlapping Start Times: an Example

Example 2. Overlapping Start Times

If we change the interval of workflow B to 3 hours, then overlapping starts would be
possible at 4:15 to 4:30, 10:15 to 10:30 and so on.

0

1 2 3 4]

Woarkflow A | |

Wiorkflow B

: i

A : _y
. I

|:| | Owverlapping start area I,II
1

Figure: Possible simultaneous starts ofworkflow A and B

Figure 14. Overlapping Start Times: an Example

We must also take into account that after a restart of the C++-based Server all workflows

that are in their deviation time will be started simultaneously at the same time (the related
messages are waiting in the messaging service). Let's assume that the server is restarted at
4:20; then both workflows are started immediately.

47

4.2.6.2.12. Rule 7: Non overlapping execution of workflows

Suppose you want to schedule workflows so that their execution does not overlap (which
may be convenient for resource-consuming workflows). Then you must define the related
schedule parameters start time, deviation, interval and polling time so that the intervals of
possible execution times of a workflow do not overlap.

Example 3. Non overlapping Execution Times

Schedule Start Time Interval Deviation Timeout
A 01.01.2001 00:00:00 2h 15 minutes 30 minutes
B 01.01.2001 01:00:00 2h 15 minutes 30 minutes

We additionally suppose that the polling time is set to 5 seconds.
As shown in the next figure, the workflow execution cannot overlap.

Non-overlapping Execution: an Example

wonnow . SIIETT| | S S

W orkflow B = L1 .

Deviation 5 * polling time

Timeout

Figure: Man overlapping execution times of workflow A and B

In normal operation, the upper limit of a life time of a workflow instance in the C++-
based Server will be timeout + polling time, because there may be a delay of polling
time before scheduler and workflow engine really detect a timeout.

The example shows that a workflow can only be active in time intervals between start time
n and start time n + deviation + timeout + 5 * polling time, where start time n = start time +
n*interval (n being an integer).

4.2.6.3. Rules for Backup and Restore

If you want to back up and restore your LDAP server or the configuration part of it, we
recommend the following procedure:

- Deactivate all schedules to ensure that no new workflows are started (use the Disable
Scheduling function).

- Check with the DirX Identity Manager's Get Server State function on each C++-based
Server in your environment that no workflows are still running (only status tracker and
scheduler threads may be visible in the details view of this feature).

- Stop all C++-based Servers.

- Perform a backup or restore of your server with the native methods of your LDAP

48

directory (for DirX, you will normally use DirXmanage) or perform an Export
Configuration or Import Data command from the DirX Identity Manager's Expert View.

- After a restore, restart all DirX Identity Managers (because the content of the
configuration database could be changed completely and the caches must be cleared).

- Restart all C++-based Servers.

- Activate all schedules (use the Enable Scheduling function).
Normal operation is now restored.

After a restore of a complete database or only the configuration tree in the database, you
must be aware of the following problems:

- If you have restored an older version of your configuration tree, status entries in the
Monitor View of the DirX Identity Manager may be missing. Consequently, you can no
longer access the related status entry file information in your status area in the file
system.

- If your database comes from a different environment (for example from a test
environment), some settings in your database may not be correct, and you must adjust
them by hand. Candidates are the settings in the service objects and others that are
different in the two environments. Consequently, we do not recommend exchanging
whole databases or configuration trees. Use instead the Export data / Export Subtree
and Import data feature of the DirX Identity Manager to exchange parts of the
configuration database (a whole scenario, workflows, jobs or connected directory
objects).

- Do not try to use the Import data method with data that was created with a previous
version of DirXmetahub V6 if this was not explicitly allowed (see the release notes).
Changes in the data structure may no longer fit with the new version of DirX ldentity.

4.2.7. Copying Tcl-based Provisioning Workflows

You can copy Tcl-based Provisioning workflows either in DirX Identity Manager's Global
View or in its Expert View. The next sections describe how to perform these tasks. For
details about DirX Identity Manager, see the chapter "Using DirX Identity Manager" in the
DirX Identity User Interfaces Guide.

4.2.7.1. Copying Workflows in the Global View

To make copy operations easier and more intuitive, DirX Identity provides a complex copy
method that is activated within DirX Identity Manager using the Configure method for
connected directories and the New method for workflows. Both methods work closely
together.

First, you create new connected directory icons that represent your connected directories.
With the Configure method, you can configure these objects based on other existing
connected directories that act as templates. This template is copied to represent your new
connected directory. Note that the related service object is also copied, which avoids
interference with the original object.

49

To avoid copying files and channels that will never be used, the copy
operation does not copy files and channels of connected directories of type

0 File. Instead, the data files and channels are created when a workflow is
copied. As a result, it does not make sense to create data files during such a
copy operation.

When two or more of these connected directories exist, you can link these objects via
workflow lines. Next, you can either link existing workflows to these lines (using the Assign
method) or create copies of existing workflows (using the New method) that act as
templates. This template is copied to represent your new workflow.

Copying these templates is a complex procedure that can handle most variants of
workflows:

- By default, DirX Identity tries to find all workflows that fit between the two connected
directories. It checks the Type field of the connected directory type objects of the
connected directories at both sides of the workflow line and compares them with the
Endpoints field of all workflows. Matching workflows are displayed in the template
chooser dialog. If no workflows can be found, an error message is displayed.

- In some cases, the list does not contain the workflow you want to copy. Deselect the
Matching endpoints flag to show the list of all workflows. Now you can freely choose
any of the workflows. Using this flag is especially useful if you intend to create a new
type or variant of workflow starting with an existing one.

Note: The copy procedure may run into an error if the workflow requires resources that
are not available between the two connected directories. In this case, you need to copy
and change the workflow in the Expert View.

- If the connected directories are of the same type, you are asked about the direction the
workflow is to work (for example, for an LDAP to LDAP workflow).

- The workflow is copied, including all activities.

- All jobs referenced by these activities including all sub-objects are copied, too. If an
activity references a workflow, the workflow is not copied (a warning message is shown).

- The input channel of the first activity (the start activity) is mapped to the related new
connected directory. This action creates a new channel that points to the source
connected directory. If the connected directory type is File, the necessary data file to
which the channel points is also created.

- The output channel of the last activity (end activity) is mapped to the related new
connected directory. This action creates a new channel that points to the target
connected directory. If the connected directory type is File, the necessary data file to
which the channel points is also created.

- When copying nested workflows, you can choose with the Copy workflows recursively
flag whether the sub workflows shall be copied or not. If you do not copy the sub
workflows, the copied workflow points to the original workflows. You can change these
links later on by hand.

Some types of workflows cannot be copied completely with the New method and thus
must be copied partially with other methods:

50

- Nested workflows can only be copied when the source and target connected directories
of the sub workflows are the same as for the top-level workflow. You must copy
workflows that do not meet this restriction by hand.

- For workflows that contain more than one start or end activity, DirX Identity tries to find
a connected directory that fits with the corresponding connection of the workflow line
and maps the new connected directory with the original one. Connected directories
that do not map are not re-mapped; you must take care of this step by hand afterwards.

Both the Configure method for connected directories and the New method for workflows
keep the original folder sub structure in the scenario to which the objects are copied. You
can change these structures at any time with the Move method in the Expert view if
required.

4.2.7.2. Copying Workflows in the Expert View

If you copy an object in the Expert View, the complete subtree is copied. For example,
copying a workflow copies the workflow object and all activities with all links to other
objects. Linked objects (like jobs or channels) are not copied. As a result, you must copy the
linked objects separately and change the links accordingly.

For example, if you copy workflow W1 with activity Al that points to a job J1, this results in
workflow W2 with activity Al that points to job J1. Note that the activity name can stay the
same because it resides under a different workflow object.

In this example, you must copy job J1 separately, which results in job J2 (with all its sub-
objects like configuration files, local connected directories or trace files). Now you must re-
link activity Al from workflow W2 to job J2. Now the two workflows (W1and W?2) are
independent down to the job level.

Because job J2 still points to the same channels as job J1, you must repeat the procedure
for the channels and eventually the connected directories.

4.2.8. Starting Tcl-based Provisioning Workflows
You can start Tcl-based Provisioning workflows in several different ways:

- To run a workflow only from time to time or to test workflows, you should use the Run
option of the workflow line context menu in the DirX Identity Manager Global View or
the Run Workflow or Run Activity options of the context menus of the workflow or
activity objects in the DirX Identity Manager Expert View.

- You can use schedules to run workflows regularly at well-defined times.

- You can use the runwf tool to trigger a workflow start from any event. See the chapter
"Using DirX Identity Utilities" in the DirX Identity User Interfaces Guide for more
information.

If you try to start a workflow that is still running, DirX Identity uses the following procedure
to handle this situation:

- When a workflow is started and a previous instance is still running, the workflow
request is buffered as a waiting thread.

51

- When the previous workflow ends it starts the next workflow (the next waiting thread)
automatically.

Because the number of threads in DirX Identity is limited (see the Max number of threads
parameter of the C++-based Server), the buffering stops when two-thirds of this number is
reached and a "Second workflows instance" message is sent. The rest of the threads are left
for other workflows to be run. Otherwise one client could request many workflow starts
that fill up the server and prevent any other workflow from starting.

Raise the Max number of threads parameter if you need a higher number of buffered
workflows.

When the Max number of threads is reached, an error message is sent as in previous
versions of DirX Identity.

(entries without a time extension of the display name) as well as in the Get

0 These waiting threads are visible in the Process table of the Monitor View
Server State table.

52

5. Managing Passwords

Password management in Connectivity means managing password synchronization,
including:
- Setting up and maintaining the scenario structure

- Setting up and maintaining the password workflows
The sections in this chapter describe:

- How DirX Identity’'s password management feature works (generic operation)
- How password changes flow from Windows domains

- How password changes flow from Web applications

- How to configure the password synchronization workflows

- How the password synchronization workflows operate

- How the password change algorithms operate

For troubleshooting hints in a password management scenario see the section "Password
Synchronization" in the DirX Identity Troubleshooting Guide.

5.1. Understanding Password Management

DirX Identity password management comprises a set of comprehensive features to set up,
maintain and distribute user passwords in a distributed environment:

- The DirX Identity Web Center allows for user password management via self-service and
administrative applications.See the DirX Identity Provisioning Administration Guide for
more information.

- The DirX Identity Windows Password Listener captures passwords at Microsoft
Windows domain controllers.

- The DirX Identity Password Event Manager receives password change notifications and
processes them.

- The DirX Identity Password Change workflows transfer the changed passwords via
connectors immediately to the connected target systems.

The following figure shows how these components interact:

53

m Messaging setFassword
" Senice In A<
Workdflow 1

|lser

Fassword
Event

Manager

SetFPassword
T
Warkflow 2

SetFPassword
TR
Workflow 3

Clients (Web

Windows PCi SetPassword

T
Connector 3

Figure 15. DirX Identity Password Management Component Interaction
As shown in the figure:

- A user changes his password via the Web Center (see the DirX Identity Provisioning
Administration Guide for more information).The Web Center sends the password
change notification to the DirX Identity Messaging Service.

- Alternatively a user can change his password in the Windows domain.The Windows
Password Listener captures this password change and sends it to the Messaging
Service (see the DirX Identity Connectivity Reference for more information).

- The User Password Event Manager subscribes to these notifications, joins the event to
the correct user in the Identity Store, changes the password for the user and issues
change events for all accounts in all target systems where this change is required.

- The User Password Event Manager subscribes to these notifications, joins the event to
the correct user in the Identity Store and processes change events for all accounts in all
target systems where this change is required.

- Target system-specific Set Password in XX workflows subscribe to these change events
and perform the necessary password change via the related connector in the
connected system.To support reporting and real-time status display, the workflows
update the PasswordChangeHistory attribute, which contains the time, the result
(success or failure) and the associated user.This attribute should be regularly cleared
with the RemoveAccountPasswordChangeHistory consistency rule.

Depending on the supported API technology (Java or C/C), connectors run either in the
Java-based Identity Server (IdS-J) (as part of the workflow) or in the C-based Identity Server
(IdS-C).The communication between the Java-based workflow and the C++-based

54

connector is performed via SOAP/HTTP in a synchronous mode.

All workflows use common services for logging, auditing, statistics and retry.Auditing and
statistics information is also stored as status entries in the DirX Identity status area.See the
section "Understanding Password Synchronization Workflow Operation" for more
information.

5.2. Password Changes from Windows Domains

Users can change passwords with standard Windows methods at any Windows domain
controller.The next sections describe how DirX Identity password management
components process password changes from Windows domains.

5.2.1. Password Changes via the Windows Password Listener

The following figure illustrates how the DirX Identity password management components
interact to process password changes from Windows users and distribute them to the
relevant target systems.

Password
Change

 Listener

Figure 16. DirX Identity Windows Password Listener Component Operation
As shown in the figure, the detailed sequence of process steps is:

- The user changes his password in the Windows environment.

- The password change is sent as a Java Messaging Service (JMS) message to the DirX
Identity Messaging Service. It contains the Windows user account name as well as the
domain and forest information.

55

- A User Password Event Manager is started in the Java-based Server (IdS-J) when such
events arrive.

- If a password change event arrives, the User Password Event Manager retrieves the
relevant fields from the message. In this case, the User Password Event Manager
identifies first the corresponding target system in the ldentity Store with the help of the
domain and forest information (these fields correspond to the fields in the Advanced
tab of the target system object). Next, the manager searches the account within this
target system.

- If it locates the account, the User Password Event Manager follows the link to the
corresponding user entry in the Identity Store and changes the password at the user
entry. If it cannot locate the account, the manager stores the event for a configurable
number of retries. It sends a notification event if it reaches the retry limit without
successfully locating the account.

- Using the information in the user entry, the manager retrieves all accounts that belong
to this user that must be updated with the new password. For each account, the
manager creates a request to change the password in the corresponding target system.
The target system that generated the password change event is omitted (this would
result in cyclic behavior otherwise).

- Set Password in XX workflows are started immediately to process the requests. If the
change is successful, the request is deleted. If it is not successful, a configurable number
of retry cycles are issued. If all fail, a notification event is sent. In all cases, the workflows
update the PasswordChangeHistory attribute at the accounts.

- Target system interfaces that cannot be accessed via Java interfaces but in Cor C
technology are handled by connectors running in the DirX Identity C-based Server (this
is not shown in the previous figure but is similar to the "Password Changes from Web
Applications" section). A Set Password in XX workflow runs in the Java-based Server,
produces a synchronous SOAP/HTTP request for the password change connector in the
C++-based Server and waits for a synchronous response. If successful, the request is
deleted. If not, a configurable number of retries is performed. If all fail, a notification
event is sent.

For more information, see the section "About the Windows Password Listener" and the
description of this component in the DirX Identity Connectivity Reference.

5.2.2. About the Windows Password Listener

The Windows Password Listener is a DirX Identity agent that captures passwords in clear
text from the Windows domain controller and transfers them to the messaging service
where the DirX Identity event manager picks them up for further processing.

The Windows Password Listener agent is implemented as a separate tool that does not
need DirX Identity server components to be installed on the same machine.lt must be
installed and registered on each domain controller in the network.

When the Windows domain controller is started, it calls the Windows Password Listener’s
initialize method, which sends a message to the event manager to retrieve the public
encryption key.On the other hand, if the public encryption key is exchanged, the Java-
based Server distributes the changed key to all Windows Password Listeners.

56

The Windows Password Listener captures password at the Windows domain controller,
encrypts it with the public encryption key and transfers it as message to the messaging
service (the message serves as an event and transfers the data in parallel).The message is
marked with the originator APETA://ADS/domain.It includes the forest name, domain
name, computer name, userName, and password (encrypted) attributes and the flag 'User
must change password during next login'.

The DirX Identity Connectivity Reference provides more details about the Windows
Password Listener.

5.3. Password Changes from Web Applications

Users can change passwords using Web applications.The standard method is to use the
DirX Identity Web Center; for a detailed description see the DirX Identity Provisioning
Administration Guide.As an alternative to Web Center, you can integrate the Java classes of
the DirX Identity Web Event Trigger into your Web applications; for more information, see
the corresponding section in the DirX Identity Connectivity Reference.

In both cases, the Web application sends a password change message to the DirX |dentity
Messaging Service for further processing.The following figure illustrates the event and how
the DirX Identity password management components interact to process it.

FT
in XX
Workflow 1

Password
Change

T
in XX
Workflow 2

Set Password
in XX
Workflow 3

T
Connector 3

Figure 17. Web-based Password Change Processing
As shown in the figure:

- The user changes his password through the Web application.

57

- A user who is working with the specialized Web Center for Password Management can
de-select accounts from password change processing; passwords for these accounts
will not be updated.

- The password change is sent as a Java Messaging Service (JMS) message to the DirX
Identity Messaging Service.

- A User Password Event Manager workflow is started in the Java-based Server (1dS-J)
when such events arrive.

- If a password change event arrives, the User Password Event Manager retrieves the
relevant fields from the message.The distinguished name (DN) of the user allows the
User Password Event Manager to identify the user entry in the Identity Store.

- If the User Password Event Manager can locate the user entry, it changes the password
at the user entry.Otherwise, it stores the event for a configurable number of retries. After
several unsuccessful retries, the User Password Event Manager sends a notification
event.

- Using the information in the user entry, The User Password Event Manager retrieves all
accounts that belong to this user and that need to be updated with the new password,
excluding those accounts that the user previously de-selected.For each account, the
manager creates a request to change the password in the corresponding target system.

- Set Password in XX workflows are started immediately to process the requests.If the
change is successful, the request is deleted.If it is not successful, a configurable number
of retry cycles are issued.If all fail, a notification event is sent.In all cases, the workflows
update the PasswordChangeHistory attribute at the accounts.

- Target system interfaces that cannot be accessed via Java interfaces but in Cor C
technology are handled by connectors running in the C-based Server.A Set Password in
XX workflow runs in the Java-based Server, produces a synchronous SOAP/HTTP
request for the password change connector in the C++-based Server and waits for a
synchronous response.If successful, the request is deleted.If not, a configurable number
of retries is performed.If all fail, a notification event is sent.

5.4. Configuring the Password Synchronization
Workflows

There are two types of password synchronization workflows:

- A User Password Event Manager workflow, which handles password change events
published by Windows Password Listener or Web Center, updates the user password in
the Identity Store and creates password change requests for all the user’'s accounts.

- A Set Password in XX workflow for each target system instance, which updates the
account password in the target system according to the change request issued by the
Password Change Event Manager workflow.

The structure of the password synchronization workflow configurations is very similar.All
password synchronization workflows consist of one mandatory activity to update the
password and an optional error activity, which notifies the affected user of failed password
updates.

58

Each workflow is responsible for a specific family of events, which must be set in the Is
applicable for section of the first tab of the workflow configuration entry, named
"Workflow".

You must set the source of password change events for the User Password Event Manager.
By default, there is only one manager that listens to all password change events. This is
indicated by the wildcard " in all fields. For load distribution, you can deploy multiple User
Password Event Managers, each listening for a different set of events.

In each change password request, the User Password Event Manager workflow sets a
message topic, which includes the following fields from the target system entry: Type,
Cluster, Domain. They are labeled differently in some target system types; for example,
forest and domain for Windows systems. The Java-based Server finds the appropriate Set
Password in XX workflow by matching the topic with the settings of the Type, Cluster and
Domain fields in the workflow configuration.

A Set Password in XX workflow must be configured for each target system instance where
passwords are to be synchronized. In order to associate the workflow and the target
system, the fields Type, Cluster and Domain of the workflow configuration must match the
corresponding fields of the target system entry.

The rest of the configuration is almost the same for all workflows.

Set the flag to write audit logs, enter the number of retries in case of temyporary failures and
the waiting time between retries.

Select the connected directory at which to update the password and a bind profile. The
only exceptions are target systems, which are accessed by a C/ C# based connector. They
run in C-based Servers. Therefore, the workflow configuration needs the C++-based Server
and the connector within the server in order to know where to send the SOAP requests.

The resource family indirectly determines on which servers an activity may be run. It tells
the system which resources it needs for processing. It is a good idea to associate resource
families with target system types or target system instances, if there are a number of them.
Choose a resource family "LDAP" to be associated with target systems of type LDAP, a
resource family "ADS" to be associated with Windows systems, and so on. Setting the
activity resource family "LDAP" instructs the system to run this activity only on servers that
provide access to this type of resource.

Java-based Servers provide resources; for example, LDAP.Activities run only on servers that
are associated with the same resource that the activity requires.An activity with a resource
family LDAP needs a server that has a reference to the resource family LDAP.

Make sure that, for each activity, there is at least one Java-based Server associated with
the same resource family!

The configuration of the error activities is the same for all workflows.With the flag "enabled"
set, you decide that the workflow includes the error activity.Otherwise, the workflow
contains only the "set password" activity.In this case, permanently failed requests are
placed in the dead letter queue.See the chapter "Using Web Admin" in the DirX Identity
User Interfaces Guide for information about how to view, re-process and delete these

59

entries.
With the other options, you set the mail fields: from, to, subject, and body.

Even if you have configured a Set Password in XX workflow for your target system, you
need to enable the target system for password synchronization.Reset the flag Disable
Password Sync(hronization) at the target system object in the Provisioning view group to
enable password synchronization.

5.5. Understanding Password Synchronization
Workflow Operation

The following figure illustrates how the password synchronization workflows operate in
more detail.

Figure 18. Password Synchronization Workflow Components
As shown in the figure, the sequence of steps is as follows:

- The corresponding adaptor (Password Change Listener) reads events from an external
gueue (for example, a IMS queue).lt adds the events into its own repository (persistent
gueue) and then into the memory-based Batch Queue and deletes them from the
external queue.

- A Workflow Dispatcher component (not shown in the figure) analyzes the events in the
Batch Queue and starts the workflows that can handle these types of events.In this
case, the password event manager workflow (User Password Event Manager) is
started.'

- After start, the User Password Event Manager workflow analyzes the event's content
and tries to identify the relevant user in the Identity Store to which this password
change event belongs:

60

- If successful, the User Password Event Manager workflow changes the password of the
user, but only if the new value and the old one does not match. If they are identical, the
workflow stops processing this event and does not request changes for the accounts.
This method effectively prevents password change loops. See the section "About the
Password Change Algorithms" for details.

- If the workflow successfully changes the user password, it creates setPassword requests
for all accounts of this user where the password shall be changed and sends these to
the internal temporary SetAccountPasswordListener JMS queue for further processing
by the relevant SetPassword in XX workflows. These requests include all account
attributes that identify the account in the connected system and the changed
password.

- If unsuccessful, the User Password Event Manager writes the event to the retry channel.
After some waiting time, the Event Manager processes these events again until their
retry limit is reached. See the section "Error Handling and Retry" in "Managing Java-
based Provisioning Workflows" for details.

- Events that fail even after retries are passed to the Error Activity, which sends an e-mail
to the affected user. See the section "Error Handling and Retry" in "Managing Java-
based Provisioning Workflows" for details.

- In all cases, the User Password Event Manager workflow writes logging, auditing and
statistics information to be processed by the corresponding handlers.

- At the end of the workflow, successful or not, the requests are removed from the
adaptor’s repository.

- The Set Account Password Listener adaptor reads the events from the IMS Queue and
packs them into the Batch Queue.

- The Workflow Dispatcher analyzes the (set password) event and starts the Set
Password in XX workflow that is configured for this target system instance.It associates
the event and the workflow by their type, domain and cluster attributes.

- After start, the Set Password in XX workflow reads the event from the JMS Queue:

- Its first activity constructs the account identification in the target system and issues the
password change request to the target system.

- The workflow engine retries unsuccessful requests until the retry limit is reached, and
then passes the requests and their responses to the error activity, which issues e-mail
notifications to the affected user.See the section "About the Password Change
Algorithms" for details.

- In all cases, the Set Password in XX workflow writes logging, auditing and statistics
information to be processed by the corresponding handlers.

- At the end of the Set Password workflow, successful or not, the requests are removed
from the JMS Queue.

5.6. About the Password Change Algorithms

This section provides details about the password change algorithms used by the DirX
Identity password management components.

61

To minimize unnecessary password changes that could result in refused updates at the
target system side due to password history mechanisms, DirX Identity checks each
password change to determine whether or not the new password is identical to the
previous one.lt uses the password history attribute for this task even if the password history
policy is not enabled for a specific user.

The algorithm for a user with enabled password history is shown in the following flowchart.

Figure 19. Password History Algorithm (Password History Enabled)

In this algorithm, DirX Identity changes the password if it is not already contained in the
password history. The history is updated accordingly. Otherwise the password change is
rejected.

The algorithm for a user with disabled password history is shown in the following flowchart.

62

Figure 20. Password History Algorithm (Password History Disabled)

In this case, DirX Identity changes the password if no password history is available. The
password value is stored in the password history for further checks.

The test to determine whether the new password is identical to the existing one is made
against the stored value in the password history. If the password is identical, the change is
rejected. If it is not identical, the password is changed and the password history value is
replaced with the new one.

The test relies on the fact that the new password is stored in the password history even if
the password history policy is disabled for the user. The password policy, however, can also
be configured to prevent storage of the new password if the history is disabled. In this case,
the check for identical passwords will always fail, causing the new password to be
processed as if it was different from the previous one. Since this will cause some issues in a
system with one or more Windows Password Listeners, storing the new password must not
be disabled in such a system.

63

6. Managing DirX Identity Servers

This chapter explains how to manage:

- The Message Broker
- The Java-based ldentity Server (1dS-J)
- The C++-based Identity Server (IdS-C)

It also provides information on:

- Distributed deployments and scalability
- High availability and recovery

- Diagnostics

- How to manage daylight savings time

- Connector frameworks

For information on high availability for both Java- and Tcl-based workflows, please see the
use case document High Availability.

6.1. Managing the Message Broker
DirX Identity uses a IMS Message broker for most of its internal communication:

- The DirX Identity services (for example, the privilege resolution service), Web Center,
Java-based real-time workflows and metacp to send real-time events for immediate
processing by Java-based workflows.

- The Windows Password Listener and Web applications, to send password change
events to be processed by password event managers and password synchronization
workflows.

- The C++-based Identity Servers (IdS-C servers) in a distributed environment, to
exchange the commmand messages that start and control Tcl-based workflows. The
same interface is used by the runwf tool.

- The C++-based DirX Identity Status Tracker component, to receive messages from

various components and create status entries in the status area.

The Message Broker is one or more Apache ActiveMQ instances.The ActiveMQ instances
must be installed via the DirX Identity installer to manage locations and names, but the
target servers for these instances are not predefined, so that the messaging system is
flexible and can scale easily.

This section describes how to plan for and set up the message broker, including:

- Deployment options (single broker, high availability)
- Installation, configuration, start/stop, IMX access and logging

- Basic concepts of how DirX Identity uses the message broker

64

- Messages and message sizes used in DirX Identity

6.1.1. Planning the Message Broker Deployment

You can deploy the Message Broker in different ways, depending on your load-balancing
and high-availability requirements. Installation/configuration wizard deployment options
include:

- One Message Broker instance installed on the same system as an 1dS-J or IdS-C server

- One Message Broker instance installed on an external server

- Multiple Message Broker instances spread over 1dS-J / 1dS-C and external servers

sharing the same database for persistent messages (datalbase on a shared drive)

Apache ActiveMQ offers various options on how to operate multiple instances. The DirX
Identity configuration uses the following implementation:

- Only one Message Broker instance is accessible for clients. This broker has exclusive
access to the database (DB lock) for persistent messages.

- All other instances are up and running, but can't access the database. If the exclusive
broker is unavailable, the next instance takes over the database access, captures the
persistent messages and starts up the connectors to be accessible for the clients.

- The switch from one broker instance to another instance is transparent for the clients.
DirX Ildentity's Message Broker name and instance management service handles the
discovery of the Message Broker instance.

- To ensure the fail-over capability, the database for persistent messages must be on a
shared drive to which all broker instances have access. For a single-broker installation,
you can install the database locally.

6.1.2. About the Message Broker Components

Message broker components include:

- The Message Broker wrapper container
- The database for persistent messages
- The start/stop service/daemon

Each Message Broker runs its own wrapper container which is deployable on Windows
and/or UNIX systems.

Each Message Broker needs a database for persistent messages. The built-in database is
"KahaDB". The database is installed by the DirX Identity installation. The location of the
database depends on the message broker deployment in use.

Each Message Broker is represented by a service on Windows or a daemon process on
UNIX. Service names are:

DirX Identity Message Broker number (Windows)

65

ids-mbrk-number (UNIX)

The number is assigned during Message Broker configuration. Only one Message Broker
per server is supported. In a high availability scenario, you may have multiple Message
Brokers across a distributed DirX Identity installation.

6.1.3. Starting the Message Broker

The services that make up the Message Broker normally start automatically when the
system is booted. The service starts independently of the IdS-J / IdS-C services. Message
broker services include:

- Service name on Windows: DirX Identity Message Broker number

- Process name on Windows: wrapper.exe

- Process name on UNIX: wrapper

- Controlled processes on Windows: java.exe

- Controlled processes on UNIX: java

The shell script install_path/etc/dmmbrk-number starts the service on Linux when the
system runs in multi-user mode.

6.1.4. Configuring the Message Broker

The DirX Identity-supported configuration options for the Message Broker are:

- Target server for a Message Broker instance
- Location of the database for persistent messages
- Optional transport options

- Optional fail over options in case of a High Availability deployment. They are to be
configured at the parent entry of the message broker configuration entries. For details
see the Active MQ documentation: http://activema.apache.org/failover-transport-
reference.html.

6.1.5. Monitoring the Message Broker

Use the DirX Identity Server Admin to monitor a Message Broker. Server Admin provides an
overview of installed DirX Identity servers and components including the Message Broker
instance(s). The instance status and a link to the Web console are provided in this view.

ActiveMQ provides a Web Console, which allows you to view the number of messages in
the queues and even the messages themselves. The port can be configured as admin port
in the associated system service of the broker entry. For more details see the ActiveMQ web
page (http://activemqg.apache.org/web-console.html).

To call the Web Console, use the following URL:

http://localhost:8161/admin

66

http://activemq.apache.org/failover-transport-reference.html
http://activemq.apache.org/failover-transport-reference.html
http://activemq.apache.org/web-console.html
http://localhost:8161/admin

or in case of SSL configuration:
https//*your installation host:8161/admin*

Port number 8161 is the default. In the ActiveMQ Message Broker configuration step, you
can set a different port number.

For more information, see the ActiveMQ web page (http://activemaq.apache.org/web-
console.html).

6.1.6. Message Broker Logging

When the Message Broker starts for the first time, default log levels are applied. They
ensure that error and warning logs of all components are written. The log files are stored in
the data folder of the local broker's home directory (install_path/messagebroker). Log file
names start with wrapper (for the service handler) or with activemq (for the broker itself).

6.1.7. Message Broker Instance Naming

Using multiple Message Brokers requires an easily-understood naming scheme for service
names, LDAP entry configuration names and file folder names.

Message Broker Object Naming

The Message Broker objects in the Connectivity view group (Connectivity » Messaging
Services) follow this naming scheme:

Message Broker number

where number is the number assigned to the Message Broker. The numbers are assigned
dynamically; the first Message Broker to be configured is assigned the number 1.

Example for a server object:

Message Broker 1

Service Naming

The services on Windows use the following naming scheme:
DirX Identity Message Broker number

Example for a server:

DirX Identity Message Broker 1

File Folder Naming

The file folder in the installation area is install_path*/messagebroker* because only one
Message Broker per local installation is supported.

67

http://activemq.apache.org/web-console.html
http://activemq.apache.org/web-console.html

6.1.8. IMX Access to the Message Broker

By default, IMX access to the Message Broker needs password authentication.
Authentication is performed by passing the user credentials to an LdapLoginModule which
tries to bind to the Connectivity LDAP server with these credentials. When the bind is
successful, the JIMX access is successfully authenticated.

Per configuration, the LDAP user is
cn=DomainAdmin,cn=domain,dxmC=Users,dxmC=DirXmetahub.

On the JMX client-side, you only need to give the “DomainAdmin” as the username and the
appropriate password. This is configured in the file jmxldap.cfg in the Message Broker’s
conf folder.

If the SSL flag is activated in the system-wide configuration, the JMX access is also secured
by SSL. In this case, a non-SSL access is not possible.

If SSL is configured for the Connectivity store, the authentication process to the LDAP
server is also performed using an SSL connection. In this case, you need to make sure that
the LDAP server's root CA chain certificates are in the cacerts file of the Identity Java
environment.

6.1.9. Understanding the Java Messaging Service

DirX Identity uses both message paradigms supported by Java Messaging Service (JMS):
point-to-point (P2P) and publish / subscribe (Pub/Sub).

In P2P messaging, a producer sends a message to a queue. Only one or several consumers
can read them from this queue. The broker passes a message to only one of them. In
Pub/Sub a producer sends a message with a topic. One, several or even no consumers can
subscribe to that topic (then they are called "subscriber"). Each of them receives its own
copy of the message. When no consumer has subscribed to the topic, the Message Broker
simply deletes it.

Both P2P and Pub/Sub allow message producers and consumers to remain independent of
one another. No producer needs to know the consumer(s) of its messages, and a consumer
does not need to know the producer(s). You can have multiple producers and multiple
consumers. Consumers process the message when they have time for it. The producer
must not wait until the consumer is finished; that is, messages are processed
asynchronously.

Messages can be persistent or transient. When a message is declared persistent, the
consumer(s) need not be online when the producer sends it. For Pub/Sub, as soon as the
consumer has subscribed to a topic, it receives all messages sent after that moment even if
it stops and starts again later. For P2P, persistent messages are stored in the queue until
some consumer reads and acknowledges them. Transient messages are lost when the
Message Broker stops.

68

6.1.10. Using Messages in DirX Identity

Most of the DirX Identity messages are persistent, so they are not lost when a Message
Broker or a consumer is down. Only very few message types are marked as transient: they
are mainly to distribute configuration update notifications or certification information. As
the servers read their configuration on start-up and the Windows Password listener
requires configuration and certification updates also on each start-up, no information is
lost.

Some of the DirX Identity components work in P2P, others work in Pub/Sub mode.

All the messages around real-time workflows, especially password changes, are P2P. Only
one consumer is intended to process them.

Pub/Sub messages are used for:

- Controlling and monitoring Tcl-based workflows by the C-based Identity Server. They
are produced by the components of the C-based Server itself (scheduler, workflow
engine, agent controller) and the Identity Manager. The meta controller metacp can
also produce Pub/Sub messages, but they are no longer used for the standard
workflows.

- Issuing update notifications, mainly of configuration and of certificates. The main
consumer is the Windows Password Listener in order to get up-to-date information on
available Message Brokers and on current certificates.

6.1.10.1. Queues of the Java-based Server

The message queues described here are consumed by the Java-based Server adaptors to
process real-time events. Queue names are case-sensitive and handled in lowercase
internally.

Note that the domain prefix is optional. It depends on the flag Include domain into topic of
the General tab of the domain object.

domain.dxm.event.pwd.changed:
A message in this queue indicates the password change for a user.
domain.dxm.event.svctsaccount.pwd:

A message in this queue indicates a password change for an account or that the password
of an account has expired.

domain.dxm.setpasswordrequest:

A message in this queue starts a password provisioning workflow to set the password of an
account in a connected system.

domain.dxm.setpasswordrequest._default:

This queue contains those messages sent to domain.dxm.setpasswordrequest that can be

69

processed in any Java-based Server.
domain.dxm.request.provisiontots:

A message in this queue triggers the synchronization of account, group and membership
changes from target systems to connected systems.

domain.dxm.request.provisiontots._default:

This queue contains those messages sent to domain.dxm.request.provisiontots that can
be processed in any Java-based Server.

domain.dxm.event.ebr:

A message in this queue indicates the change of a user, business object, account or other
domain entry and is processed by an Event-based Maintenance workflow.

domain.dxm.request.workflow.ebr:

A message in this queue starts a maintenance workflow by its DN; for example, the
certification campaign controller.

domain.dxm.request.importtoidentity:

A message in this queue indicates a change in an entry in a remote system (for example, a
user in an Active Directory) that needs to be imported into the DirX Identity domain.

domain.dxm.request.importtoidentity._default:

This queue contains those messages sent to domain.dxm.request.importtoidentity that
can be processed in any Java-based Server.

domain.dxm.request.workflow.provisioning:

A message in this queue is used to start a real-time workflow by name (used by Identity
Manager and Scheduler).

domain.dxm.request.workflow.provisioning._default:

This queue contains those messages sent to domain.dxm.request.workflow.provisioning
that can be processed in any Java-based Server.

domain.dxm.request.workflowengine:

A message in this queue is used to request the request workflow engine to update the
workflow.

domain.dxm.request.activitytask:
A message in this queue is used to start an activity in a request workflow.

domain.dxm.notify.mail:

70

A message in this queue is used to send an email.

domain.dxm.notify.sms:

A message in this queue is used to send an SMS.

domain.dxm.request.user.resolve:

A message in this queue identifies a user. It will be resolved by the Resolution Adapter.

The following queues are created on demand when the Provisioning workflows for a
connected system should run only on dedicated servers:

domain.dxm.request.provisiontots.target system identifier:

This queue contains those messages sent to domain.dxm.request.provisiontots that refer
to entries of the selected target system.

domain.dxm.request.workflow.provisioning.target system identifier:

This queue contains those messages sent to domain.dxm.request.workflow.provisioning
that refer to entries of the selected target system.

domain.dxm.setpasswordrequest.target system identifier:

This queue contains those messages sent to domain.dxm.*setpasswordrequest that refer
to entries of the selected target system.

domain.dxm.request.importtoidentity.target system identifier:

This queue contains those messages sent to domain.dxm.request.importtoidentity that
refer to entries of the selected connected system.

For information on the target system identifier and when these queues are created, see the
section "Distributing Deployments and Scalability" » "Separating Traffic for Selected
Connected Systems".

6.1.10.2. Topics of the Java-based Server

Messages to the following topics are consumed by one or more Java-based Servers. Each
Java-based Server automatically subscribes to the following one:

dxm.event.configuration.changed:

The DirX Identity Manager publishes a message to this topic when you request to "Load
IdS-J Configuration". It triggers a reload of all workflow and schedule definitions. If the
domain is not specified in the message body, all servers load their workflow and schedule
definitions.

For the following topic, exactly one Java-based Server per domain is intended to subscribe.
Select the server by moving the corresponding adaptor to the desired server. You can do
this with Identity Manager and right-click on "Manage 1dS-J Configuration" or use Server

71

Admin.
domain.dxm.request.configuration:

Windows Password Listener (WPL) publishes a message with such a topic in order to
obtain information about all available messages services and to obtain a new certificate.
The list of available message services allows the WPL to switch to another messaging
service in case of failure.

If still older Windows Password Listeners (version older than V8.3) are running in the
customer environment, the following is relevant. For the following topic, exactly one Java-
based Server across all domains is intended to subscribe:

dxm.event.certificate:

Events of this type allow the older Windows Password Listeners to obtain new certificates.
On start-up, the WPL publishes a message with the topic dxm.event.certificate.request to
request the current certificate. The Java-based Server returns the requested certificate in a
message with the topic dxm.event.certificate.changed. WPL subscribes to that topic and
thus receives the certificate. If the certificate is changed, the Java-based Server sends the
same message to the topic dxm.event.certificate.changed so that all Password Listeners
are informed immediately.

6.1.10.3. Topics of the C++-based Server

The following message topics are used by the C++-based Server for internal and external
communication:

dxm.command.machine_name

This event type represents commands for the workflow engine (create or start workflow
instance; create or start activity instance).

dxm.fileservice.machine_name
Events of this type allow transferring files via the JMS messaging service.
dxm.statustracker

Various components of the C++-based Server create status information with this event
type. The status tracker processes this information and creates the according status entries
in the Monitor View.

6.1.10.4. Topics of the Password Listener

The following message topic is used by the Windows Password Listener communication:
domain.dxm.response.configuration:

Windows Password Listener (WPL) receives messages with such a topic in order to obtain
information about all available messages services and to obtain a new certificate.

72

6.1.10.5. About Message Sizes

The size of the sent messages varies for the different kind of messages.

6.1.10.5.1. Password Messages

The password messages are about 1250 bytes each. The reason is that the encrypted
password is converted to base64 format.

6.1.10.5.2. Real-time Events

The real-time event messages are about 700 bytes each. Here is an example (without the
message frame):

<spml:modifyRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:Q@:core"
xmlns:spml="urn:oasis:names:tc:SPML:1:0"
xmlns:event="urn:siemens:dxm:EVENT:1:0"
xmlns:order="urn:siemens:dxm:ORDER:1:0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
requestID="svc.modify.dxm.request.provisionToTS.LDAP.cluster=
‘localhost’.
resource='cn=My-Company'.uid-8b19al143--29c9507c-1132f75a2b8--7fff">
<spml:identifier type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>cn=Alexander Gerber 5217,cn=Accounts,cn=Extranet
Portal,cn=TargetSystems,cn=My-Company</spml:id>
</spml:identifier>
<spml:modifications/>
</spml:modifyRequest>

The messages contain only the identifier of the object. The workflow reads the rest of the
information from the LDAP directory.

6.1.10.5.3. Command and Status Messages

For a Tcl-based workflow with two activities started from the DirX Identity Manager, the
size of the messages in bytes is approximately:

Message Type Number of Bytes
Create 640
create acknowledge 540
execute 650
execute acknowledge 540
destroy 370
Sum 2740

73

Message Type Number of Bytes

+ 8 status messages 8400
(800 through 1050 bytes per status message)
Total M40

If the workflow is started from the scheduler in a non-distributes environment, only status
messages are sent via the messaging service. All other messages (command messages) are
sent via an internal queue mechanism. In this case, the total number of bytes for a two-step
batch workflow is about 7400 bytes.

When using compression mode, the total number of bytes (and thus the system load) can
be significantly reduced:

Compression Mode Number of Messages via Manager via Scheduler
None 8 10150 7400
Compressed 5 7375 4625
Minimized if OK 1 3675 925
Suppressed if OK 0 2750 0
0 "via Scheduler" means that the batch workflow runs in a non-distributed
environment.

6.1.10.5.4. File Transfer Messages

The overhead for a file transfer message is 660 bytes plus the filename length (if the file
name is 20 bytes, the overhead is 680 bytes).

There is a message length parameter in the messaging service object which is1MB by
default. You can set this value from 32 K to 4 MB (other values outside of these boundaries
are set automatically to these boundaries).

If a file is 1.5 MB and the file name is 20 bytes, then the message is divided into a block with
1 MB - 680 bytes and another one with 1.5 MB - (1 MB - 680 bytes). Plus overhead the first
message is exactly 1 MB, the second one is 0.5 MB + 1360 bytes.

So the general formula is:
limit = (configured value)
overhead = 660 + namelLenght

blocksize = limit - overhead

The last block can be smaller.

6.1.10.6. Messaging Subscriptions

JMS Topic subscribers must use a unique name. This enables the Message Broker to
distinguish different subscribers when they re-connect. DirX I[dentity components use the
following naming scheme.

74

6.1.10.6.1. Java-based Server

adaptorname
where

adaptorname
is the name of the adaptor that uses this subscription.

Examples:

AdminRequestHandler
ConfigurationHandler
CertificateHandler

6.1.10.6.2. C++-based Server
hostname.jms.dxmmsssvr_dxm.component.servername
where

hostname

is the hostname where the server is running.

component
is the component that uses this subscription:

command
used to start Tcl-based workflows.

statustracker

the status tracker receives status messages that are written to the LDAP directory.

fileservice

used by the file service to exchange data files between machines.

servername
the name that is defined in the dxmmesssvr.ini file (attribute dnServerName).

For the Status Tracker, it is just jms.dxmmsssvr_dxm.component

Example:

myhost.jms.dxmmsssvr_dxm.command.myhost

6.1.10.6.3. Meta Controller

The meta controller allows sending JIMS messages with this naming scheme:

hostname.jms.metacp.hostnamedxm._component.identifier

75

where

identifier
a unique identifier.

For a description of the other fields, see the description of the C++-based Server.
Example:

myhost.jms.metacp.myhost_dxm.command.c0a860862gui

6.1.10.6.4. Manager

The Manager creates for the Process Table feature only non-durable subscriptions that use
this naming scheme:

gui._identifierl.username_identifier2
where

identifierl

is a unique identifier of the manager instance.

username

is the username with which the manager was started.

identifier2
is unique identifier for the subscriber.

Example:

gui.c0a8e680.metatest_a8lb2bc7laa9cac5_-1a203253_12ec46696c8_-7fe0

6.2. Managing the Java-based Server
This section describes the Java-based Identity Server (IdS-J), including information about:

- Java-based server components

- Server processes and how to start and configure them
- Recovery

- Auditing

- Statistics

- Logging

- Naming schemes

- Resource families

- JMX access

76

6.2.1. Server Components

The Java-based ldentity Server (IdS-J) comprises a complete infrastructure to run event-
driven and scheduled synchronization and request workflows. The following figure shows
the Java-based Server components.

. JMS Request Workflow
Web Admin Adaptors Timeout Check
Server Admin Request W°f""°"" Scheduler
_ Web Service

Supervisor
e g Adaptor

JMX-based
Administration Dead Letter } Controller
Queue l
Configuration ;

Figure 21. DirX Identity Java-based Identity Server Components

The next sections provide an overview of the Administration, Adaptors, Workflow Engine,
Connector and Handler components.

6.2.1.1. Administration Components

You can use Web applications or IMX clients via JIMX Beans to administer the Java-based
Server:

- Web Admin - a specialized administrative Web application for monitoring and
controlling the Java-based Server in which it is embedded.

- Server Admin - a specialized administrative Web application for monitoring and
controlling several Java- and C++-based Servers. This application is also running in the
embedded Tomcat of each Java-based Server and is only enabled if High Availability
was activated.

- Supervisor - a servlet running in the embedded Tomcat Web Container that can be
started if high availability is activated. It is responsible for monitoring another |IdS-J and
optionally all C-based Servers. If one of these servers crashes, the supervisor moves its
functionality - IMS adaptors, Request Workflow Support, Java Scheduler and Status
Tracker - to its local server or another C-based Server (status tracker). It also requests the
backup adaptor to recover the backed-up messages.

- IMX-based administration - any custom JMX client can be used as an alternative to the

77

Web applications for administering or controlling the server; for example, Oracle’s
JConsole.

The Configuration Manager is an internal component of each Java-based Server that is
responsible for loading all necessary configuration information during server startup. It can
also perform an update after an explicit request from administrative interfaces.

6.2.1.2. Adapters

JMS adaptors in a Java-based Server read specific events from JMS message queues or
subscribe to message topics. A JMS adaptor in a Java-based Server is available for each
gueue and for each topic. In general, adaptors consuming messages from JMS queues can
be started in each Java-based Server and thus support load balancing and scalability. Some
of the JMS adaptors subscribing to message topics are automatically activated in all Java-
based Servers; some others should only be activated in one server. For more details, see
"Managing the Messaging Broker".

Target system-specific adaptors process Provisioning workflows that are sent to queues
specific for a target system or connected system (for example, for importing entries to the
Identity Store) so that slow target systems or those with lot of traffic do not slow down the
provisioning of other systems. Dispatchers for the corresponding queues distribute the
messages either to the default queue or the appropriate target system specific queue. For
more details, see “Queues of the Java-based Server” in "Managing the Messaging Broker".

For supporting high availability, a backup adaptor can be started. It is responsible for
backing up all messages of all IMS adaptors (except target system-specific adaptors) of its
monitored server. In case of fail-over, it can be instructed to send the stored messages to its
Message Broker.

The Dead Letter adaptor receives messages that couldn't be processed successfully in the
local server and stores them to a local embedded database. Web Admin allows an
administrator to either re-process all or a subset of these messages or to delete them.

For supporting request (approval) workflows, the Request Workflow Web Services must
be activated in one Java-based Server. They are hosted in the embedded Tomcat Web
Container.

The Resolution Adapter is responsible for resolving a user’s privileges to access rights in
connected systems. Whenever a client application adds or removes a privilege assignment
or changes an attribute that might affect the user’s access rights, it sends a message, and
the Resolution Adapter calculates the groups and accounts of that user. The Resolution
Adapter is started on every Java-based Server. The number of listeners per server for the
“resolution queue” is configured in the central configuration entry of the domain; the
defaultis 2.

6.2.1.3. Request Workflows

The Request Workflow Web Service is deployed with every Java-based Server and
supports request (approval) workflows. It allows for creating a new request workflow,
updating its state, especially performing approval, and suspending and resuming a
workflow. It is hosted in the embedded Tomcat Web Container.

78

A special job called Request Workflow Timeout Check (previously named Full Check)
regularly checks timeouts of request workflows and their activities. If it detects a timeout, it
sends a request so that the workflow engine updates the workflow state and, for example,
terminates the activity or workflow. This timeout check must run on exactly one server per
domain. It is configured in the Connectivity View group of Identity Manager by navigating
to a Java-based Server and then selecting Manage 1dS-J Configuration from the context
menu.

6.2.1.4. Workflow Engine and Connectors

The workflow engine controls provisioning real-time, maintenance as well as request
workflows for approval. Workflows consist of activities; the workflow engine starts these
activities and controls their maximum lifetime. In case of timeout, the workflow engine is
responsible for retrying activities after temporary errors, for escalation handling and for
properly setting the operational status of both activities and workflows.

Workflow activities of provisioning and maintenance workflows are realized by
components built on the connector framework. In addition to the connectors that
implement the interfaces to external systems, the important components of the
framework are:

- The scheduler, which allows you to schedule workflows for a domain defined by
schedules. In this case, the Java-based workflows are not run as real-time workflows
triggered by events. They retrieve the necessary data from search definitions. Note that
exactly one scheduler per Identity domain must be active. Configure it in the
Connectivity View group of Identity Manager by navigating to a Java-based Server and
then selecting Manage IdS-J Configuration from the context menu.

- The controller (called the join engine in Provisioning workflows), which is the central
component that controls the behavior of a job: it reads configuration, initiates the
components and calls the connectors.

- The DirX Identity connectors, which handle search and update operations with the
external connected systems or internal event channels to other activities, audit or other
adaptors. These ready-to-use connectors map internal SPML requests and responses to
connected system API calls.

Activities of request workflows can be realized based on the connector framework, but are
most often independent of it and can even be completely proprietary. They can either be
automatic or people activities. The workflow engine is responsible for setting the
appropriate states for a people activity and start notification jobs when e-mail is to be sent
on start or end of an activity.

6.2.1.5. Handlers

Java-based Server handlers provide common functionality to all Java-based Server
components. Handlers are available for:

- Logging, to capture log entries and write them to configurable log files. Several log
handlers can be set up with individual log levels and output destinations.

- Auditing, to receive audit entries via the audit channel and write them to a destination.

79

The default audit handler writes to files. A IMS audit handler sends audit messages to
the DirX Audit Message Broker. See "Auditing" below on how to configure them and
install the JMS audit handler when necessary.

- Statistics, to store the workflow statistics in the Connectivity Configuration (database).

6.2.2. Server Processes

With the DirX Identity Configuration (Wizard), you can set up one or more Java-based
Identity Servers (IdS-J) per system. Each server runs as a system process starting threads as
needed; for example, to process event-based workflows.

You can run one or more Java-based Servers on the same host for the same Identity
domain or for different ones.

6.2.2.1. Starting the Processes

On Windows, the Java-based Server processes normally start automatically when you boot
your system. They start independently of each other.

The process name for IdS-J on Windows is ids-j.exe.

On Linux, the servers start automatically if you have followed the instructions in the DirX
Identity Installation Guide. In both cases, the process name is java.

On start-up, the Java-based Server attempts several times to connect to the directory
server that holds the Connectivity configuration. If unsuccessful, it does not proceed; you
must re-start the IdS-J Server after the directory server is accessible.

6.2.2.2. Configuring the Processes

The Java-based Server is controlled by the following initialization (*.ini) and password files:

install_path/ids-j-domain-Sn/bin/idmsvc.ini (initialization file for Windows)
install_path/ids-j-domain-Sn/bin/runServer.sh (initialization file and start script on Linux)
install_path/ids-j-domain-Sn/private/password.properties (password file)

6.2.2.2.1. Java-based Server INI File Parameters

The Java-based Server (1dS-J) initialization file install_path/ids-j-domain-Sn/bin/idmsvc.ini
contains two sections: Section [Settings] and Section [vmargs]. This topic describes the
parameters contained in these sections.

Section [Settings]
This section specifies the following general parameters for the Java-based Server:

- service - the name of the service.
- displayname - the display name of the service.
- description - the description of the service.

- vm - path to the Java virtual machine.

80

- mainclass - the main class to start with.
- workingdir - the working directory (default:.)

- autostart - whether or not the service starts automatically (default: TRUE):
FALSE - manual startup
TRUE - automatic startup

- timeout - the timeout value in seconds after which the Service Control Manager
assumes a serious error and stops the corresponding service (default 240; relevant for
Windows only).

- dxi.java.home.bin - the path to the bin folder of the JRE (Windows only).
Section [vmargs]

This section specifies the Java virtual machine arguments for the Java-based Server. Only
the parameters of interest to the administrator are noted here; changes here can harm the
Java-based Server. (Note that not all arguments are described here, which means that the
numbers given on the left side of the list below may vary in your installation):

- 0=-Xmx2G - the amount of memory used.
Change this parameter if you need more heap space.

- 4=-XX:+HeapDumpOnOutOfMemoryError - dumps a heap file on OutOfMemory.
Delete this line if you do not want heap files to be written.

- 16=-Dcom.sun.management.jmxremote.port=40005
17=-Dcom.sun.management.jmxremote.rmi.port=40006- JMX ports. Note that IMX
uses two ports. In the configuration wizard, you define only the first port number. The
second is then the first number plus one.

For JMX access, several other defines are set. Of interest is probably just the definition of
supported TLS protocols (see the line with
Dcom.sun.management.jmxremote.ssl.enabled.protocols)

. 25=-Djava.security.auth.login.config=*path_to_JavaServer/bin/jmx|dap.cfg* - LDAP
authentication is enabled by default for IMX access.

- 40=-DIDM_LOGFOLDER=*path-to-log-folder - the path to the folder for all the log files
of the 1dS-J (the default is *../logs). Note that the folder must exist.

If SSL is globally configured, then keystore and keystore password parameters are
activated.

The INI file is used on Windows only.

6.2.2.2.2. Java-based Server Startup Script on Linux

On Linux, the Java-based Server is started via the runServer.sh script. This file is also the
configuration file for the process. It contains the same parameters as the [vmargs] section
(see the section "Java-based Server INI File Parameters" for details).

6.2.2.2.3. Java-based Server Password File Parameters

The Java-based Server (IdS-J) reads its passwords from the files:

81

install_path/ssl/password.properties
install_path/ids-j-domain-Sn/private/password.properties

These files contain all passwords and PINs necessary for correct operation. The first file
contains the password and PINs necessary for the entire DirX Identity installation, while the
second file contains the domain-specific passwords and PINs.

During startup, all DirX Identity servers require reading the relevant configuration
information from the Identity Store. For authentication, passwords and PINs must be
present in the server configuration files. The servers can read passwords or PINs in clear
text or in encrypted format.

If you enter a password or PIN in clear text, the server reads it during the next startup,
encrypts it and writes it to the configuration file. From now on, the password and PIN
information is no longer readable. If you are in doubt that the right password or PIN is set or
if you need to set a new password or PIN, simply replace the encrypted value with the clear
text value. During the next server startup, the password or PIN value is encrypted again.

In the install_path/ssl/password.properties file, the following parameters are available:
- pin - the PIN for the current private key for decryption of attributes (the default is 1234).

Is required if encryption mode is enabled.

- previousPin (optional) - the PIN for the previous private key for decryption of attributes.
This allows smooth transition during key exchange / upgrade. The server is able to
handle both old encrypted values (encrypted with the previous key) and new encrypted
values (encrypted with the current key).

- keystore (optional) - the password for the SSL key store.
- truststore (optional) - the password for the SSL trust store.

In the install_path/ids-j-domain-Sn/private/password.properties file, the following
parameters are available:

- domain - the password for the user account which is used to access the configuration
information in the LDAP directory.

The default user entry for the Connectivity domain is
cn=DomainAdmin,cn=*domain,dxmC=Users,dxmC=DirXmetahub*. You
can change it in the file:

install_path/ids-j-domain-Sn/bin/bindcredentials.xml

a The default user entry for the Provisioning domain is
*cn=DomainAdmin,cn=*domain. You can change it in

0 the file:

install_path/ids-j-domain-S
n/bindprofiles/private/domain.xml

82

- signaturePin (optional) - the PIN that is necessary for system client signature. The
related certificate must be present in the Connectivity configuration at the
DomainAdmin account under the Users tree (only visible in the Data View).

character. For example:

0 To leave a password empty, comment out the line with the hash tag (#)
#previousPin=

6.2.2.3. Starting the Java-based Server in Suspended Mode

You can start the Java-based Server in suspended mode. This mode avoids immediate
action (for example, workflow starts) directly after startup. Note: Using this mode is only
possible if you start the server from a command line. You cannot use this mode if you start
the server as service.

After startup of the server, you can control the components via the Web Admin interface.

You can define the startup parameters either directly in the command line of the
runServer.bat (or .sh) file, or you can define the parameters in an extra file. In this case, you
must define this file in the relevant command line of the runServer.bat (or .sh) file:

"%java_exe%" ... -cfg config.cfg

Then you must provide the parameters in this file:
install_path/ids-j-domain-Sn/bin/config.cfg
These options are available:

- server.suspend=true
Starts the server but stays in suspend mode. Use this mode if you need only monitoring
access to the C++-based Server.

- extension.load=-all
Prohibits loading configuration extensions; for example, to handle request or approval
workflows.

You can define specific extensions not to be loaded. These extensions are available:

com.siemens.idm.requestworkflow
com.siemens.idm.realtimeworkflow
com.siemens.idm.domcfg
com.siemens.idm.backup

If you define extensions.load=-com.siemens.idm.realtimeworkflow then the real-time
workflow engine is not loaded.

adaptor.load=option
Lets you define which adaptors will be active after startup.
These options are available:

83

-all - disables all adaptors

+all* - enables all adaptors

-adaptor - disables the adaptor specified in adaptor
+adaptor - enables the adaptor specified in adaptor

Example:
adaptor.load=-all +DeadlLetterQueue +EntryChangelListener +MailListener

Disables all adaptors and enables only the internal event listeners (no external events
are processed).

- adaptor.suspend=option
Allows suspending all or parts of the available adaptors after startup.
These options are available:

\+all - suspends all adaptors

-all - enables all adaptors

-adaptor - enables the adaptor specified in adaptor
+adaptor - disables the adaptor specified in adaptor

Example:
adaptor.suspend=-all +DeadLetterQueue

Enables all adaptors besides the dead letter queue.

Do not forget to reset the parameters in the runServer file; otherwise, the server will always
start in this mode.

6.2.3. Recovery

Standard operating system features are used to implement recovery (watchdog
functionality) on the supported platforms.

- On Windows, the standard recovery features for services are used. See the Recovery tab
of the corresponding service.

- Due to missing standard features, there is no watchdog mechanism available on Linux.

6.2.4. Auditing

The Java-based Server provides a consistent mechanism to handle audit logs produced by
workflow activities. Audit is a type of long-lived history data. It allows an auditor to review
business events. Audit log entries are self-explanatory. They carry all data that is necessary
to understand the event and the result.

Samples of auditable events are:

- A password has been modified successfully or the modification failed.
- An approval workflow has been started.

- Someone has approved a user-privilege assignment.

84

Read more about the format of the produced audit messages in the section "How Audit
Trail Works" in the DirX Identity Provisioning Administration Guide.

The Java-based Server supports two audit handlers. Only one of them should be active at a
time:

- The file-based audit handler.

- The JMS-based audit handler. If this one must be used, it first requires some manual
installation steps. See the DirX Identity Installation Guide for details.

For configuring these audit handlers see the context sensitive help of DirX Identity
Manager.

6.2.5. Statistics

The Java-based Server provides the following kind of statistical data:

- Tables of counters held in server components or produced by workflows. They can be
viewed by the Web administration of the server (Web Admin).

- The statistics of each workflow stored in the LDAP configuration database. You can view
this information with the DirX Identity Manager’'s Monitor View.

Read more about the statistics feature of the Web Admin interface in the section "Using
Web Admin" in the DirX Identity User Interfaces Guide.

DirX Identity collects another set of statistics data and stores them in the LDAP
Connectivity configuration. In DirX Identity’'s Connectivity view, select the Monitor View and
open the Event based folder. You will find an entry for each workflow run. It contains the
start and end time of the workflow, a table of statistical counters and a details list in the
remark field. The statistic counters comprise the operations add, modify, delete and search
and their result. The list below shows a brief summary for each request, containing the user
whose password required changing and the result. This information is deduced from the
audit log of each workflow. It is only visible if auditing for a specific workflow is enabled.

6.2.6. Logging

When the Java-based Server starts for the first time, default log levels are applied. They
ensure that error and warning logs of all components are written.

The log files are stored in the logs folder of the server's home directory. You can configure
how many records are written in one log file. Log file names start with server* and contain
the timestamp.

You can view the log files from the file system using a standard editor such as Notepad or
you can use the Web Admin tool. From the main menu, select View log files in the
Logging section. The system presents the current log files.

To set and change log levels, use the Web Admin tool.

Log levels are specified for Java classes or packages. The system supports you by

85

presenting a list of logical components (server, several adaptors, connectors, ...) from which
to choose. You can add class or package names by yourself in additional lines to specify
your individual range of components to log.

6.2.7. Naming Schemes

Using multiple Java-based Servers for multiple domains requires an easy-to-understand
naming scheme for service names, LDAP entry configuration names and file folder names.

6.2.7.1. Java-based Server Object Naming

The Java-based Server objects in the Connectivity view group (Connectivity » DirX Identity
Servers » Java-based Servers) follow this naming scheme:

domain-Sn-hostname
where

domain

is the domain for which this server is running.

Sn

is the server number (counts per domain).

hostname
is the host name where this server is running.

Example for a server object:

My-Company-S1-myhost

6.2.7.2. Service Naming

The services on Windows use this naming scheme:
DirX Identity 1dS-J-domain-Sn version

where

domain
is the domain this server is running for.

Sn

is the server number (counts per domain).

version

is the version.
Example for a server:

DirX Identity IdS-J-My-Company-S1 V8.3

86

6.2.7.3. File Folder Naming

The file folders in the installation area use this naming scheme:
ids-j-domain-Sn

where

domain

is the domain for which this server is running.

Sn
is the server number (counts per domain).

Example:
ids-j-My-Company-S1

Note that there is a folder ids-j.org which is a template used for creating new server
connector frameworks. Do not change this folder and its content!

6.2.8. Resource Families
Use resource families to control the number of threads within a Java-based Server.

Each activity of a real-time or a request workflow is associated with a resource family: it
requires that resource family. Java-based Servers provide resource families. An activity can
only be processed on servers that host the required resource family.

Therefore, make sure you assign each relevant resource family to all of your Java-based
Servers.

For each Java-based Server you must configure the number of threads per resource family.
This allows you to influence to some extent the load distribution of certain workflow types
between Java-based Servers: the slower a Java-based Server processes messages the fewer
messages it will receive.

Use DirX Identity Manager to assign resource families and threads to a Java-based Server:
select the server configuration entry in the Connectivity view (Configuration - DirX Identity
Servers -» Java Servers - domain), click the Resource Families tab, select the active
resource families and then set the number of threads (two by default). Restart the server to
make the changes effective. You can use Web Admin to check the configured number of
threads.

6.2.8.1. Understanding the Pre-Configured Resource Families

DirX Identity comes with a set of pre-configured resource families. You can use these
resource families, add additional ones or exchange them completely with your set of
resource families. To keep it simple, we recommend using the default resource families and
then extending them as needed.

87

System-specific resource families (fixed values, not customizable) include:

scheduler - the internal scheduler of the server, which handles timeout situations and
triggers retry of activities.

workflowengine - this resource family is reserved for the workflow engine itself, which
starts and controls workflow activities.

workflowscheduler - the scheduler for real-time workflow schedules.

For each target system type, there is one default policy, for example ADS, LDAP, JDBC,
Notes, SPMLvVI1, and so on.

Some others are for request and maintenance workflows:

Apply - default thread for request workflow activities to run processes that instantiate,
modify and delete object changes.

Calculate - default thread for request workflow activities to run processes that calculate
something (for example a GUID).

Event_Maintenance - default thread to handle event-based processing activities.

Mail - default thread to handle activities that send mail requests (for example all error or
notification activities).

Request_Workflow - default thread to handle Java-based join activities of provisioning
workflows that provide manual provisioning via request workflows.

6.2.9. IMX Access to the Java-based Server

By default, IMX access to the Java-based Server needs password
authentication.Authentication is performed by passing the user credentials to an
LdaplLoginModule which tries to bind with these credentials to the Connectivity LDAP
server.When the bind is successful, the JMX access is successfully authenticated.

Per configuration, the LDAP user is cn=DomainAdmin,cn=*
domain,dxmC=Users,dxmC=DirXmetahub*.

On the JMX client side, you only need to give the “DomainAdmin” as username and the
appropriate password.This is configured in the file jmxldap.cfg in the bin folder of the Java-
based Server.

If the SSL flag is activated in the system-wide configuration, JMX access is also secured by
SSL.In this case, non-SSL access is not possible.

If SSL is configured for the Connectivity store, the authentication process to the LDAP
server is also performed using an SSL connection.In this case, you need to make sure that
the LDAP server's root CA chain certificates are in the cacerts file of the Identity Java
environment.

88

6.3. Managing the C++-based Server

This section describes how to manage the C++-based Identity Server (IdS-C), including how
to:

- Install, start, and configure C++-based server components

6.3.1. Server Components

The C++-based Identity Server (IdS-C) consists of a set of services that represent the
required functionality.The main components start Tcl-based workflows according
schedules and control their activities.A status tracker runs on exactly one IdS-C Server for
which the dxmRunStatusTracker attribute is true.This status tracker is responsible for
updating the status of Tcl-based workflows in the Monitor area of the Connectivity
database.

Each server is represented by a service on Windows or a daemon process on UNIX.
On Windows:

- DirX Identity IdS-C version
On UNIX:

- DirX Identity IdS-C version

DirX Identity 1dS-C version must run on each machine on which you have performed a C++-
based Server installation.

All DirX Identity components communicate with each other using TCP/IP based protocols:

- Data is read from and written to the configuration database in the LDAP directory (by
default, port 389)

- Messages are transferred between components via the Messaging service.

6.3.1.1. Starting Up the Server Components

The services that make up the C++-based Server normally start automatically when you
boot your system:

The DirX Identity 1dS-C service starts independently from the DirX Server service.

- Service name on Windows: DirX Identity IdS-C version
- Process name on Windows: dxmsvr.exe

- Process name on UNIX: dxmsvr

- Controlled processes on Windows: dxmmsssvr.exe

- Controlled processes on UNIX: dxmmsssvr

The shell script install_path*/etc/S99dmsvr* starts the DirX Identity 1dS-C service on Linux

89

when the system runs in multi user mode.
The service uses the following configurable polling mechanism during start-up:

- Try to connect to the LDAP server. If this fails, try again the number of specified steps
after the specified time in the initialization file of the C++-based Server.

- If there is no access to the LDAP server, the service start is aborted.

- When the bind to the LDAP server is successful, the necessary information is read from
the Connectivity configuration database (object Messaging Service in the Expert View:
Configuration » Messaging Services).

If the DirX Identity |IdS-C Service detects that a C-based Server crashed, the service restarts
the server. Permanent threads (Status Tracker and Scheduler) running in the C-based
Server are also checked regularly by the Keep Alive mechanism and restarted
automatically if they are not responding. You can check the threads with the Get Server
State command for each individual server.

You can use the following parameters in the [settings] section of the C-based Server
initialization file (dxmmsssvr.ini) to define the polling parameters for each machine that
runs a C-based Server:

- timeout - the time between two polling cycles (the default is 45 seconds).

- repeat - the number of retries to perform (the default is 10 times).

By default, DirX Identity tries to connect 450 seconds to the LDAP server.

6.3.1.2. Configuring the C++-based Server

The C++-based Server is controlled by the initialization file dxmmsssvr.ini, which is located
in the install_path/server/conf subdirectory.

The parameters in the [settings] section are necessary for the registration of the server in
the connectivity configuration database and for consistency check during startup:

- dnServerName: the name of the C++-based Server’'s configuration object in the
connectivity configuration in the folder DirXmetahub Servers (default name: main)

- host: the name of the server on which this C++-based Server instance runs (for example:
abcl23.myCompany.de or 123.54.76.11).

These two parameters are used to verify that the system is consistent (the right server
registers to the correct server LDAP entry). If you change these parameters by hand, you
must also change the corresponding parameters in the configuration database. The check
is defined as:

The field dnServerName in dxmmsssvr.ini file is equal to the attribute dxmDisplayName of
the C++-based Server object (the displayed name) and

the field host in dxmmsssvr.ini file is equal to the attribute dxmServerName of the service
object to which the C++-based Server object points.

For the host field check, examine the link to the Service object of the relevant C++-based

90

Server object. Please note that relevant for this field is the Server Name field in the Service
object, not the IP Address field.

If this check fails, the next start of the C++-based Server will faill Correct either the LDAP
object or the dxmmsssvr.ini file.

- cconnserver - whether the connector server is started (default is 0):
0 - Connector server will not be started (no connectors are running).
1- Connector server is started (configured, active connectors are running).

- timeout - the time between two polling cycles to connect to the LDAP server (the
default is 45 seconds).

- repeat - the number of retries to connect to the LDAP server (the default is 10 times).

- encryptionmode - whether the server should use data encryption or not (the default is
0, which means no data encryption). Set this parameter to 1if the server should use data
encryption. In this case set the pin parameter, too.

- server_restart - the number of server restarts the watchdog performs during startup.

- IlgnoreSaveStatusinfoError - whether or not errors in saving activity status info results
are ignored (the default is 0, which means that errors are not ignored). If set to 1, errors
from sending activity status info are ignored and the normal workflow execution
continues.

The parameters in the [metadir] section are the parameters for the LDAP bind to the
configuration directory:
- server - the name of the directory server (for example: abc123.myCompany.de).

- user - the distinguished name of the account which is used by the C++-based Server to
access the LDAP directory (for example: cn=server_admin, dxmC=dirXmetahub).

- pwd - the password for this user account. See the section Password Handling for more
information how to set passwords.

- port - the LDAP server port (the default is 389 for non-SSL access).

- ssl - whether or not SSL access to the LDAP server will be used (ssl=1). The default value
is ssl=0. See the server SSL connections topic for more information.

- cert-db-path - the path to the cert8.db file (only used when ssl is set to true). The
default setting is empty.

The PIN for the current private key for decryption of technical bind
passwords and attributes (and the previous PIN) and the key store
password (for the SOAP secure key store) are maintained in the file
install_path*/ssl/password.properties*.

6.3.1.3. Changing the Service Login Account (Windows)

On Windows only, you can change the account that the service uses to log on.To change it,
run the Initial Configuration with the C++-based Server step again and change the account.

91

6.3.1.4. Server Password Handling

During startup, all DirX Identity servers require reading the relevant configuration
information from the Identity Store.For authentication, passwords and PINs must be
present in the password configuration files.The servers can read passwords or PINs in clear
text or in encrypted format.

If you enter a password or PIN in clear text, the server reads it during the next startup,
encrypts it and writes it to the configuration file.From now on the password and PIN
information is no longer readable.lf you are in doubt that the right password or PIN is set or
if you need to set a new password or PIN, simply replace the encrypted value by the clear
text value.During the next server startup, the password or PIN value is encrypted again.

6.4. Distributed Deployments and Scalability

This section describes the powerful capabilities of DirX Identity for setting up a highly
distributed environment and supporting scalability.

Components that can be distributed include:

- The LDAP server(s) with the DirX Identity domains and the Connectivity Database.

- One or many Java-based Servers.Several such servers can be installed on the same host
system - even several associated with the same Identity domain.

- Message Broker instances on multiple servers.

- One or many C++-based Servers. At most one such server can be installed on a single
host system.

- Other components, such as Business User Interface, Web Center, Identity Manager and

the Web Services (both SOAP and REST).These components can be distributed freely.

Except for the commmunication protocols to the target systems, the required
communication protocols are:

- LDAP for access to the LDAP server(s).

- TCP/IP for communication from and to the Message Brokers.

- SOAP/HTTP to access the request workflow service.

- SOAP/HTTP to the SPML Provisioning Service.

- HTTP to the REST service.

- JMX for the supervisors and Server Admin / Web Admin.
The configuration of the distributed server deployment is stored in the LDAP server with

the Connectivity Database. The DirX Identity components Manager and Server Admin give
an overview and allow changing these settings.

In addition to server and system information, the Connectivity Database stores
configuration data on maintenance and Provisioning workflows and their schedules as well
as their monitoring data.

92

While multiple DirX Identity domains can be stored in the same LDAP server, this is not
possible with multiple Connectivity Databases: There can be at most one in a LDAP server.
This results in the following deployment options for multiple DirX Identity domains:

- Each domain is associated with its own Connectivity Database. As a result, you need one
LDAP server per domain, which also contains the Connectivity Database.
- Several domains are associated with the same Connectivity Database, which allows you

to store all in the same LDAP server.

The next sections present different typical deployments for DirX Identity and their
corresponding strengths and weaknesses, including:
- "All-on-one-machine" deployment

- Distributed deployment of Java-based Servers with Java-based provisioning and
request workflows

- Distributed deployment of C++-based Servers with Tcl-based workflows and issues with
using a shared file system in distributed deployments.

6.4.1. All on One Machine

The deployment for a DirX Identity domain requires as a minimum the following
components:

- The Connectivity Database.

- The DirX Identity domain.

- One Java-based Server with the Request Workflow Timeout Check, all adaptors
activated and the scheduler for the Java-based workflows.

- One C++-pbased Server controlling all Tcl-based workflows and the status tracker.

- One Message Broker.

Note that one Java-based Server is associated with one DirX Identity domain and cannot
serve multiple domains. But one C++-based Server can run Tcl-based workflows for several
DirX Identity domains.

In the simplest installation, all of these components can be deployed to the same host
system. This variant is the easiest to set up and maintain.

6.4.2. Distributing Java-Based Servers

As a Java-based Server can serve only one domain, you need at least as many Java-based
Servers as domains: at least one per domain.

You can also have multiple Java-based Servers for one domain. This configuration helps you
to distribute load: request, provisioning and event-based workflows.

Read the section about naming schemes to understand how services, LDAP configuration
objects and file folders are structured.

93

6.4.2.1. Distribution Criteria

A Java-based Server can run several types of workflows: event-driven and scheduled
workflows for provisioning, event-driven workflows for entry changes, scheduled workflows
for maintenance and request workflows for approvals.

All of them can run on every server and all of them can run in parallel on more than one
server.

To run workflows of a certain type on a Java-based Server, you must activate the
corresponding adaptors. A workflow is only started via a message. The messages contain
the events to trigger, for example, the provisioning of an account or group and the requests
to start a workflow by schedule or manually from Identity Manager. JMS adaptors read the
messages from the specific queues of the Message Broker and start the appropriate
workflow.

Here is a list of workflow types, associated adaptors and queues. For a short description of
the queues, see the section “Managing the Message Broker” » “Using Messages in DirX
Identity” » “Queues of the Java-Based Server” in this guide:

Workflow Adaptor Queue (without the domain prefix)

Type

Provisioning Provisioning Request dxm.request.provisiontots._default
Listener

Provisioning Request Start dxm.request.workflow.provisiontots._default
Workflow Listener

Import to Identity Listener dxm.request.importtoidentity._default

Password Password Change Listener dxm.event.pwd.changed
Changes
Account Password Change dxm.event.SvcTSAccount.pwd
Listener
Set Account Password dxm.setPasswordRequest._default
Listener
Request Request Workflow dxm.requestworkflow.workflowengine
Workflows WorkflowEngine Listener
Request ActivityTask dxm.request.activityTask
Listener
Mail Mail Listener dxm.notify.mail
Text Message Listener dxm.notify.sms
Maintenance Entry Change Listener dxm.event.ebr
Entry Change Start dxm.request.workflow.ebr

Workflow Listener

You can also run workflows for a selected connected system on dedicated servers. For
details on how this works, see the section “Separating Traffic for Selected Connected

94

Systems”.

Some components must run on exactly one server per domain; these are the Java
scheduler and the Request Workflow Timeout Check (also called FullCheck).

The Java scheduler starts workflows by sending a start message to the Message Broker.
There are two special adaptors responsible for consumption of these messages: the Entry
Change Start Workflow Listener and the Provisioning Request Start Workflow Listener. The
Entry Change Start Workflow Listener needs to be co-located with the Entry Change
Listener; the Provisioning Request Start Workflow Listener needs to be co-located with the
Provisioning Request Listener.

Within a Java-based Server, resource families control how many threads a workflow - more
precisely, an activity within a workflow - can use. To some extent, this also influences the
number of events the server processes. The more threads you reserve for a resource family,
the more events or workflows can be processed by that server and the more events it
obtains from the Messaging service.

Several Java-based Servers - of the same domain or of different ones - can run on the same
physical system. The number of CPUs determines whether this makes sense: the more
CPUs there are, the more threads can run in parallel.

6.4.2.2. Configuring One Java-based Server per Domain

The simplest deployment is to run one Java-based Server per domain. This server then runs
the Java scheduler, all real-time and all request workflows.

When one configuration database covers several provisioning domains, then you must set
the flag Include domain in topic at the corresponding domain object.

This setting forces the JMS clients to include the domain name into the queue and topic
names. Especially JIMS adaptors in a Java-based Server only read from queues whose
names start with their domain name.

In the Connectivity Database, follow the wizards and store the schedules, workflows, jobs
and connected directories in domain-specific folders. A Java-based Server only loads
workflows from its associated domain folder.

6.4.2.3. Configuring Multiple Java Servers per Domain

To set up multiple Java-based Servers per domain:

- Run the configurator (either Configuration or Initial Configuration).
- Define the domain in the Domain Configuration step

- Select Create a new Java Server from the drop-down list of the Server to update or
create field of the Java-based Server step.

- Define the relevant parameters. Make sure you use free ports.
- Repeat this step for additional Java-based Servers you want to create.

- Start DirX Identity Manager (Connectivity view group) and select Expert View.

95

- Open Configuration - DirX Identity Servers » Java Servers » domain. You should see all
your configured server instances and if you open them all movable adaptors.

- Select Manage IdS-J Configuration from the context menu of a Java-based Server
node.

- Assign the movable adaptors, the scheduler and the request workflow processing to the
servers. Deactivate unused adaptors.

- Click OK to store the configuration or Cancel to abort it.
- Restart all Java-based Servers to load the changed configuration.

- Use Server Admin to check that the adaptors are configured correctly.

6.4.3. Separating Traffic for Selected Connected Systems

You can separate the traffic for synchronizing selected connected systems completely from
the synchronization of other connected systems. It is possible to dedicate the provisioning
of a target system to one or more Java-based Servers and to separate threads within a
Java-based Server.

Reasons for such a configuration can include:

- Separating the traffic for target systems with many events from others
- Separating slow target systems from others
- Running workflows for a specific target system behind the firewall

- Support for file-based workflows where the files to import or export are only accessible
from a dedicated system

- Always running workflows for one target system on the same server for easier problem
analysis

- Support for the DirX Audit History synchronization workflows that are not associated
with any target system

Within a Java-based Server, the threads for processing workflows for such selected
connected systems are decoupled from those processing other connected systems. So
even if you have only one Java-based Server deployed, the provisioning of a slow target
system does not slow down the provisioning of the other target systems.

Note that this feature can also be applied to connected directories that are not associated
with any target system. Prominent examples are source systems from where entries,
namely users are imported to the Identity Store. Another example is the DirX Audit History
Database with its synchronization workflows.

To assign a target system or a cluster of target systems to a Java-based Server, assign the
corresponding connected directory (a cluster has only one connected directory) to the
server(s):

- In DirX Identity Manager’'s Connectivity view group, select Expert View.

- In the folder Connected Directories, select the connected directory. Open the tab
Connected Directory.

96

- In the section Associated Server, select one or more Java-based Servers.

- If you want to have more than one thread processing provisioning requests for this
connected system, enter the number in the optional Listeners per Target System. The
default is 1. Note: this number applies only to the queues dxm.request.provisiontots
and dxm.request.importtoidentity (see below). For processing of password changes
and for running a complete validation or delta synchronization, one thread per queue
should be enough. As an exception, if the connected directory has no associated target
system, the number of threads is applied to the queue
dxm.request.workflow.provisioning. In this special case, it is possible to run multiple
full or delta synchronization workflows in parallel.

To activate this configuration, either:

- Restart the servers or

- Select each server in Configuration - DirX Identity Servers » Java Servers and then
select Load 1dS-J Configuration from the context menu.

The servers use the following queues:

domain.dxm.request.provisiontots.target system identifier
domain.dxm.request.workflow.provisioning.target system identifier
domain.dxm.setpasswordrequest.target system identifier

domain.dxm.request.importtoidentity.target system identifier

If there are target systems associated with the connected directory, the target system
identifier is built using the attributes type, cluster and domain of the target system in
lowercase: type*.cluster.domain. For a target system that is part of a cluster, the domain
part is empty and the target identifier is built as type.cluster. For example, an Active
Directory with a forest name “Europe” and domain “Germany” has the identifier
*ads.europe.germany. If this target system is part of a cluster, the identifier is ads.europe.

If there are no target systems associated with the connected directory:

- Messages for starting a workflow providing its DN go to the queue
domain*.dxm.request.workflow.provisioning* and the target system identifier is built
using the type and the display name of the connected directory in lowercase: type
* displayname. For example, a file with the display name “LDIFfile” has the identifier
*Idif.Idiffile.

- For messages to import a given entry to Identity Store, the queue name
domain*.dxm.request.importtoidentity* is extended with the whenApplicable section of
the workflow identifier. For example, a workflow with type “Ildap”, cluster “import” and
domain “userldap” has the identifier Idap.import.userldap. This allows running
workflows to import users and business objects from the same source directory in
separate threads.

Please avoid using special characters in type, cluster, and domain names as they are used
W uxn

to build queue names dynamically. Especially avoid using the following characters: “.”, “*",
u>n' u?n, u\n’ u/n'

97

The adaptors for the queues domain*.dxm.request.provisiontots®,
domain*.dxm.request.workflow.provisioning* domain*.dxm.setpasswordrequest*, and
domain*.dxm.request.importtoidentity* dispatch the messages to either the appropriate
target system specific queue or to the respective default queue (for example,
domain*.dxm.request.provisiontots._default*). For information about which servers process
the default queue messages, see the section “Distribution Criteria”.

These dispatchers and the adaptors for the target system-specific queues follow a behavior
that is different from those for the normal provisioning queues:

- They do not store the received messages in their own file repository and therefore need

no special handling for high availability. Instead, the adaptors process each message
immediately and acknowledge it to the Message Broker only when processing is
finished. In case of breakdown, the not-yet-acknowledged messages are still available in
the Message Broker and are delivered when the adaptor re-connects.

- They do not use the workflow engine. Instead, they perform the error handling on their

own. They pass the messages directly to the join activity of the workflow. If an error
occurs, they send the message again to the Broker with a delay according the
configured retry wait time. If that is not possible because the error is not considered
temporary or the retry limit is reached, the adaptor runs the error activity and sends the
message to the Dead Letter Queue.

You can monitor the dispatchers and adaptors both in WebAdmin and with tools like
Nagios using JMX MBeans.

With WebAdmin, select the following items in the left-hand tree:

- Provision Dispatchers - in the details view at the right, you'll see a table with the queues

the dispatchers listen to and the number of messages received and failed; that is, those
that could not be forwarded to the target queues.

- Provision TS Listeners - in the details view at the right, you'll see a table with the queues

target system-specific adaptors are listening to and the number of messages that have
been received and processed either successfully or not. Note that re-delivered
messages in case of temporary errors are only delivered to the same target system-
specific queue and not again to the queue on which the dispatcher is listening. So, they
are visible only in this view.

The object names of the IMX MBeans for dispatchers and target system-specific adaptors
start with com.siemens.idm:type=idsj and then identify the listener and the queue by the
parameters “topic” and “name™:

- Dispatchers - com.siemens.idm:type=idsj,topic=ProvMsgDispatcher,name=*queue,

where values for queue are *provisiontots, setpasswordrequest, importtoidentity and
workflow.provisiontots.

- Target system-specific adaptors -

98

com.siemens.idm:type=idsj,topic=ProvTSListener,name=*queue.target-system where
queue names are the same as for the dispatchers and target-system is in the format
type.cluster.*resource.

6.4.4. Distributing C++-based Server Components

In all configurations, we assume that we are handling a two-step Tcl-based workflow (a
workflow with two activities) that exports data from the Identity store and imports data into
Active Directory. Other types of workflows with only one activity (for example, an
LDAP2LDAP workflow) or with more than two activities can be discussed in a similar way.

We assume that all computers that belong to the DirX Identity domain

n must be time synchronized using operating system mechanisms.
Otherwise, scheduling conflicts or incorrect runs of a distributed workflow
can occur.

For the two-step workflow, the following typical configurations exist:

- All parts on central server

- Target activity distributed

- All parts on target server

As a minimum for running Tcl-based workflows, the following components are required:

- One C++-pbased Server (IdS-C). It contains the status tracker and a scheduler for Tcl-
based workflows.

- One Message Broker.

- The LDAP server storing the Connectivity Database and the identity domain (users,
accounts, groups, and so on) to be provisioned.

For understanding the discussions below, you should be aware of the following:

- A Tcl-based workflow is associated with a system, thus with the 1dS-C server running on
this system. The scheduler and the workflow engine in this server are responsible for
processing and controlling the workflow.

- Atarget activity is associated with a system and with the IdS-C server on that system.

This IdS-C server is responsible for processing and controlling this activity.

The following sections discuss recovery and safety mechanisms as well as security issues of
the different alternatives.

6.4.4.1. All Items on Central Server

In general, it makes sense to keep all components on the same machine to optimize
performance and minimize the dependency from network malfunction.

In this configuration, both the C++- and the Java-based Server together with the messaging
service, the workflow and all activities run on the central server.

The 1dS-C server reads workflow configuration data from the Connectivity Database. In the
first activity, metacp reads data from the Identity store via LDAP and stores the processed
result to a file. In the second activity, the ADS agent reads this file and writes to Active
Directory on the target machine via the native interface. The following figure illustrates this

99

configuration.
ActiveMC

MsgBroker

| ! JME Communication |
| LPAP Communication |

[ds-C
main

Activity X1 Activity X2
metacp ADS Agent

Identity
Store

; Central Machine : | Target Machine :

Figure 22. "All Items on a Central Server" Configuration
Strengths:

- All DirX Identity processes run on the central machine, making administration easy.

- The data file does not need to be transferred via the network. It is only visible on the
central machine. No shared file system needs to be set up and maintained.

- The target server (hosting Active Directory) does not require the installation of any DirX
Identity component.

- All coommunication except for the one to the target system API depends only on a
running central machine (especially all IMS messages can always be sent and
delivered). The availability of this machine defines the availability of the entire DirX
Identity domain.

Weaknesses:

- If all workflows run on the central machine, heavy load could be the result. Be careful to
distribute the schedules accordingly to avoid this situation.

- Data is transferred via the native target system API (in our example, the Active Directory
API). Security is determined by the features of this interface.

- You must ensure that the network connection is fast enough for the specific agent.

Recovery:

For the basic recovery features, see the section "Recovery and Safety Mechanisms".

100

If the central machine breaks down and is re-booted during a workflow run, it cannot be
guaranteed that the workflow will be restarted.

6.4.4.2. Target Activity Is Distributed

In this configuration, the Identity Servers with the messaging service, the workflow and the
first activity (metacp) run on the central machine.

metacp reads data from the Identity store via LDAP and writes the mapping result to a file.
The file must be transferred via the network or made accessible through a shared file
system. The ADS agent then reads it and imports the entries to Active Directory on the
target machine via the native interface. The following figure illustrates this configuration.

Active MGl

M=gBroker

| . JMS Cummunic&ﬁun— |
| LpAP Communication |

ldS-C ti[esc
main i ¢ | secondary

Figure 23. "Target Activity is Distributed" Configuration
Strengths:
- The target system interface is accessed on the target machine, so it is not visible on the
network.
- You can distribute load over the network.

- The configuration information that is transferred via the LDAP connection between the
different C++-based Servers can be secured via SSL.

- The scheduler runs only on the central machine and can therefore send the relevant
messages to start workflows to the messaging service. The messages are stored
permanently and are resent until the deviation time is reached.

Weaknesses:

101

- A C++-pbased Server and the ADS agent must be installed and maintained on the target

machine.

- The data file must be transferred via the network or made accessible via a shared file

system. In both cases data is visible on the network. Use the encrypted file transfer to
secure the file transfer over the messaging service.

- Shared file systems if used are an additional administrative task.

- If the network is not available, the C-based Server on the central machine cannot send

messages to the C-based Server on the target machine to start the agent. The workflow
will fail in this situation. It is started again at the next scheduled time or after a defined
retry interval.

- If the network is not available, the C++-based Server at the target machine cannot

deliver status information to the messaging service. This information is lost.

Recovery:

For the basic recovery features, see the section "Recovery and Safety Mechanisms".

If the central machine breaks down and is re-booted during a workflow run, it cannot be
guaranteed that the workflow will be restarted.

6.4.4.3. All Items on Target Server

In this configuration, the workflow and both activities run on the target machine, while the
LDAP server and the messaging service remain on the central machine.

metacp reads data from the Identity store via LDAP over the network and writes the
mapping result to a file. The ADS agent then reads this file and writes it to Active Directory
on the same machine via the native interface. The following figure illustrates this
configuration.

102

ActiveMC

MsgBroker

| WS Communication |

| LDAP Communicaion |

IdS-C ¥ ldS-C
main B secondary

: | [Activity x4 Activity 2
1 metacp ADE Agen

2+

A

Figure 24. "All Items on a Target Server" Configuration

Strengths:

- The target system interface is accessed on the target machine, so it is not visible on the
network.

- You can distribute load over the network.

- The data file does not need to be transferred via the network. It is only visible on the
target machine. A shared file system does not need to be set up and maintained.

Weaknesses:

- A C++-pbased Server, metacp and the ADS agent must be installed and maintained on
the target machine.

- If the network is not available, the C++-based Server on the target machine cannot send
messages to the messaging service to start the agents. The workflow will fail in this
situation. It is started again at the next scheduled time.

- If the network is not available, the C++-based Server on the target machine cannot
deliver status information to the messaging service. This information is lost.

6.4.4.4. Reduce File Handling in Status Area
In order to improve scalability, you should consider reducing status creation and file
handling of Tcl-based workflows. Identity Manager allows you to configure this on a fine-

grained basis:

- For each file, set the Save Mode and Copy to Status Area flags correctly to avoid

103

unnecessary saving of files, especially if the file size is large.

- Compressed status entries can reduce workload on the DirX Identity status tracker.
Choose an appropriate detail level of the Status Compression Mode option at the
central configuration object or at individual workflow objects. You can reduce the detail
level or completely suppress status entries for workflows that succeeded.

6.4.4.5. Setting Up a Shared File System for Distribution

You can run workflows in a distributed environment. By default, the file service
automatically handles all necessary file transfers when the activities run on different
machines. To enhance performance, you can set up shared file system information in the
relevant tab of the DirX Identity server object.

Follow this general procedure:

- Select the correct C++-based Server for each workflow and activity. The best method for
viewing and adjusting these parameters is to use the workflow structure view, which
you can access from the Global View and Expert View.

- DirX Identity detects necessary file exchange between activities automatically if the
connectivity is defined by channels.

- You cannot use the system account in a Windows environment to run your C++-pbased
Servers (they are not allowed to access network resources).Use other accounts that can
access network resources instead.

See also the section "Workflow Design Rules" for valuable hints about this subject.

6.4.5. Distributing Message Broker Instances

Multiple Message Broker instances can be spread over |dS-J and external servers.As only
one of these Message Brokers is accessible by the clients, this setup focuses on high
availability and not on scalability.

The important deployment configuration is related to the persistent message store, which
must be located on a shared drive to which all Message Broker instances have access.

6.5. High Availability and Recovery

DirX Identity has some built-in mechanisms that avoid error situations or help to recover
from them:

- The messaging service stores messages permanently in its messaging repository.

- The scheduler starts workflows at a defined time (at the latest during the deviation time
after the workflow start time).Thus, you can be sure that your workflow does not run at
times when it should not run.

- You can define a retry interval for each schedule.lf a workflow fails and the deviation
time is not over, DirX Identity restarts the workflow until it is okay.This feature can
overcome temporary errors (for example, the network is temporarily not available).

104

- All messages except for status tracker messages have a lifetime that guarantees that
actions are not started after the defined timeout of the workflow.The messaging service
deletes these messages automatically when they have timed out.

- The status tracker messages have no timeout set.Thus, all status messages that the
messaging service has saved are delivered when the network and the messaging
service are available again.

During runtime, DirX Identity produces and manages data in various repositories,
including:

- Repository of Message Broker - contains the messages that have not yet been
consumed by Java server adaptors; for example, password changes or events for real-
time provisioning.The repository should be located on a shared network device.

- Repositories of adaptors in Java-based Servers - contain the messages for which a
real-time workflow has been triggered, the Dead Letter Queue and - if High Availability
is enabled - also the backup of the monitored adaptors.

- LDAP directory - contains configuration and status data; for example, the current state
of a request workflow or information about the last delta run of a Provisioning workflow.

Note that the adaptors for target system-specific messages as well as the Resolution
Adapter don't have a repository.They process each message immediately and therefore can
acknowledge and thus delete it at the Message Broker automatically after it has been
processed.

When high availability is enabled, the adaptor repositories of one Java-based Server are
backed up in real-time from the backup adaptor in another, the monitoring Java-based
Server.In case of a system crash, either the monitoring supervisor automatically or an
administrator manually using Server Admin instructs the monitoring Java-based Server to
restore the messages from the repository backups and send them to the message broker.

In addition, or as an alternative, you can perform a scheduled backup of the Java-based
Server adaptor repositories; for example, every day.This helps you to restore the system
(recovery) or to set up the system at another location (disaster recovery).For configuration
of a joint backup workflow, see the section "Joint Backup Workflow" in the chapter
"Maintenance Workflows" in the DirX Identity Application Development Guide.Currently
you should set up a directory backup at the scheduled backup time by hand.

6.6. Diagnostic Information

The Java-based Server and the C++-based Server write valuable information during server
startup.

The servers write a diagnostic file during each start.It consists of two sections:

System Information - provides information about the hardware and operating system in
use.

Server Information - provides a set of server-specific properties and information.

105

This information is useful for determining the conditions of a specific server run; for
example, the one where an error occurred.

For detailed information, see the DirX Identity Troubleshooting Guide.

6.7. Managing Daylight Savings Time

All parameters that define dates in schedules within DirX Identity are stored in GMT format,
which means that a workflow runs at fixed world time.However, the display of these
parameters is in local time to allow fpr consistent handling of workflow starts in a
worldwide distributed DirX Identity scenario.

Working in a country that switches between summer and winter time (daylight savings
time) may require you to adjust the schedules so that they start in relation to fixed local
time.For this purpose, you can use the Tcl script shiftSchedules.tcl in the folder
install_path/tools/scheduling.

To adjust the timing:

- Customize the script's bind parameters before you use it, including the bind
password.We recommend that you operate on a copy of the script and protect the
script against unauthorized read/write access.

- If the clock has been moved forward one hour, adjust the schedules (-1 h) with the
command:*
metacp shiftSchedules.tcl backwards*

- If the clock has been set back by one hour, adjust the schedules (+1 h) with the
command:
metacp shiftSchedules.tcl forwards

- The script writes a log file shiftSchedules.log into the same folder in which
shiftSchedules.tcl is located.

- You can also call the script with an absolute path, for instance:*
metacp /home/metatest/myLocation/shiftSchedules.tcl forwards*

- Scripts that call this script must contain an initialization part that provides the correct
runtime environment for executing metacp.For UNIX, this is done by a directive in the
form install_path/.dirxmetarc.

- Use the operating system scheduler to start this script regularly when winter or
summer time begins.

6.8. Connector Frameworks

DirX Identity provides two types of connector framework that can be used to control
additional custom target system APIs:

- ldentity Connector Framework for Java - allows controlling event based
synchronizations to target systems that provide Java interfaces.

- Identity Connector Framework for C/C++ - allows controlling event based

106

synchronizations to target systems that provide C or C++ interfaces.

The following sections provide a high-level overview of each framework.For detailed
information, see the DirX Identity Integration Framework Guide.

6.8.1. Identity Connector Framework for Java

The Identity Connector Framework for Java provides a comprehensive set of functionality
that is built completely on Service Provisioning Markup Language (SPML). The following
figure illustrates its components.

Connector
Plugin

Controller

Connector
Interface

Figure 25. Identity Connector Framework (Java) Components

Its most important components are:
- Reader - allows for the transformation of external formats into SPML format (for
example, LDIF change files)

- Writer - transforms internal SPML format to external formats (for example, LDIF content
files)

- Controller - controls all other components

- Connector Interface - the only interface the Connector Plugin must recognize. Provides
all information in SPML format.

- Connector Plugin - the piece of custom code that maps the SPML internal format to

the API calls for a specific target system.

The following example explains how a connector could work (let's assume the connector is
waiting permanently for password changes):

- After startup, the controller gives control to the reader.

- The reader either reads events from a channel in event-driven workflows or from a file in
scheduled workflows. It transforms the data into SPML format; for example, a modify
reqguest to set a password.

- The controller takes the SPML request and passes it to the request transformer. This
component knows how to map the attributes in the SPML request and generates a

107

modified SPML request. The request transformer is optional.

- The controller takes this request and passes it to the connector plugin. The connector
performs the modification request with the delivered attributes.

- The connector returns an SPML response with the result of the operation.

- The controller passes this information to the optional response transformer, which
maps the information accordingly and returns it to the controller.

- The controller takes it and informs the writer to send the response. In an event based
workflow, the writer puts the response into the out channel of the activity. From there
the workflow engine passes it to the adaptor. A SOAP adaptor would return this to the
SOAP client. The message queue adaptor ignores it. In case of a batch like job, the
response writer typically stores the response into a file.

6.8.2. Identity Connector Framework for C/C++

The C/C++ Connector Framework is much simpler than the Java one. For example, it does
not have its own controller because it uses the Java-Connector Framework controller.
Nevertheless it provides a lot of helpful services that the connector plugin can use. The
following figure illustrates the framework components.

Adaptors

Wrapper

SOAP Configuration |
Listener _ Manager [T
=
Jus Transport i=] o
Listener Receiver b &, |, Connector
: "
SOAP Transport = 4L Plugin
i e Sender Sender U E
JMS
Sender

Figure 26. Identity Connector Framework (C/C++) Components
Its most important components are:
- Adaptors - Listeners and Senders allow communication with either JIMS-based or

HTTP/SOAP based components.

- A Configuration Manager transfers the configuration information from the connectivity
configuration to all components, including the connector plugin.

- Transport Receivers and Transport Senders are responsible for marshalling and un-
marshalling the SPML data from streams to C++ SPML objects and vice-versa.

- For each connector plugin, there is a Wrapper that loads and instantiates the plugin,
supplies the configuration data and relieves the plugin from internal communication
handling.

108

- A Logging component provides standard logging mechanisms

- Connector Interface - the only interface the connector plugin must recognize. Provides
all information in SPML format.

- Connector Plugin - the piece of custom code that maps the SPML internal format to
the API calls for a specific target system.

109

7. Managing the Connectivity System

This chapter describes how to manage:

- Administrative accounts
- Connectivity security
- Secure connections with SSL

- File handling mechanisms

7.1. Managing Administrative Accounts

DirX Identity uses a set of accounts for normal operation.The following figure provides an
overview of the most important accounts:

—p DomainAdmin (Provisioning)
....... » DomainAdmin (Connectivity)
= = » admin (Connectivity)

— . == server_admin (Connectivity)
e @A IMIN (TOmMeat, built-in)

Web
Center

Meta

Manager
9 Controller

Web
Services
JMX Web UNIX Web
Clients Admin Scripts Service

Clients
Figure 27. Connectivity Administrative Accounts
DirX Identity provides the following administrative accounts:

- ANYONE (Provisioning, not shown in the figure) - an account used only for self
registration because the user does not yet have an account.This account is used only by
the Web Center and has very restricted access rights.

Its distinguished name is: cn=ANYONE,cn=*domain
If you change its password in the database, don't forget to change it in Web Center's
*password.properties file, too.

- DomainAdmin (Provisioning) - the system account for a specific domain in your
Provisioning configuration. It is used by many components like servers, services, agents,

110

connectors and user interfaces.
Its distinguished name is: *cn=DomainAdmin,cn=*domain
The initial password is:; (the value entered during Initial Configuration)

- DomainAdmin (Connectivity) - the corresponding system account for a specific
domain in your Connectivity configuration. This account must use the same password
as the DomainAdmin account of the Provisioning configuration.

Its distinguished name is: cn=DomainAdmin,cn=*
domain,*dxmC=Users,dxmC=DirXmetahub

The initial password is: (the value entered during Initial Configuration for the
DomainAdmin (Provisioning))

- NoApprovalAdmin (Provisioning) - a special account that can be used by default for
assignment of privileges without approval even if the privileges are flagged for approval.
This account allows for defining privileges that must be approved manually. Services -
especially the Policy Execution service - can use this account to assign privileges
without approval.

Its distinguished name is: *cn=NoApprovalAdmin,cn=*domain

The initial password is: (the value entered during Initial Configuration for the
DomainAdmin (Provisioning))

- SystemAdmin (Provisioning) - the system account for the system domain in your
Provisioning Configuration. It is only used by the DirX Identity Manager to copy initial
target system definitions from the System Domain to the Customer Domain.

Its distinguished name is: cn=SystemAdmin,cn=DirXmetaRole-SystemDomain

The initial password is: (the value entered during Initial Configuration)

- admin (Connectivity) - an account that has full control over all parts of the Connectivity
configuration. Used mainly by the DirX Identity Manager.

Its distinguished name is: cn=admin,dxmC=DirXmetahub

The initial password is: (the value entered during Initial Configuration)

- server_admin (Connectivity) - a restricted account used only by the C-based server. It
can read all parts of the configuration database but can only write C-based Server, job
and status entry objects.

Its distinguished name is: cn=server_admin,dxmC=DirXmetahub

The initial password is: (the value entered during Initial Configuration)

- admin (embedded Tomcat) - the standard pre-configured Tomcat administrative
account to access the Java-based Server’s web interface. Note: this embedded Tomcat
is not the Tomcat you use to run the Web Center or the Web Services.

- admin (ActiveMQ message broker) - the standard pre-configured ActiveMQ
administrative account to access the ActiveMQ console.

You should change the passwords for these accounts immediately after you install the C++-
based Server using DirX Identity Manager's Data View. Alternatively, you can delete the
accounts that you do not need (for example, the WriteAdmin and the ReadAdmin
accounts). The next sections provide more information on how to change these passwords.

7.1.1. Changing the DomainAdmin Password (Provisioning)

Use any LDAP tool to change the password of this entry: *cn=DomainAdmin,cn=*domain

m

Set the identical password value for this entry: cn=DomainAdmin,cn=*
domain,*dxmC=Users,dxmC=DirXmetahub

Set the identical password value for this entry: *cn=NoAppropalAdmin,cn=*domain
Now change or use the new password at these locations:

- Inform all users of the DirX Identity Manager that use the DomainAdmin account that
the password has changed.

- Change the password for the Provisioning Services in the file
install_path*\provisioningServices\spmlv2\conf.xml*
Note: you can find the related admin DN in the file
install_path*\provisioningServices\spmlv2\conf.xml*

- Change the password for the Web Services in the relevant password file used by the
Web Services instance. By default, this is install_path/
provisioningWebServices/*instance/WEB-INF/password.properties* where instance is
of the form provisioningServilet-*technical-domain-name (for deployment into the
Tomcat server) or *provisioningServlet-*embedded-technical-domain-name (for
deployment into the Ids-J Server). However, if you have configured this instance to
use a different password file (with the *passwordFile parameter in
install_path*/provisioningWebServices/instance/WEB-INF/web.xml*) then you need to
change that password file. Restart the IdS-J server or Tomcat, depending on where you
have deployed the Web Services. Note: you can find the related admin DN in the file
install_path*/provisioningWebServices/instance/WEB-INF/config.xml*.

- Change the password of the Java-based server in the file install_path*\ids-j-domain-S*
n*\private\password.properties*
Restart the Java-based Server.
Note: you can find the related admin DN in the file install_path*\ids-j-domain-S*
n*\bindprofiles\private\domain.xm|*

- Change the password for the Web Center in the file install_path®\web\webCenter\WEB-
INF\password.properties*
Restart Tomcat or the Web Center servlet.
Note: you can find the related admin DN in the file install_path®\web\webCenter\WEB-
INF\web.xml*

- Change the password for the DirX Identity REST Service in the file
install_path*/restServices/DirXldentityRestServices/DirXldentityRestService-technical-
domain-name/WEB-INF/password.properties*.

Restart Tomcat.

Note: you can find the related admin DN in the file
install_path*/restServices/DirXldentityRestServices/DirXldentityRestService-technical-
domain-name/WEB-INF/web.xml*.

- If the LinkChecker or any scripts use the DomainAdmin as their account, change the
password accordingly.

7.1.2. Changing the SystemAdmin Password (Provisioning)

It is not necessary to change this user's password because it is only used during

12

configuration.

7.1.3. Changing the Connectivity server_admin Password

Use any LDAP tool to change the password of this entry:
cn=server_admin,dxmC=DirXmetahub.

Now change or use the new password at these locations:

- Change the password of the C++-based server in the file
install_path\server\conf\dxmmsssvr.ini
Restart the C++-based Server.

0 you can find the related admin DN in the same file.

- If any scripts use server_admin as their account, change the password accordingly.

We recommend the following procedure to change the C++-based server's server_admin
password:

- Disable all schedules (see the DirX Identity Manager online help for information on how
to do this; for example, in the Expert View, right-click the (Central) Configuration object
and then click the Scheduler tab. Now click Help).

- Check that no workflows are currently running by using the Get Server State function
on all servers in your DirX Identity Connectivity domain (see the DirX Identity Manager
online help for information on how to do this).

- Stop the DirX Identity I1dS-C service (go to the local machines to stop the services).

- Change the password in the directory (use the DirX Identity Manager's Data View or the
native tools for each of the directories.

- Change the password entries in the C++-based server initialization file (dxmmsssvr.ini).

- Restart the DirX Identity IdS-C service.

- Re-enable the schedules (see the DirX Identity Manager online help for information on
how to do this).

7.1.4. Changing the Connectivity admin Password
Use any LDAP tool to change the password of this entry: cn=admin,dxmC=DirXmetahub.
Now change or use the new password at these locations:

- Inform all users of DirX Identity Manager that use the admin account that the password
has changed.

- If the LinkChecker or any scripts use admin as their account, change the password
accordingly.

13

7.1.5. Changing the Embedded Tomcat admin Password

To change the password of the admin account of the embedded Tomcat:

- Open a shell window and navigate to install_path*/ids-j-domain-S*n*/bin*.

- Run the script dxidigest.bat or dxidigest.sh with the new password as an argument.

The script will output the new password and its SHA-512 hash value. Password and hash

are separated by a colon. For example:

abc-
123:0e2f0e2699cacc/7f46614a563c0@9c6d3bel376e2e27117facade74810966ad011$
1$9e3ee
7ba0899a66c1bde6adf89879365b249a42b71772cb4b65e9d6fc848b231cdb6eb@d4ef
7762feeacec

1239e69d25d6b9e908a6b0f8478a9f9393ch@7ac9a

- Check if the new password was correctly recognized by the script. Some special
characters might need escaping when passing the password as argument to the script.

- Navigate to install_path*/ids-j-domain-S*n*/tomcat/conf*.
- Open the file tomcat-users.xml.

- Copy the hash from the script output and set it as the password for the admin account.

<user name="admin"

password="0e2f0e2699cacc7f46614a563c0@9c6d3be376e2e27117facade74810
966ad011%$1%$9e3ee

7ba0899a66c1bde6adf89879365b249a42b7f772cb4b65e9d6fc848b231cd6ebdd
4ef7762feeacec

1239e69d25d6b9e908a6b0f8478a9f9393cb@7ac9a”
roles="admin,manager"/>

- To ensure that only authorized administrators can modify this file, specify the correct
access rights of the file.

- Now change or use the new password at these locations.

- Inform all users who use the Web Admin or any other JMX tool that uses the admin
account that the password has changed.

7.1.6. Changing the ActiveMQ admin Password

To change the password of the admin account of the ActiveMQ message broker:

- Open a shell window and navigate to install_path*/messagebroker/bin*.

- Run the script dximqgdigest.bat or dximqgdigest.sh with the new password as an

N4

argument. The script will output the new password, the obfuscated password and its
MD5 hash value. For example:

abc-123
OBF:1igdligflighl6ynlidplidrlidt
MD5:6351623c8cef86fefabfa7da®46fc619

- Check if the new password was correctly recognized by the script. Some special
characters might need escaping when passing the password as an argument to the
script.

- Navigate to install_path/messagebroker/conf.
- Open the file jetty-realm.properties.

- Copy the hash (including the MD5: prefix) from the script output and set it as password
for the admin account, for example:

admin: MD5:3ad1e9e943bc3431553c@791aac83466, admin

- To ensure that only authorized administrators can modify this file, specify the correct
access rights of the file.

- Now inform all users who use the ActiveMQ Console that the password has changed.

7.2. Managing Connectivity Security

This section discusses general security considerations and describes how to:

- Secure different types of DirX Identity data

- Manage data encryption

- Set up audit signature

- Generate a Personal Security Environment (PSE)
- Manage anonymously readable attributes

- Manage keys

7.2.1. Securing DirX Identity Data

By design, DirX Identity assumes that the machines themselves and all of the running
processes are protected by operating system-specific security features. The main security
weakness is data transfer over the network. The sections in this topic discuss the security
requirements for a number of different data types.

7.2.1.1. Securing Control Data

Control data consists of the messages sent by the C++-based Server components via the

15

messaging service to start, check, and stop processes. Because the server can only start
completely configured workflows, there is no opportunity to change any of the
configuration data (for example an account, a password, or any other configuration
parameter). Consequently, securing this channel is not necessary.

7.2.1.2. Securing Password Changes

Password change data is critical data that should be protected throughout the entire
system. Password data is encrypted and only transferred in encrypted form up to the target
system interfaces where it is required to be available in clear text form.

Use client-side SSL connections for the messaging service. See the DirX Identity Installation
Guide for the setup procedure.

Secure the channels to your target systems that transfer password data in clear text form.
See "Securing Data to be Synchronized" for more information.

7.2.1.3. Securing Configuration Data

Configuration data is the data that is transferred via LDAP while editing with the DirX
Identity Manager. Part of this data is also transferred via LDAP before a workflow or an
activity is started. Configuration data is very important and must therefore be handled
securely. Connect the C++-based Server via SSL with the configuration database to
guarantee secure editing and secure data transfer before a workflow or an activity starts.

7.2.1.4. Securing Administrative Passwords

DirX Identity agents need bind profiles (user name and password) to authenticate to a
specific target connected directory. These passwords are very important because they
allow you to change a lot of administrative data at the target system side. As a result,
administrative passwords must be highly secure. Use the DirX Identity data encryption
mechanism to secure these bind profile passwords. See the topic "Managing Data
Encryption" for more information.

7.2.1.5. Securing Data to be Synchronized

The category "data to be synchronized" includes data itself and the interfaces used to
transfer the data. Use the DirX Identity data encryption mechanism to secure very
important data, such as selected attributes. See the topic "Understanding Data Encryption"
for more information.

Data interfaces to be secured include:
- LDAP connections. Use SSL to secure LDAP connections. See the chapter "Establishing

Secure Connections with SSL" for more information.

- JMS messaging connections. Use SSL to secure this type of connection. See the
chapter "Establishing Secure Connections with SSL" for more information.

- HTTP connections. Use SSL to secure HTTP connections. See the chapter "Establishing
Secure Connections with SSL" for more information.

- Files. Files are often used to transfer data between agents. DirX Identity provides two

116

mechanisms to transfer files between different machines:

- The file transfer service, which copies data by default via the message service channels.
You can secure this connection if you switch on encryption. DirX ldentity Manager also
uses the file transfer service to allow you to view files from the status areas of other
machines. Note that you can use the Copy to Status Area flag in the file item object to
determine whether critical files are stored in the status area. You can also force DirX
Identity to delete these files from the work area if possible (see the Save Mode flag in
the file item object).

- Shared file systems, for fast file transfer. This connection can only be secured with
operating system features.

- Target system APIls. The security of these interfaces used by agents is highly dependent
on the capabilities of the interface and whether these features are usable through the
agent. For more information, refer to the target system documentation or the DirX
Identity Connectivity Reference.

7.2.1.6. Securing Auditing Information

You can secure auditing information optionally via digital signature. Note that this slows
down server operation noticeably. For more information, see the section "Setting Up Audit
Signature."

7.2.1.7. About the Crypto Algorithms used by DirX Identity

DirX Identity uses the following types of crypto algorithms:

- Asymmetric RSA up to 2048 bit
- Symmetric TripleDES (56 bit) and RC4 up to 128 bit

7.2.2. Managing Data Encryption

This section describes the mechanisms that DirX Identity provides for enabling encrypted
data synchronization. DirX Identity allows you to secure the DirX Identity environment and
to establish data security, especially password synchronization. DirX Identity can also
protect a specific set of attributes via attribute encryption. See the section "Securing DirX
Identity Data" for more general considerations.

7.2.2.1. How DirX Identity Data Encryption Works

Directories today permit the storage of passwords in the userPassword attribute either in
clear text or one-way encrypted. If you want a secure system, clear text storage is not an
option. Choosing one-way encryption no longer permits reading the password. One-way
encrypted passwords can only be used for applications that use the directory for
authentication. The application delivers the clear text password over an SSL-secured
connection to the directory. The directory server encrypts it again and checks it against the
stored userPassword value. It then notifies the application whether the comparison was
successful, which means that the password is correct.

All target systems force DirX Identity to provide clear text passwords to authenticate.
Passwords for accounts must also be set in clear text format. The target system stores the

17

values in encrypted format. As a result, DirX Identity cannot use the userPassword attribute
for password encryption. To enable this kind of functionality, an additional attribute for
each user or administrator entry is necessary - dxmPassword - that holds the password in
two-way encrypted format.

This method requires that all clients that handle passwords be able to set or update both
userPassword and dxmPassword attributes synchronously. To perform this task correctly,
the user must authenticate against the directory with the existing password (based on the
one-way encrypted userPassword). When the user enters the new password, the client
reads the public key from the directory and encrypts the new password value delivered
from the user. Now it can set both values in the directory: a replace operation sets the new
one-way encrypted userPassword and another replace operation sets the dxmPassword in
encrypted format. We assume that all these tasks are performed via secure SSL
connections. Otherwise, clear text passwords would be visible in the network. The following
figure illustrates DirX Identity secure password synchronization.

Application Any Client Identity Manager
Directory based auth. (Change & Feset) (Change & Reset)
SSL Directory
userPassword (one way) I dxrmPassword(s) (o wiay) | | public key ‘private ke*_.,.f|

SSL {optional)

SSL
SSL (optional) Meta Controller d---: oo o)
: and
: Configuration
Meta Controller C++-based
Decryption Server
Identity Agent 4
SSL Decryption
Startup:
SS5L, ... Bin &
Fassword

LDAP
Directory

Figure 28. DirX Identity Secure Password Synchronization
In the figure, three clients are shown:

- Any Client - any client that is able to handle the password synchronization procedure
just described can be used to set and maintain password attributes. These clients read
the public key, and can be part of a self-service scenario, where users change their
passwords regularly or reset their passwords based on additional questions when they
have forgotten their password. Alternatively, the password reset can be performed by

18

an administrator that uses a similar client. Note: These clients are not part of the DirX
Identity tool suite.

- DirX Identity Manager - DirX Identity provides a password dialog for bind profiles that
uses the public key to set and maintain the administrative passwords. Because
administrative passwords must be set consistently in the target system and in the
corresponding bind profile, there is no built-in protection against changing passwords.
If a password is changed on only one side, the corresponding workflow will no longer
run. Thus there is no security risk.

- Application - any application that uses the directory for authentication. This application
only provides the clear text password to authenticate against the directory. Reading the
public key is not necessary.

If the dxmPassword fields in the directory are correctly set and encrypted, the C++-based
Server can use them. The server must be set up correctly for encryption and the correct
server_admin password and the PIN for decryption must be entered correctly during
startup. The C++-based Server can read the private key from the directory. When starting
workflows, several things happen:

- It processes the configuration files that still contain encrypted passwords as part of the
bind information.

- It starts the agent and moves all information necessary for decryption over a secure
connection to it.

- The agent is now able to decrypt the bind password and to authenticate against the
source and target connected directories.

- Additionally the agent can decrypt any encrypted attributes (mainly dxmPassword but
also any other attributes) if this is the agent that handles the target connected directory
API. It can store the decrypted values into the target system.

As you can see in the figure, encrypted information is transferred from the directory in
encrypted format up to the last possible point: the target API. Because information is again
readable in clear text format here, a secure connection like SSL must be used. See the DirX
Identity Connectivity Reference or the DirX Identity Meta Controller Reference for details
on how to set up SSL connections.

There are two basic uses of the encryption feature:

- Encryption of administrative passwords only (the bind passwords)

- Encryption of administrative passwords and user passwords or other attributes.

It is not possible to encrypt attributes but not encrypt the administrative
passwords. From a security standpoint, this does not make any sense.

7.2.2.2. Handling Specific Encryption Requirements

DirX Identity provides additional features to handle specific encryption requirements:

- You can disable the encryption feature for agents that are unable to perform
decryption (especially agents integrated into DirX Identity with the Agent Integration

19

Kit). Use the Disable Encryption switch in the corresponding bind profile. When
disabling encryption for an agent, you should ensure that no attribute in the attribute
configuration object for the agent is marked in the E column (encryption column).

- You can use DirX Identity routines for key management, if security has been

compromised or you want to exchange your key pair and certificate.

- You can set up all file transfers in encrypted mode. In DirX Identity Manager, click

Configuration » Messaging Services » Message Service, then set Encryption Mode to
Encrypted.

- You can use the data encryption feature to set up a password synchronization scenario.

This task requires additional components that are not part of the DirX Identity delivery
as previously mentioned, such as clients for user self-service, eventually clients for
administrator password reset, and workflows or other mechanisms that detect "old"
passwords and notify the user, for example, by e-mail to update the password in the
directory. In this scenario, users should not change their passwords directly in the target
system. Therefore it makes sense to disable most of the password policies in the target
systems and to use common policies in the directory instead. It also makes sense to
build extra workflows that run very frequently to update changed passwords in the
target systems or to use the different changelog features of the various directories to
trigger password update workflows.

You cannot synchronize the account that is used as administrative bind (the bind profile
for the target system). In future versions of DirX Identity, the agents will generate one-time
passwords that are written to the target system and the bind profile in the configuration
database in parallel. This method raises the security level.

7.2.2.3. Setting up Data Encryption

Perform the following steps to set up encryption for administrative passwords or data
attributes. Steps that are only necessary for the encryption of data attributes are indicated
by the notation "data encryption only".

1.

120

Set up a secure directory server. Set up your directory server so that it handles the
userPassword attribute securely (via one-way encryption). Define the required password
policies. Refer to your directory vendor’'s documentation for more information about
these tasks. Note that the security mechanisms for the directory server are completely
independent from DirX Identity. If you do not follow this procedure, passwords are
stored in clear text in the directory and state-of-the-art security policies are not used.

Generate a personal security environment (PSE). Generate the RSA key pair
(public/private) and user certificate and store them in the
cn=server_admin,dxmC=DirXmetahub entry in the configuration database.

Disable scheduling and wait for workflows that have not completed. Use the Disable
Scheduling and Get Server State functions in the DirX I[dentity Manager to perform
these tasks.

Extend the user data schema (data encryption only). If user data attributes are to be
encrypted, you must extend the user database schema to include the additional
attributes (for example, dxmPassword and optionally dxmOldPassword when user
passwords must be handled).

10.
1.

12.
13.

Extend or create workflows for encrypted synchronization (data encryption only).
Extend existing workflows or create new workflows to synchronize the encrypted
attributes.

Enable encrypted synchronization. Click the (Central) Configuration object in the DirX
Identity Manager Expert View, then click the Server tab. Select either Administrative
Passwords Only or Attributes and Administrative Passwords (data encryption only).

Initially encrypt administrative passwords. All administrative passwords must be
initially encrypted. To perform this task, you can use the change password dialog for the
bind profiles in the DirX Identity Manager or run the meta controller's metacp
encryptdata operation. The metacp encryptdata operation takes all current
dxmPassword values, encrypts them and stores them in the dxmPassword and
dxmOldPassword attributes. The command also sets the userPassword attribute.

. Initially encrypt data attributes. All data attributes (for example, the dxmPassword

attribute or other attributes you have selected for encryption) must be encrypted if any
values are already in the directory. To perform this task, run the metacp encryptdata
operation. The operation takes the defined attributes, encrypts them and writes them
back into the directory. If you want to set up user passwords and the userPassword
values are already one-way encrypted, only a default value can be stored in the
dxmPassword attribute. This default is then later synchronized into the target systems
and forces the user to change his password (Note: this mechanism does not work for
target systems where the synchronization needs the old password to change the
password, for example RACF).

. Configure all C++-based Servers. Set the encryptionMode switch in the dxmmsssvr.ini

file to1to run the server in a secure mode. Set the pin in the
install_path*/ssl/password.properties* file. The server will encrypt the pin in the file
during the next start..

Configure SSL for all DirX Identity Managers.

Configure SSL for all Java-based Servers. Like the C++-based Server, the pin is read
from the install_path*/ssl/password.properties* file.

Start the C++-based and Java-based Servers.

Test your workflows. Start all workflows by hand and check that everything works
correctly.

14. Enable scheduling - Normal system operation.

The next sections provide more details about these steps.

7.2.2.3.1. Extending/Creating Workflows for Encrypted Synchronization

To configure a synchronization (workflow) for encryption:

- Define the mapping for the attribute(s) as usual. For example, suppose you want to

transfer user passwords to the Windows NT connected directory. Set up a mapping that
maps the dxmPassword to the dxmNTuserPassword.

- Flag all attributes to be decrypted in the E column of the Attribute Configuration

Editor. Note: this is only necessary for the attribute configuration that defines the target
API. For example, flag the dxmNTuserPassword attribute in the attribute configuration

121

of the Windows NT connected directory.

- Ensure that the connection to your target system is secure. For example, use SSL for
LDAP connections and Kerberos for the connection to the Active Directory.

7.2.2.3.2. Initially Encrypting Administrative Passwords

You can initially encrypt administrative passwords with DirX Identity Manager or with the
encryption tool available on the DirX Identity DVD.

You can use the DirX Identity Manager to encrypt each password individually. To encrypt
the admin password in the Identity Store, perform these steps:
- Click Global View.

- Right-click the Identity Store connected directory icon and then select Configure from
the context menu.

- Click the Bind Profiles step in the wizard.

- Select UserAdmin and open it.

- In Password, click .

- Enter the old and new passwords and then click OK.
Alternatively, you can use the encryption tool on the DirX Identity DVD. Note that this tool is
not installed automatically. To use the tool:

- Save the configuration database (stop all running workflows and disable all schedules).

- Change to the directory DirXldentity - EncryptionTool on the DirX Identity DVD.

- Copy the complete directory to your computer.

- Check the settings (server_address and user_pwd (of user
“cn=admin,dxmC=DirXmetahub”)) in the Tcl file encrypt.tcl.

- Set the variable bind_profiles to TRUE to encrypt bind_profiles.
- Run metacp encrypt.tcl from the directory you to which you copied the files.

. Check the result in the trace file tracefile.txt.

The encryption tool uses the public key in the directory and encrypts the requested fields
that are either in clear text or scrambled format.

0 You can run the encryption tool several times.

7.2.2.3.3. Initially Encrypting Attributes

Use the encryption tool on the DirX Identity DVD to initially encrypt data attributes. Note
that this tool is only available on the DirX Identity DVD and is not installed automatically. To
use the tool:

- Save the configuration database (stop all running workflows and disable all schedules).

- Change to the directory EncryptionTool on the DirX Identity DVD.

122

- Copy the complete directory to your computer.

- Check the settings (Server_address, User_name, User_pwd, base_obj, subset, filter, and
Idap_attr_list) in the Tcl file encrypt.tcl. (Please note the exact spelling of
Server_address, User_name and User_pwd (initial capitalized) in the section for
encryption of user data.)

- Set the variable bind_profiles to FALSE to encrypt user data.
- Run metacp encrypt.tcl from the directory to which you copied the files.
- Check the result in the trace file tracefile.txt

The encryption tool uses the public key in the directory and encrypts the requested fields
that are either in clear text or scrambled format.

e You can run the encryption tool several times.

7.2.3. Setting up Audit Signature

Perform the following steps to set up digital signature for auditing. Note that you can run
auditing without signature (this speeds up server operation).

1. Generate a personal security environment (PSE). Generate the RSA key pair
(public/private) and user certificate and store them in the
cn=DomainAdmin,cn=mydomain,dxmC=Users,dxmC=DirXmetahub entry in the
configuration database.

2. Set the auditing switches at the password and provisioning real-time workflow
activities that shall perform auditing in the connectivity configuration database.

3. Set the auditing switches for the service layer and request workflows if you want
auditing for these services at the Domain Configuration object in the Provisioning
configuration database (see the DirX Identity Provisioning Administration Guide or the
online help for more information).

4. Set the signaturePin value in the file install_path\ids-j-domain-S
n\private\password.properties.

5. (Re-)start the Java-based Servers.

6. Test auditing. Check that auditing works correctly for all audit-enabled services.

- You can set up or remove digital signature for auditing at any time.
Simply add or delete the certificates at the corresponding
cn=DomainAdmin,cn=*mydomain,dxmC=Users,dxmC=DirXmetahub*
0 entry in the configuration database.

- You can set up signature only for all auditing services or none. Handling
only specific services for signature is not possible.

7.2.4. Generating a Personal Security Environment (PSE)

You use the dirxgenpse tool to generate a personal security environment (PSE). On
Windows systems, you run this tool from the command prompt window.

123

The dirxgenpse tool is only available on the DirX Identity DVD. It is not
installed automatically. Copy it from the DVD to the directory

6 install_path*/bin*.

Do not use the dirxgenpse version from the DirX Directory server delivery!
It does not work.

dirxgenpse [-options]

Options are:
-D DN - specifies the distinguished name (DN) of the keyOwner directory entry
(mandatory)

-P PSE-PIN - specifies the PSE protection passphrase (mandatory)

-s serial - specifies the serial number of the certificate (mandatory for the first key pair; if
omitted, it is set to the next higher value)

-1 keylen - specifies the length of the RSA key in bits (default is 1024)

-O - runs the tool in off-line mode (the default is online)

-h host - specifies the host name of the LDAP server (default is localhost)

-p port - specifies the LDAP port of the LDAP server (default is 389)

-W pwd - specifies the password of the keyOwner directory entry (optional)

-t secpath - specifies the path to the cert8.db file for SSL/TLS security (default is none)
-e expiry - specifies the expiration period in days (default is 1826)

-o file - specifies the filename of the PSE files to be created (optional)

-v - runs the tool in verbose mode (default is no verbose)

You must supply the distinguished name (DN) of the keyOwner and a PSE
Protection PIN.

There is a conflict between an internally-used private key and using the key version
number 00000001 for a customer's private key. This conflict is relevant for the data
encryption case. Therefore, if you start using encryption, you must start with a serial
number 2 (00000002) by using the -s serial option. You don't need to use this option for
subsequent generate operations because the next free number is chosen automatically.

If you already have at least one private key with a serial number 00000001 in the PSE
attribute you must resolve the conflict by migrating to a new private key; you cannot have
any private key with serial number 00000001. Even if you have a current private key with
serial number 00000002 but a previous private key with serial number 00000001, you must
generate a new private key.

If you generate a PSE with the same serial number as an existing PSE, the outcome is
undefined and the Identity services will report errors.

124

Use secure PINs to ensure high security and do not forget the values! There
is absolutely no way to recover them.

To run the dirxgenpse tool with the following examples, open a command prompt window
in the DirX Identity installation bin subfolder install_path*\bin*,

Example for data encryption:

dirxgenpse -D cn=server_admin,dxmc=DirXmetahub -s 2 -P
mYverYspecialLpiN$41

This command generates a key pair and a certificate based on the PIN value
mYverYspeciaLpiN$41 with serial number 2 and writes it into the server_admin entry.

Example for audit signature:

dirxgenpse -D
cn=DomainAdmin,cn=MyDomain,dxmC=Users,dxmC=DirXmetahub -P

mySignaturePin$7

This command generates a key pair and a certificate based on the PIN value
mySignaturePin$7 and writes it into the DomainAdmin entry in the Connectivity
configuration.

To find the serial number of the private key, in DirX Identity Manager, open the Connectivity
View and go to the Data View. On the Tree tab, select the entry of
cn=server_admin,dxmc=DirXmetahub. In the right pane under All Attributes you see then
the keyOwnerPSE attribute. The value has a readable prefix like

$P:1:3:2:IR9m5usbwteo4g9YgXZwmdP@dzY=: 00000003 :cn=server-
admin,1.3.12.2.1107.1.3.102.4.13.17=DirXmetahub}

The number, here 00000003, before cn=server-admin is the serial number of the private
key.

7.2.5. Managing Anonymously Readable Attributes

To make it easier to set up DirX Identity in a distributed environment, DirX Identity provides
a set of attributes in the Connectivity configuration database that is readable with
anonymous bind. Consequently, you cannot disable anonymous access of your directory
servers. The list of attributes is:

Object class: dxmRoot

- dxmSpecificAttributes (DXMSPECAT)

125

Object class: dxmATS

- dxmService-DN (DXMSV)

- dxmQueueManager (DXMQMGR)

- dxmStreamCommand (DXMSTCMD)
- dxmStreamFileService (DXMSTFS)

- dxmStreamStatusTracker (DXMSTST)
- dxmStreamEvent (DXMSTEVNT)

- dxmSupportedTopics (DXMSTOPICS)

Object class: dxmService (DXMSV)

- dxmAddress (DXMADR)
- dxmDataPort (DXMDPORT)
- dxmSecurePort (DXMSPOPRT)

Object class: dxmTopic

- dxmTopicName (DXMTOPICNAME)
- dxmTopicValue (DXMTOPICVAL)

Object class: dxmCentralConfig
- dxmEncryptionMode (DXMENM)
Object class: keyOwner

- userCerificate (UC)

7.2.6. Managing Keys
This section gives hints on how to manage keys within DirX Identity, including:

- Managing keys for data encryption
- Using the key migration tool

- Managing keys for audit signature

7.2.6.1. Managing Keys for Data Encryption

You should change your PSE for data encryption from time to time or when security has
been corrupted. DirX Identity provides smooth certificate exchange. This is especially
important in environments that use the DirX Identity Windows Password Listener. It keeps
its own local certificate. Due to network problems the update of this local certificate might
be delayed. Thus, the whole environment (including all DirX Identity agents) must be able
to work with old and new encrypted data values.

The procedure for key exchange consists of these steps

126

- Disable all schedules.
- Check that no workflows are running.
- Stop the DirX Identity I1dS-C and 1dS-J services.

- Create a new PSE (key pair and certificate) with a new pin. This replaces the certificate
in the directory which means that all clients that encrypt data values work from this
time with the new public key.

- Change the install_path*/ssl/password.properties* file for all servers. Set the previousPin
to the value of the PIN (the PIN of the previous key) and set the PIN to the new PIN
value (used to create the new key).

- Start the services. The servers (and for the C++-based server, all agents that are started
via workflows) can now handle two private keys for data decryption.

- The Java-based Server's configuration handler will distribute the new certificate (public
key) to all Windows Password Listeners. It does not matter how long this will take as
long as the old private key is available in the directory.

- Run the key migration tool to convert all encrypted values from the old key to the new
key. Run this tool from time to time.

- Before you intend to change the PSE again, run the key migration tool to check that
there are no old encrypted values in your directory (this would indicate that there is a
Windows Password Listener that did not get the new certificate). Check the reason and
repair this problem. When the key migration tool does not find any old encrypted values
in the directory, you can delete the old private key in the directory and start the key
exchange procedure again.

DirX Identity can only handle two private keys in the directory (this requires
the corresponding two PIN values during server startup). Be sure that no

A data values encrypted with the old key exist in the directory before you
change the PSE again. Otherwise the agents will not be able to decrypt
these values and the workflows will fail.

7.2.6.2. Using the Key Migration Tool

DirX Identity provides a key migration tool to convert all encrypted values from an old key
to a new key. Data that is encrypted with the old key is decrypted using the old private key
(the PIN must be provided) and is encrypted with the current public key (from the
certificate). Data in clear text is processed as in the initial encryption.

Note: The scripts can be run several times. Actual data is recognized and is not encrypted
again.

To use the key migration tool:

- Change to the directory EncryptionTool on the DirX Identity DVD.
- Copy the complete directory to your computer.

- Check the settings in the Tcl file encrypt.tcl. Set the variable bind_profiles to either
encrypt bind_profiles or user data.

127

- Run the script: metacp encrypt.tcl o/ld_sequence_number | PREVIOUS

- The script prompts you for the PIN of the old key with the given sequence number
old_sequence_number. If the argument PREVIOUS is given the PIN for the second-
newest key is needed.

- Check the result in trace file tracefile.txt

7.2.6.3. Managing Keys for Audit Signature

You should change your PSE for audit signature from time to time or when security has
been compromised.The procedure for key exchange consists of these steps:

- Export the cn=DomainAdmin,cn=mydomain,dxmC=Users,dxmC=DirXmetahub entry
to back up your current certificate for audit signature.If you use tools to verify the
signature of auditing information, be sure to keep these certificates; otherwise you will
no longer be able to verify the auditing information.

- Stop the DirX Identity |dS-J service(s) (stops the Java-based Servers).

- Create a new PSE (key pair and certificate) with a new PIN.This action replaces the
certificate in the directory, which means that all clients that encrypt data values work
from this time with the new public key.

- Change the signaturePin value in the password.properties files for all Java-based
Servers.

- Start the DirX Identity |1dS-J service(s).(Starts the Java-based Servers.)

- Add the new certificate information to your tools that you use to verify the signature of
auditing information.

7.3. Establishing Secure Connections with SSL

Secure Socket Layer (SSL) is a common technique for encrypting TCP/IP network
communication based on "trusted" certificates or "keys".Transport Layer Security (TLS) is a
small evolutionary advance over SSL and is intended to replace SSL at some point.Whether
TLS or SSL is used in a particular connection is the result of a negotiation between client
and server.Possibly more important, the key length is negotiated, too.A key length of 40
bits is considered "weak", while a key length of "128" bit is considered "strong".

There are two security stages:

Stage 1 ("certificate-based server authentication") - if you want to make sure the server
you are talking to is actually the one you think it is.Stage 1 implies encryption.It is often
referred to as "server-side SSL".

Stage 2 ("certificate-based client authentication") - if the server asks you to authenticate
yourself through a certificate.Stage 2 implies Stage 1. It is often referred to as "client-side
SSL".

For in-depth information on this topic, please refer to https://docs.oracle.com/javase/8/docs/
technotes/tools/#security (search for the appropriate key words; for example, "+keytool
+keystore +cacerts").

128

https://docs.oracle.com/javase/8/docs/technotes/tools/#security
https://docs.oracle.com/javase/8/docs/technotes/tools/#security

DirX Identity components use a lot of LDAP and HTTP connections either for internal
communication or for coommunication with external target systems. These connections can
be secured via SSL for optimum security.

This chapter gives an overview on the available connections and detailed information
about how to set them up. The next figure shows DirX ldentity’s components and the SSL
connections that can be made between them.

Windows
Password Agents
Listener

i

Meta
Controller

3
Messaging
Service

Web
. Connec-
Server Services tors
' ' ' — LDAP
JMX Web UNIX | = Web | wooeee = HTTP
Clients Admin Scripts - == JMS
- - = JMXAPI

Figure 29. Overview of SSL Connections

You can configure SSL for each server component. Note that SSL connections require some
extra time during the bind operation. Therefore, we recommend that you set up SSL
connections only for distributed components.

The next sections describe the procedures for securing connections between each
component shown in the figure, in Windows notation. For UNIX, the steps are slightly
different:

- Use the scripts *sh instead of *.bat

- Use forward slashes (/) instead of backward slashes (\)

7.3.1. Securing Connectivity Database Connections with SSL

Running the Connectivity configuration database with SSL requires setting up the
directory server (see the corresponding server documentation) and all of the clients that
access it, including:

- LDAP server
- DirX Identity Manager

129

- Java-based Server
. C++-based Server

- Java-based configuration wizard

The next sections explain how to set up these components for SSL.

7.3.1.1. Setting up the LDAP Server

This section explains how to set up the Connectivity configuration LDAP server for SSL.

7.3.1.1.1. Managing Keys

DirX Directory comes with an example server and CA certificate for testing purposes. This
keychain is available in the file dirx_install_path*/LDAP/conf/cert_ldapserver.pem?*.

For a production environment, you should set up your own key material for the LDAP
server.

7.3.1.1.2. Preparing the LDAP Server for SSL

To establish an SSL connection on the LDAP server side for DirX Directory:

- Import the file dirx_install_path/LDAP/conf/cert_ldapserver.pem into the LDAP SSL
configuration using the DirX Directory Manager. Check the DirX Directory
documentation to verify how to set up the DirX Directory for SSL.

If you see a file named

0 dirx_install_path*/LDAP/conf/cert_ldapserver.pem.new*, use this file
instead.

7.3.1.1.3. Important Locations

Server certificate chain: dirx_install_path/LDAP/conf/cert_ldapserver.pem.
Password for server certificate: dirxdirx (default)

7.3.1.2. Setting up DirX Identity with Initial Configuration

This section explains how to set up DirX Identity with Initial Configuration to use an SSL-
secured connection to the Connectivity configuration LDAP server.

7.3.1.2.1. Managing Keys

DirX Identity comes with different files containing the test certification authority (CA)
certificate that has signed the test server certificate used from DirX Directory for incoming
LDAP connections. These files can be used to establish an example SSL/TLS connection
from the DirX Identity components to a DirX Directory LDAP directory. For other directory
types, see the vendor documentation.

The following files are provided in the path install_path/client/conf:

- cert8.db - contains the DirX Directory test certificate "cn=test-CA,ou=DirX-

130

Example,o=My-Company". The file key3.db must be also present in order to use the file
cert8.db. These files are used by the C/C++ components of DirX Identity (C++-based
Server, Meta Controller) to establish LDAP-secured connections.

The following files are provided in the path install_path/GUI/:

- cacerts - contains the DirX Directory test certificate "cn=test-CA,ou=DirX-Example,0=My-
Company". This file is the default java certification store used from the DirX Identity
Manager.

7.3.1.2.2. Preparing the Certificate Stores

To establish secured SSL connections to the LDAP directory, the CA certificate that has
signed the LDAP server certificate must be imported into different certificate stores.

Use DirX Identity Manager to export the DirX Directory test-CA certificate from
install_path/GUl/cacerts:

- At the start, you have no configured connection. In this case select Data View and then
click one or two times on Cancel.

- In the Tools menu, select Options.

- Select This application’s installation folder (the file install_path/GUl/cacerts is shown)

and then export the certificate testca to a file testca.cer.

Use DirX Identity Manager to import the DirX Directory CA certificate to the Java trust
stores in use:

- In the Tools menu, choose Options.

.- Select Java Runtime Environment.

- Select Import, and then select the LDAP CA certificate you want to import (testca.cer).
When prompted for the key store password, enter the default value changeit.

- Select Other and then select the trust store used from your Tomcat installation (either
tomcat_java_home/lib/security/cacerts or Tomcat's trust store if it is already using SSL).

- Select Import and then select the LDAP server certificate you want to import (
testca.cer).

- When prompted for the key store password, enter the default value changeit.
- Click OK and the certificate will be imported.
Alternatively, you can use the keytool command to export and import the CA certificate.

For detailed information on the keytool commmand, please refer to https://docs.oracle.com/
javase/8/docs/technotes/tools/#security.

The C++-based Server will use install_path/client/conf/cert8.db as the certificate store. This
store already contains the DirX Directory test-CA certificate. If you need to add your own
certificate, you need to administer this file with the certutil tool, which is part of the Mozilla
NSS Utils.

131

https://docs.oracle.com/javase/8/docs/technotes/tools/#security
https://docs.oracle.com/javase/8/docs/technotes/tools/#security

7.3.1.2.3. Using Initial Configuration to Set up DirX Identity

Start the Initial Configuration. In the Connectivity Configuration step, check Use SSL and
configure the correct LDAP SSL port. This action configures every DirX Identity component
to use SSL to the LDAP Connectivity directory.

After running Initial Configuration, use DirX Identity Manager’s Connectivity view to set up
the Identity Store of your domain to use SSL:

- Select the Global View.

- Right-click the Identity Store of your domain and then select Configure.

- In General Information, display the properties of the Service object.

- Select SSL and the correct Secure Port and then click OK.

- In Bind Profile, display the properties of the Domain_Admin object.

- Select SSL Connection and then click OK.

- Click Finish.

The next sections describe the configuration in detail for each single component.

7.3.1.2.4. Important Locations

Trust store: install_path/client/conf/cert8.db.

Trust store: install_path/GUl/cacerts.
Password for trust store: dirxdirx (default).

Trust store: tomcat_java_home/lib/security/cacerts.
Password for trust store: changeit (default).

Trust store: dxi_java_home/lib/security/cacerts.
Password for trust store: changeit (default).

7.3.1.3. Setting up Ildentity Manager

This section describes how to set up DirX Identity Manager for SSL to the Connectivity
configuration database. The DirX Identity Manager requires LDAP / LDAPS access to the
Connectivity configuration database to manage it.

7.3.1.3.1. Managing Keys

The DirX Identity Manager uses its own trust store named install_path/GUIl/cacerts. By
default, this key store already contains the LDAP server certificate provided with the
installation.

If you need to use another server certificate, import it using the DirX Identity Manager. In
the Tools menu, select Options. On the next page, the GUI's key store is already selected by
default (This application’s installation folder is already selected and the file
install_path/GUl/cacerts is shown.) Choose Import and then select the certificate you want
to import.

132

Alternatively, you can use the keytool command to import the server certificate. For
detailed information on the keytool command, please refer to https://docs.oracle.com/
javase/8/docs/technotes/tools/#security.

7.3.1.3.2. Setting up Manager for SSL (server-side SSL)

For SSL connections over LDAP to the Connectivity configuration database, you must:

- Make sure that a suitable CA certificate is available in install_path/GUl/cacerts.
"Suitable" means that the certificate transmitted by the directory server must be trusted
by at least one of the certificates stored in the trust store cacerts (for details, see the
"Managing Keys" section).

- Make sure that the bind profiles you are using have the correct SSL port set and the flag
Use secure connection (LDAP v3 only) is turned on.

7.3.1.3.3. Important Locations

Trust store: install_path/GUl/cacerts.
Password for trust store: dirxdirx (default).

7.3.1.4. Setting up Web Center

This section describes how to set up DirX Identity Web Center for SSL to the Connectivity
configuration database. Web Center requires LDAP / LDAPS access to the Connectivity
configuration database to read some configuration data. Note that server, port and SSL flag
for connections to the Connectivity configuration database are taken from the domain
object in the Provisioning database.

7.3.1.4.1. Managing Keys

Store the LDAP server certificate either in the trust store of the Java environment that
Tomcat is using or use the Tomcat trust store.

To import the server certificate, use DirX Identity Manager:

- In the Tools menu, select Options.

- On the next page, the GUI's trust store is selected by default. Select This application’s
installation folder (the file install_path/GUl/cacerts is shown) and export the certificate
testca to a file testca.cer.

- Select Other and then select the appropriate trust store (either
tomcat_java_home/lib/security/cacerts or Tomcat's trust store if it is already using SSL).

- Select Import and then select the LDAP server certificate you want to import: in this
case, the previously exported testca.cer.

- When prompted for the key store password, enter the default value changeit.
- Click OK and the certificate will be imported.
Alternatively, you can use the keytool command to import the CA certificate. For detailed

information on the keytool command, please refer to https://docs.oracle.com/javase/8/
docs/technotes/tools/#security.

133

https://docs.oracle.com/javase/8/docs/technotes/tools/#security
https://docs.oracle.com/javase/8/docs/technotes/tools/#security
https://docs.oracle.com/javase/8/docs/technotes/tools/#security
https://docs.oracle.com/javase/8/docs/technotes/tools/#security

If you decide to create a new trust store for Tomcat, customize your Tomcat configuration
(for details, see the Tomcat description).

Windows example:
- Activate the Tomcat Configuration Menu (Start » Programs -» Apache Tomcat version -
Configure Tomcat).
- Click the Java tab.
- Add -Djavax.net.ssl.trustStore=truststore_path -
Djavax.net.ssl.trustStorePassword=truststore_password to the Java Options.

UNIX example:

- Add -Djavax.net.ssl.trustStore=truststore_path -
Djavax.net.ssl.trustStorePassword=truststore_password to your Tomcat environment
variable JAVA_OPTS.

7.3.1.4.2. Important Locations

Trust store: tomcat_java_home/lib/security/cacerts or the trust store already used by
Tomcat.
Password for trust store: changeit (default).

7.3.1.5. Setting up the Java-based Server

This section describes how to set up the Java-based Server for SSL to the Connectivity
configuration database. The Java-based Server requires LDAP / LDAPS access to the
Connectivity configuration database to read the server configuration, the real-time
workflow definitions and other related configuration objects.

7.3.1.5.1. Managing Keys

For each Java-based Server that is to use an SSL connection, store the LDAP server
certificate in the key store dxi_java_home/lib/security/cacerts of the Java for DirX Identity.

To import the server certificate, use the DirX Identity Manager:

- In the Tools menu, select Options.

- Select This application’s installation folder (the file install_path/GUl/cacerts is shown)
and export the certificate testca to a file testca.cer.

- Select Java Runtime Environment.

- Select Import and then select the LDAP CA certificate you want to import (testca.cer).
When prompted for the key store password, enter the default value changeit.

- Click OK and the certificate will be imported.

Alternatively, you can use the keytool command to import the server certificate. For
detailed information on the keytool command, please refer to https://docs.oracle.com/
javase/8/docs/technotes/tools/#security.

134

https://docs.oracle.com/javase/8/docs/technotes/tools/#security
https://docs.oracle.com/javase/8/docs/technotes/tools/#security

7.3.1.5.2. Setting up the Java-based Server for SSL

For each Java-based Server that is to use an SSL connection:

- Make the following changes to the files install_path/ids-j-domain-S
n/bin/bindcredentials.xml and
install_path/ids-j-domain-Sn/bindprofiles/private/domain.xml:
Switch the ssl flag from false to true: <ssl>true</ssl|>.

- Update the port number and change to the ssl port; for example, <port>636</port>.
- Make sure that a suitable server certificate is available in the key store of the Java for

DirX Identity. (For details, see the "Managing Keys" section).

7.3.1.5.3. Important Locations

Trust store: dxi_java_home/lib/security/cacerts.
Password for trust store: changeit (default).

7.3.1.6. Setting up the C++-based Server

This section describes how to set up the C++-based Server for SSL to the Connectivity
configuration database. The C++-based Server requires LDAP / LDAPS access to the
Connectivity configuration database to read the server configuration as well as Tcl-based
workflow definitions and other related configuration objects.

7.3.1.6.1. Managing Keys

For each C++-based Server that is to use an SSL connection:

- Ensure that you're using the correct cert8.db file. By default, the C++-based Server uses

the file cert8.db located in install_path/client/conf. If you use your own key material,
please provide your version of cert8.db. You always need the additional file key3.db in
order to use cert8.db.

7.3.1.6.2. Setting up the C++-based Server for SSL

For each C++-based Server that is to use an SSL connection:

- Open the file dxmmsssvr.ini in the path install_path/server/conf.
- Set the parameter port=secure_port, for example port=636.
- Set the parameter ssl=1.

- Set the parameter cert-db-path to the location of the cert8.db (typically in the folder
install_path/client/conf).

- Restart the server. It should connect to the DirX LDAP directory via SSL (see the DirX
documentation for information on how to check this action).

Note: Do not set the DirX environment variable DIRX_TRUSTED_CA.

135

7.3.1.6.3. Important Locations

Trust store: install_path/client/conf/cert8.db.

7.3.1.7. Setting up the Java-based Configuration Wizard

This section describes how to set up the Java-based configuration wizard for SSL to the
Connectivity configuration database. The Java-based configuration wizard requires LDAP /
LDAPS access to the Connectivity configuration database to read and update all kinds of
configuration data and to load the Connectivity schema during the Initial Configuration or
Update Configuration run.

7.3.1.7.1. Managing Keys

If the configuration wizard is to use an SSL connection, store the LDAP server certificate in
the key store dxi_java_home/lib/security/cacerts of the Java for DirX Identity.

To import the server certificate, use the DirX Identity Manager:

- In the Tools menu, select Options.

- Select This application’s installation folder (the file install_path/GUl/cacerts is shown)
and then export the certificate testca to a file testca.cer.

. Select Java Runtime Environment.

- Select Import and then select the LDAP CA certificate you want to import (testca.cer).
When prompted for the key store password, enter the default value changeit.

- Click OK and the certificate will be imported.
Alternatively, you can use the keytool command to import the server certificate. For

detailed information on the keytool command, please refer to https://docs.oracle.com/
javase/8/docs/technotes/tools/#security.

7.3.1.7.2. Setting up the Java-based Configuration Wizard for SSL

If the configuration wizard is to use an SSL connection:

- Check Use SSL in the Connectivity Directory step.
- Update the port number in this step to the LDAP Server's SSL port.

- Make sure that a suitable server certificate is available in the key store of the Java for the
configuration wizard itself. (For details, see the "Managing Keys section").

- Make sure that a suitable server certificate is available in the metacp tool's cert8.db
trust store (see the section "Important Locations") because metacp also uses SSL if the
Use SSL flag is set for loading LDIF files to the Connectivity database during the
configuration wizard run.

7.3.1.7.3. Important Locations

Trust store for the configurator itself: dxi_java_home/lib/security/cacerts.
Password for trust store: changeit (default).

136

https://docs.oracle.com/javase/8/docs/technotes/tools/#security
https://docs.oracle.com/javase/8/docs/technotes/tools/#security

Trust store for metacp: install_path/client/conf/cert8.db.

7.3.2. Securing Provisioning Database Connections with SSL

Running the Provisioning configuration database with SSL requires setting up the directory
server (see the corresponding server documentation) and setting up all the clients that
access this server, including:

- LDAP server

- DirX Identity Manager
- Web Center

- Java-based Server

- Web services

- Meta controller

- Java-based configuration wizard

The next sections explain how to set up these components for SSL.

7.3.2.1. Setting up the LDAP Server

For a description of how to set up the Provisioning configuration LDAP server for SSL, see
the section "Setting up the LDAP Server" in the section "Securing Connectivity Database
Connections with SSL".

7.3.2.2. Setting up DirX Identity with Initial Configuration

For a description of how to easily set up DirX Identity to use SSL with the Provisioning
configuration LDAP server, see the section "Setting up DirX Identity with Initial
Configuration" in the section "Securing Connectivity Database Connections with SSL".

7.3.2.3. Setting up Identity Manager

The DirX Identity Manager requires LDAP / LDAPS access to the Provisioning configuration
database to manage it.

For SSL connections over LDAP to the Provisioning configuration database, see the section
"Setting up ldentity Manager" in the section "Securing Connectivity Database Connections
with SSL".

7.3.2.4. Setting up Web Center

This section describes how to set up DirX Identity Web Center for SSL to the Provisioning
configuration database. The Web Center requires LDAP / LDAPS access to the Provisioning
configuration database to manage its objects.

7.3.2.4.1. Managing Keys

See "Setting up Web Center" in the section "Securing Connectivity Database Connections

137

with SSL".

7.3.2.4.2. Setting up Web Center for SSL (server-side SSL)

To set up an SSL connection:

- Open the file install_path\web\webCenter-domain\WEB-INF\web.xml.

- Adapt the parameter com.siemens.webMgr.ldap.port to the server SSL port (for
example, 636).

- Set SSL mode via the parameter com.siemens.webMgr.ldap.ssl to "true".

- Restart Tomcat.

7.3.2.4.3. Setting up Web Center for Password Management for SSL (server-side SSL)

To set up an SSL connection:

- Open the file install_path\web\pwdManagement-domain\WEB-INF\web.xml.

- Adapt the parameter com.siemens.webMgr.ldap.port to the server SSL port (for
example, 636).

- Set SSL mode by setting the parameter com.siemens.webMgr.ldap.ssl to "true".

- Restart Tomcat.

7.3.2.5. Setting up the Java-based Server

The Java-based Server requires LDAP / LDAPS access to the Provisioning configuration
database to read the request workflow definitions and other related configuration objects.
For instructions on how to set up SSL connections over LDAP to the Provisioning
configuration database, see the section "Setting up the Java-based Server" in the section
"Securing Connectivity Database Connections with SSL".

7.3.2.6. Setting up the Web Services

This section describes how to set up the Web Services for SSL to the Provisioning
configuration database. The Web Services require LDAP / LDAPS access to the Provisioning
configuration database to manage their objects.

7.3.2.6.1. Managing Keys

The managing keys task depends on where you have deployed the Web Services:

- If you have deployed the Web Services into the Tomcat of the Java-based Server, you
must store the LDAP server certificate in the key store
dxi_java_home/lib/security/cacerts of the Java for DirX Identity. For details, see the
section "Setting up the Java-Based Server" in the section "Securing Connectivity
Database Connections with SSL".

- If you have deployed the Web Services into an external Tomcat, see the section "Setting
up Web Center".

138

7.3.2.6.2. Setting up the Web Services for SSL

- Modify the file install_path/provisioningWebServices/instance/WEB-INF/config.xml,
where instance is of the form provisioningServlet-technical-domain-name (for
deployment into the Tomcat server) or provisioningServlet-embedded-technical-
domain-name (for deployment into the Ids-J server). Modify said file so that port is 636
and ssl is true.

- Restart the 1dS-J server or Tomcat, depending on where you have deployed the Web
Services.

7.3.2.6.3. Important Locations

If you have deployed the Web Services into the Tomcat of the Java-based Server, see the
section "Setting up the Java-Based Server" in the section “Securing Connectivity Database
Connections with SSL".

If you have deployed the Web Services into an external Tomcat, see the section "Setting up
Web Center for SSL to the Provisioning Configuration".

7.3.2.7. Setting up the Meta Controller

The meta controller (metacp) requires LDAP / LDAPS access to the Provisioning
configuration database to provision and synchronize objects. For instructions on setting up
SSL connections from the meta controller to the Provisioning configuration database, see
the DirX Identity Meta Controller Reference.

By default, the file cert8.db located in install_path/client/conf is used. If you use your own
key material, please provide your version of cert8.db. You always need an additional file
key3.db in order to use cert8.db.

To use SSL within Tcl-based workflows, you must enable the flag SSL Connection in the
corresponding bind profiles.

7.3.2.7.1. Important Locations

Trust store: install_path/client/conf/cert8.db

7.3.2.8. Setting up the Java-based Configuration Wizard

The Java-based Configuration Wizard requires LDAP / LDAPS access to the Provisioning
Configuration database to load the Provisioning schema and the domain data to the
Provisioning Configuration database during the Initial Configuration or Update
Configuration run.

For instructions on how to set up SSL connections over LDAP to the Provisioning
Configuration database, see the section "Setting up the Java-based Configuration Wizard"
in the section "Securing Connectivity Database Connections with SSL". Follow the
instructions given in the section, but set the Use SSL flag in the Provisioning Directory step
instead of the Connectivity Directory step.

139

7.3.3. Securing Identity Server Connections with SSL

Running all Identity servers - the Java-based Server, the C++-based Server and the
ActiveMQ Message Broker - with SSL requires setting up the servers themselves and all
clients that access the servers, including:

- DirX Identity Manager

- Java-based Identity Server

- C++-based Identity Server

- ActiveMQ Message Broker and Web Console

- Web Admin and Server Admin

- Web Center

- Business User Interface

- Supervisor

- Web Services

- Windows Password Listener

- Meta controller

- JMX clients

- UNIX scripts
Note that DirX Identity mainly uses server-side SSL. The only exception is communication

with the ActiveMQ Message Broker, which also requires client-side SSL. The next sections
describe how to set up these components for SSL.

Securing the Identity servers consists of two steps:

- Setting up the X.509 certificates

- Securing the Identity services

These steps are described in the following sections.

7.3.3.1. Setting up the X.509 Certificates

An X.509 certificate provides a way of binding an identity (in the form of an X.500
distinguished name) to a public key. The certificate essentially consists of an identity
concatenated with a public key, with the entire certificate being digitally signed in order to
guarantee the association between the identity and the public key.

The certificate must be signed by someone that you trust. The certificate signer can be:

- Self - if the certificate signs itself, it is called a self-signed certificate. If you need to
deploy a self-signed certificate, the certificate must be obtained from a secure channel.

The only guarantee you have of the certificate’s authenticity is that you obtained it from
a trusted source.

- CA certificate - a more common solution is to sign certificates using a Certificate

140

Authority (CA) certificate. In this case, you only need to be careful about deploying the
original CA certificate (that is, obtaining it through a secure channel). All of the
certificates signed by this CA, on the other hand, can be distributed over insecure,
public channels. The trusted CA can then be used to verify the signature on the
certificates. In this case, the CA certificate is self-signed.

The user can use his own created CA or use any company offering CA services. The latter
may be imposed by the company’s guidance.

DirX Ildentity provides a set of batch scripts that allows you to create your own CA root and
the key material for the Identity servers and client components. Note that for one machine,
only one server private key is necessary (for all servers on the same host); the server's
certificate is signed by the CA. Clients cormmunicating with an ActiveMQ Message Broker
only need one universal client key which is used on all hosts and need the CA certificate in
their trust store in order to accept the server certificates issued by this CA.

The next sections describe how to set up and run these batch scripts.

7.3.3.1.1. Configuring the Certificate Generation Scripts

Before you can run the scripts that generate the X.509 certificates, you must make the
following updates to the batch script install_path\ssl\set_Environment.bat:

- Update the dname parameter. Make sure "localhost" is replaced by the local machine
name. If you configured the servers with a non-qualified hostname, set the hostname as
cn. If you configured the servers using a fully-qualified hostname (including domain
name), set the same name as cn. Note that the name matching is case-sensitive. Use
the same spelling when configuring DirX Identity and when setting up the scripts.

- Update the validity parameter. This parameter specifies the validity for all generated
keys and certificates; the value is given in days. Note that on update or upgrade
installations, the set_Environment.bat file is overwritten.

- Set the pwd environment variable in your environment (not in the batch script). The
batch script uses this pass phrase for both the server key store and trust store. Make
sure that you use the same password for all mentioned files in the configurator unless
you have a distributed environment. Note that you will be prompted for the password
for the CA private key.

7.3.3.1.2. Setting up a Certificate Authority

To set up a certificate authority for a DirX Identity installation, run the SSL batch script:

install_path\ssl\generate_CA.bat
a when you run this script, you will be asked for the pass phrase four times.

This script creates the following files:

- install_path\ssl\ca.key - the CA private key
- install_path\ssl\ca.crt - the self-signed CA certificate

141

The CA certificate file (ca.crt) and the files containing this certificate will be used on all
machines in a distributed environment.

You only need to run this script once for a distributed DirX Identity
installation.

7.3.3.1.3. Setting up the Host Server Key

To set up a server key:

- If you are on a different host from where you set up the Certificate Authority, copy the
ca.key and ca.crt files into the local install_path*\ssl* folder.

- Run the script install_path*\ssl\generate_ServerKeystore.bat*,
This script creates the following files:

- install_path\ssl\identity-keystore - the server's private key, in JKS format.

- install_path\ssl\server.csr - the server’s certificate request (CSR), which needs to be
signed by the CA.

7.3.3.1.4. Signing the Server Certificate Request
The server's CSR file can be signed by an external CA or by the CA you created.
To sign the CSR file with your own CA:

- If you are on a host that is different from where you set up the CA, copy the ca.key and
ca.crt files into the local install_path\ssl folder.

- Run install_path\ssl\sign_ServerCSR.bat.
e You will be asked for the pass phrase one time.

This script creates the following file:
- install_path\ssl\server.crt - the server’s certificate signed by the CA.

7.3.3.1.5. Importing the Server’s Certificate into the Shared Key Store

To import an external CA certificate or your own CA certificate and the generated server
certificate into the shared key store, run the batch script:

install_path\ss\import_ServerCertKeystore.bat
This script updates the following files:

- install_path\ss\identity-keystore - the updated key store with both certificates

- install_path\ssl\identity-truststore - contains the CA certificate

If you obtain the CA certificate in DER format from the CA authority, you must adapt the
import script. If you obtain an additional intermediate CA certificate, you must import this

142

certificate into the identity-keystore and identity-truststore, too.

7.3.3.1.6. Converting the Server Key to PEM

You need to convert the server key contained in the shared key store from JKS format to
PEM format because the C++-based Server uses PEM format. To convert the key to PEM,
run the batch script:

install_path\ssl\convert_ServerKeystoreToPem.bat
This script creates the following files:

- install_path\ssl\server-key.pem - the key store in PEM format with the host-specific
server key.

- install_path\ssl\ca-crt.pem - the CA certificate in PEM format without password.
7.3.3.1.7. Setting up the Client Key
To set up a shared client key:

- If you are on a different host from where you set up the Certificate Authority, copy the
ca.key, ca.crt and identity-keystore files into the local install_path\ssl folder.

- Run the script install_path\ssl\generate_ClientKeystore.bat. This script updates or
creates the following files:

install_path\ssl\identity-keystore - the added shared client’s private key, in JKS format.

install_path\ssl\client.csr - the client’s certificate request (CSR), which needs to be signed
by the CA.

7.3.3.1.8. Signing the Client Certificate Request
The client’'s CSR file can be signed by an external CA or by the CA you created.
To sign the CSR file with your own CA:

- Ifyou are on a host that is different from where you set up the CA, copy the ca.key and
ca.crt files into the local install_path\ssl folder.

- Run install_path\ssl\sign_ClientCSR.bat.
Note: You will be asked for the pass phrase one time.
This script creates the following file:
install_path\ssl\client.crt - the shared client’s certificate signed by the CA.
7.3.3.1.9. Importing the Client Certificate into the Shared Key Store
To import the generated client certificate into the shared key store, run the batch script:

install_path\ss\import_ClientCertKeystore.bat

143

This script updates the following file:

install_path\ssl\identity-keystore - the updated key store with the added client certificate.

7.3.3.1.10. Converting the Client Key to PEM

You need to convert the client key contained in the shared key store from JKS format to
PEM format because the C++-based Server uses PEM format. To convert the key to PEM,
run the batch script:

install_path\ssl\convert_ClientKeystoreToPem.bat
This script creates the following files:

install_path\ssl\client-key.pem - the key store in PEM format with the client key.

7.3.3.1.11. Importing the Certificate into the Java for DirX Identity

The CA certificate needs to be imported into the cacerts file of the Java for DirX Identity;
that is, the Java that is used by the DirX Identity installation. You must perform this step on
every machine where Java-based client/server components are installed; for example, DirX
Identity Manager, Java-based Server, C++-based Server (Java-based agents), ActiveMQ
Message Broker and so on.

To import the certificate with DirX Identity Manager:

- Start the DirX Identity Manager and log in.
- In the Tools menu, select Options.

- On the next page, the GUI's trust store is selected by default. (This application’s
installation folder is already selected and the file install_path\GUI\cacerts is displayed.)

- Select Other.

- Select the Java used by your DirX Identity installation. For example, C:\Program
Files\Java*jdkversion\lib\security\cacerts*.

- Select Import and then select the CA certificate (install_path/ssl/ca.crt) you want to
import. When prompted for the key store password, enter the default value changeit.

- Click OK. The certificate is now imported.

To import the certificate with the keytool utility from the command prompt: (if there is no
DirX Identity Manager installed on the machine):

- Open a command prompt.

- Run the command:

keytool -import -noprompt -trustcacerts -alias sampleca -file install_path/ssl/ca.crt
-keystore dxi_java_home/lib/security/cacerts -storepass password

The default password for the cacerts file is changeit. The value for dxi_java_home is the
path of the Java that was selected during DirX Identity product installation.

144

If you have a distributed environment, you must copy the following files from the ssl folder
into the ssl folder on the target machine:

- If you installed a server (Java-based Server, C++-based Server, or ActiveMQ Message
Broker), perform the steps described in "Setting up the Host Server Key", "Signing the
Server Certificate Request", "Importing the Server’s Certificate into the Shared Key
Store" and "Converting the Server Key to PEM".

- If you installed a client component (Windows Password Listener, Web Center, Identity
Manager, and so on), copy the files identity-keystore, identity-truststore, ca-crt.pem,
client-key.pem and password.properties fromm a machine where a server is located into
the local install_path/ssl folder.

7.3.3.2. Securing the Identity Services

The following sections describe how to secure the Identity server and client components
once the X.509 certificates have been generated.

Securing is done via setting a global SSL flag in the configuration.

To set the global SSL flags start the Initial Configuration Wizard again and choose the
following four options:

- Connectivity Schema and Data Configuration
- ActiveMQ Message Broker Configuration
- C++-based Server Configuration

- Java-based Server Configuration

In the step System-wide Configuration, check the Use SSL flag.

In the steps for Message Broker, C++-based Server, and Java-based Server,
make sure to specify for the hostname exactly the value you have specified
inside the set_Environment.bat script described in "Setting up the X.509
Certificates". This is the full qualified domain name of the server.

7.3.3.2.1. Securing DirX Identity Manager with SSL

To secure DirX Identity Manager with SSL, you only need to import the CA certificate into
the Java on the machine on which DirX Identity Manager is installed, as described in
"Importing the Certificate into the Java for DirX Identity". No further setup is required.

7.3.3.2.2. Securing the Java-based Server with SSL

To secure the Java-based Identity Server with SSL, you only need to import the CA
certificate into the Java on the machine on which the server is installed, as described in
"Importing the Certificate into the Java for DirX Identity ". No further setup is required.

7.3.3.2.3. Securing the C++-based Server with SSL

To secure the C++-based Identity Server with SSL, you only need to import the CA certificate

145

into the Java on the machine on which the server is installed, as described in "Importing
the Certificate into the Java for DirX Identity". No further setup is required.

7.3.3.2.4. Securing the Message Broker and Web Console with SSL

To secure the Message Broker with SSL, you only need to import the CA certificate into the
Java on the machine on which the broker is installed, as described in "Importing the
Certificate into the Java for DirX Identity". No further setup is required.

The ActiveMQ Web Console is also automatically configured for server-side SSL. You only
need to import the CA certificate into your browser certificate settings. See next chapter for
instructions for Firefox and Internet Explorer.

The URL to access it is by default https://myserver.port/admin, where myserver is the
machine where your message broker runs and port is the Web Console port that you
entered during initial configuration as the port.

You can configure the Web Console for client-side SSL access in the following steps:
- Configure the Web Console for client-side SSL:

In the file install_path/messagebroker/conf/jetty.xml in the section <bean
id="handlers" class="org.eclipse.jetty.util.ss|.SsIContextFactory">, add the following three
lines:

<property name="trustStorePath" value="install_path/ssl/identity-truststore" />
<property name="trustStorePassword" value="your store password" />
<property name="needClientAuth" value="true" />

- Create a pl2 format truststore including the client private key and the client certificate.
The installation provides a script that converts the identity-serverstore file into a p12 file.
Note that only the identity-serverstore file includes the client private key. The script
name is convert ServerKeystoreToP12.bat/sh.

- Include this p12 file to your browser's certificate store.

- Disable use of username/password authentication.

The Web Console is configured to use username/password authentication which is
unnecessary when using client-side SSL To disable it, in the file install_path
/messagebroker/conf/jetty.xml, change the value from true to false in the line:

<property name="authenticate" value="true" />

This line occurs twice in jetty.xml: in the bean element with the ID securityConstraint
and adminSecurityConstraint.

146

7.3.3.2.5. Securing Web Admin and Server Admin with SSL

This section describes how to set up DirX Identity Web Admin or Server Admin for SSL to
the Java-based Server. Both Web and Server Admin require access to the Java-based
Server to handle HTTP / HTTPS requests for server management operations.

To set up Web Admin or Server Admin for SSL to the 1dS-J server:

- Set up the following URL for the Web Admin: https://server:port/admin; for example,
https://myserver:port/admin, where myserver is the machine where your 1dS-J server
runs and port is the port that you entered during initial configuration as the port.

- Set up the following similar URL for the Server Admin: https://server:port/serverAdmin
- On a Firefox browser, perform these steps:

- In Firefox, open Options- Options. Select the Advanced tab.

- Click View Certificates. Open the Authorities tab and import the file ca.crt.

- On an Internet Explorer browser, import the CA certificate into the Microsoft certificate
store:

- In Internet Explorer, Open Tools- Internet Options.
- On the Content tab, open the Certificates dialog.
- Select the tab Trusted Root Certification Authorities and then click Import.

- The Certificate Import Wizard starts. Click Next. Browse to the file ca.crt in the ssl folder.
Select Trusted Root Certification Authorities as the store in which to place the
certificate. Click Next and import it. You must accept the security warning.

- An Authentication Required dialog requests a user name and a password (default:
admin / wE3!dirx).

7.3.3.2.6. Securing Web Center with SSL

This section describes how to set up DirX Identity Web Center for SSL to the Java-based
Server or Message Broker. Web Center requires access to the Java-based Server to handle
HTTP / HTTPS requests for request workflows. It requires access to the ActiveMQ Message
Broker for sending events.

Managing Keys for Server-side SSL to the Java-based Server

The trust store for SSL from Web Center to the Java-based Server is either the file
referenced by the Tomcat Java option javax.net.ssl.trustStore or the cacerts file of the Java
used for Tomcat. If the Java option is set, the Java cacerts file is ignored. Note that any trust
store configuration for Tomcat's HTTPS connector in Tomcat’s server.xml file does not
affect the SSL connections discussed here. You can use the same trust store here, but you
still need to configure it separately via Java options.

When using a specific trust store, set the Java options for Tomcat if you haven't done so
already.

Here is a Windows example:

147

- Activate the Tomcat Configuration Menu (Start - Programs » Apache Tomcat version -
Configure Tomcat).

- Click the Java tab.
- Add -Djavax.net.ssl.trustStore=install_path/ssl/identity-truststore to the Java Options.

- (optional) Add -Djavax.net.ssl.trustStorePassword=truststore-password to the Java
Options. This step is optional. Reading certificates from a trust store usually works
without a password; trust store integrity checks, however, are not performed.

Here is a UNIX example:
- Add -Djavax.net.ssl.trustStore=install_path/ssl/identity-truststore to your Tomcat

environment variable JAVA_OPTS.

- (optional) Add -Djavax.net.ssl.trustStorePassword=truststore-password to your Tomcat
environment variable JAVA_OPTS. This step is optional. Reading certificates from a trust
store usually works without a password; trust store integrity checks, however, are
skipped.

Next, import the CA certificate install_path*/ssl/ca.crt* into the trust store.

When using the Java cacerts file, import the CA certificate into the cacerts file of the Java
you use for Tomcat:

- Start the DirX Identity Manager.

- In the Tools menu, select Options.

- On the next page, the GUI's trust store is selected by default. (This application’s
installation folder is already selected and the file install_path/GUl/cacerts is displayed.)

- Select Other.

- Select the Java cacerts file used by Tomcat. For example, C:\Program
Files\Java\idkversion\jre\lib\security\cacerts.

- Select Import and then select the CA certificate (install_path/ssl/ca.crt) you want to
import. When prompted for the key store password, enter the default value changeit.

- Click OK to import the certificate.

Managing Keys for Client-side SSL to the Message Broker

The DIRXIDENTITY_INST_PATH environment variable must be set in the context of the
Tomcat process. The related files are:

- install_path/ssl/identity-keystore - the key store for SSL from Web Center to the
message broker.

- install_path/ssl/identity-truststore - the trust store for SSL from Web Center to the
message broker.

- install_path/ssl/password.properties - the file from which the trust and key store
passwords are obtained.

Check to make sure that the variable DIRXIDENTITY_INST_PATH exists. It can be missing

148

on some hosts in distributed environments with Web Center deployed into a native
Tomcat. If the variable does not exist, continue with the following steps.

- Define the environment variable DIRXIDENTITY_INST_PATH using an existing directory
folder as a value.

- Copy the files install_path/ssl/identity-keystore, install_path*/ssl/identity-truststore*
and install_path/ssl/password.properties to the directory folder you defined in
DIRXIDENTITY_INST_PATH.

Note that the Java options javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword
are no longer supported for the Message Broker SSL.

The Java cacerts file is not evaluated here.

7.3.3.2.7. Securing the Supervisor with SSL

Because the supervisor is deployed into the embedded Tomcat of the Java-based Server
and the CA certificate is deployed in the Java cacerts file, no further action is required to
secure this component.

7.3.3.2.8. Securing Provisioning Web Services with SSL

This section describes how to set up the DirX Identity Web Services for SSL to the Java-
based Server or the Message Broker. The Web Services require access to the Java-based
Server to handle HTTP/SOAP or HTTPS/SOAP requests for request workflows.

If the Web Services have been deployed into the embedded Tomcat of the Java-based
Server, no further action is required.

For Web Services deployed into a native Tomcat, you need to manage the keys for server-
side SSL for communication with the Java-based Server and keys for client-side SSL for the
Message Broker.

Check to make sure that the variable DIRXIDENTITY_INST_PATH exists. It can be missing
on some hosts in distributed environments with Web Center deployed into a native
Tomcat. If the variable does not exist, continue with the following steps.

- Define the environment variable DIRXIDENTITY_INST_PATH using an existing directory
folder as a value.

- Copy the files install_path/ssl/identity-keystore, install_path/ssl/identity-truststore and
install_path/ssl/password.properties to the directory folder you defined in
DIRXIDENTITY_INST_PATH.

If you have already configured SSL support on Tomcat, add the CA certificate
install_path/ssl/ca.crt to your Tomcat trust store.

If you have not used SSL support on Tomcat, do one of the following:
- Customize the Tomcat configuration:

On Windows:

149

- Activate the Tomcat Configuration Menu (Start - Programs » Apache Tomcat version -

Configure Tomcat).

- Click the Java tab.

- Add -Djavax.net.ssl.trustStore=install_path/ssl/identity-truststore

On

-Djavax.net.ssl.trustStorePassword=truststore_password to the Java Options.

UNIX:

- Add -Djavax.net.ssl.trustStore=install_path/ssl/identity-truststore

-Djavax.net.ssl.trustStorePassword=truststore_password to your Tomcat environment
variable JAVA_OPTS.

- The preferred method is to import the CA certificate into the cacerts file of the Java you

use for Tomcat.

- Start the DirX Identity Manager.

- In the Tools menu, select Options.

- On the next page, the GUI's trust store is selected by default. ("This application’s

installation folder" is already selected and the file install_path/GUl/cacerts is shown.)

- Select Other.

- Select the Java cacerts file used by Tomcat (for example, C:\Program

Files\Java\idkversion\jre\lib\security\cacerts).

- Select Import and then select the server certificate (install_path/ssl/server.crt) you want

to import. When prompted for the key store password, enter the default value changeit.

- Click OK and the certificate will be imported.

7.3.3.2.9. Securing the Business User Interface with SSL

This topic is described in the DirX Identity Business User Interface Configuration Guide in
the chapter “Configuring the Access to the DirX Identity REST Services”.

7.3.3.2.10. Securing the Windows Password Listener with SSL

To secure the Windows Password Listener (WPL) with SSL:

- Select the useSSL button in the Messaging Service dialog during the installation or set

the property "UseSSL=1" after installation in the options.ini configuration file.

- Copy the files ca-crt.pem, client-key.pem and password.properties from a machine

where they have been created into the local WPL install_path/ssl folder.

7.3.3.2.11. Securing the Meta Controller with SSL

To secure the meta controller (metacp) with SSL, you only need to import the CA certificate
into the Java on the machine on which the meta controller is installed, as described in
"Importing the Certificate into the Java for DirX Identity". No further setup is required.

150

7.3.3.2.12. Securing JMX Clients with SSL

JMX clients require access to the Java-based Server to handle RMI requests for server
management operations.

Example: To set up SSL from the Jconsole, call the Jconsole with the following command
options (Windows):

jconsole.exe -J-Djavax.net.ssl.trustStore="install_path/ssl/identity-truststore"
-J-Djavax.net.ssl.trustStorePassword=changeme

For more instructions on how to set up SSL connections for JMX clients, see the related
Oracle documentation.

7.3.3.2.13. Securing UNIX Scripts with SSL

This section describes how to set up UNIX scripts for SSL to the Java-based Server. UNIX
scripts require HTTP / HTTPS access to the Java-based Server to handle requests to stop the
server in a controlled way.

To prepare UNIX scripts for SSL, review the password settings in the file install_path/ids-j-
domain-Sn/clients/bin/shutdown_ini.sh. They must match the passwords of the related
key store and trust store.

7.3.4. Securing Connections between Web Services Clients and Web
Services with SSL

Running the DirX Identity Web Services with SSL requires setting up the Web Services
servlet and all clients that access it. However, client-side SSL is currently not supported for
Web Services clients. The relevant tasks are

- Managing keys for server-side SSL

- Setting up SSL for Web Services clients for server-side SSL

7.3.4.1. Managing Keys for Server-Side SSL

Perform the following steps if Web Services have been deployed into a native Tomcat:

- Perform the steps described in the section "Securing Browser Connections with SSL",
using the file
install_path/ids-j-domain-Sn/private/server-keystore as the key store file.

- Add the server certificate into the trust store of the JRE used by the Web Services client.
For the Web Service clients, this item is described in the DirX Identity Integration
Framework Guide in the chapter "Web Services". For the Java-based Server, see the
section "Sample Client". The relevant JRE is located in dxi_java_home.

These steps are required for setting up the Web Services client for client-side SSL.

151

7.3.4.2. Managing Keys for Client-Side SSL

Client-side SSL is currently not supported for Web Services clients.

7.3.4.3. Setting up SSL for Web Services Clients for Server-Side SSL

For the Web Services clients shipped with this installation, the configuration file
install_path/provisioningServices/spmiv2/conf.xml needs customizing.

Customizing is required for the url parameter of the definition block starting with
<connection type="Soap"
The URL parameter must be correct regarding the protocol (http or https), the host and

port for addressing the Web Services.

Here are examples for correct URL specifications in the file
install_path/provisioningServices/spmiv2/conf.xmil:

- To address Web Services deployed into the Java-based Server with secure port 40000:
url="https://myhost:40000/ProvisioningService-technical-domain-
name/services/Spmlv2RequestService"

- To address Web Services deployed into a native Tomcat with secure port 8443:
url="https://myhost:8443/ProvisioningService-technical-domain-
name/services/Spmliv2RequestService"

Web Service clients in general need customizing regarding the URL in their own
configuration or software coding.

These steps are required for setting up the Web Services client for client-side SSL.

7.3.4.4. Setting up SSL for Web Services Clients for Client-Side SSL

Client-side SSL is currently not supported for Web Services clients.

7.3.4.5. Important Locations

Trust store: java_install_path/lib/security/cacerts
Password for trust store: changeit (default)

This is the cacerts file of the Java environment used by your Web Services client.

7.3.5. Securing Connections to Tomcat Web Applications with SSL
The DirX Identity Web applications that run in an external Tomcat web server are:

- Web Center

- The Provisioning Web Service

152

- The Business User Interface

- The DirX Identity REST Service
Clients of these Web applications include:

- Browsers (for Web Center and the Business User Interface)
- The Business User Interface (for the DirX Identity REST Service)

- Custom clients (for the Provisioning Web Service or the DirX Identity REST Service)

To secure connections between the clients and the Web applications with server-side SSL,
configure an HTTPS connector for Tomcat with an appropriate keystore in Tomcat's
conf/server.xml file.

<!-- Example for a definition of an SSL HTTP/1.1 Connection on port
8443 -->
<Connector port="8443"
protocol="org.apache.coyote.httpll.HttpllNioProtocol"
maxThreads="150"
SSLEnabled="true"
keystorePass="changeme”
keystoreFile="C:\Program Files\Atos\DirX Identity\ids-j-domain-
Sn\private\webcenter-keystore"
clientAuth="false"
sslProtocol="TLS"

/>

Adapt the parameters keystorePass and keystoreFile.The key in the Web Center keystore
will do, but of course you can take any other appropriate key as well.

This configuration is part of Tomcat and may be subject to change.Check
the Tomcat documentation if this hint does not work.

Add a certificate for the server's key to each client’s certificate store (like a cacerts file for
Java clients or the Trusted Root Certification Authorities store for Internet Explorer).You'll
find a certificate for the Web Center key in the same folder as the Web Center keystore.

7.4. Understanding File-Handling Mechanisms

The DirX Identity runtime environment provides several mechanisms to handle files.Files
can be:

- Configuration files, such as "ini" files, Tcl script files or attribute configuration files.
- Input and output files

- Trace or report files

153

The supported file-handling mechanisms are:

- Handling of absolute and relative paths
- Automatic procedures for file preservation

- Procedures for file transfers

7.4.1. Path Handling
There are two ways to set up file information in the configuration database:

- You can use relative paths (we recommend that you use only the short name of the file,
for example "options.ini"). Relative paths allow high flexibility when the configuration
must be changed or re-configured. All the DirX Identity examples in the initial database
are configured this way.

- You can use absolute path names, but you should be aware of the consequences. DirX
Identity cannot assist with absolute path name updates during reconfiguration of
workflows or jobs. You should use absolute path names only when it is really necessary
(for example, when you want to set up a central file pool as an interface to other
applications).

7.4.2. File Preservation Mechanisms

DirX Ildentity provides the following mechanisms to prevent files from being overwritten on
subsequent runs of an activity in a workflow:

- The C++-based Server does not allow you to start the same workflow simultaneously. An
error message will be the result that is reported in the logging files and in the monitor
view if the workflow was started via the scheduler.

- During a workflow run, the agent controller keeps all files that are relevant for a specific
run of an activity in a specific work path folder (this works only if relative paths are used).
This folder is defined by the work path in the corresponding C++-based Server object for
this activity, the workflow display name, and the activity display name. The agent
controller starts the agents in this (current) directory and assumes that an agent can
handle any file location in the shared file system. If this is not the case, you must write a
script when you configure of the job that moves and renames the necessary files (a pre-
and post-wrapper).

- After the run of the activity, the agent controller moves all relevant files to a run-specific
status area which is defined by the status path in the C++-based Server object, the
workflow display name and start time, and the activity display name and start time. The
agent controller writes the paths of these copied files to the corresponding status entry
in the configuration database (you can define which files shall be copied by the Copy to
Status Area flag in the file item object). The status tracker keeps the files until the
expiration time of the corresponding status entry is reached. All other files remain in the
work path (or at an absolute location when defined this way). You can define whether
files should be preserved in the work path by the Save Mode flag in the file item object.

154

7.4.3. File Transfer Mechanisms

DirX Identity supports several mechanisms to transfer data files automatically from one
location to the location at which this data is required. DirX Identity detects automatically
whether the data resides on the local machine:

- If it resides on the local machine, links are used to access data with highest possible
performance.

- If data is accessible via a shared file system (and this information is set up in DirX
Identity) then data is simply linked and not copied.

- If data does not reside on the local machine and no shared file system has been set up
(or this fact is not known to DirX Identity), then data is transferred automatically via the
file service, which uses DirX Identity’'s messaging service. This data transfer is about one-
third the performance of a shared file system (the reason is that two file copies must be
performed). This is the default mechanism, which means that data is always transferred
without any necessary setup configuration.

7.4.3.1. Local Machine File Handling

To prevent interference between different activities of a workflow, each activity uses its own
working directory. This mode of operation results in the following problem:

- The first activity works via its output channel into the related intermediate connected
directory. For example:
~Awork\myworkflow\A_activity\data.txt

- The second activity expects the data file in its input channel from the related
intermediate connected directory. For example:
~\work\myworkflow\B_activity\data.txt

- Because the file is not in this directory, the problem must be solved.
DirX Identity automatically sets a link to the file in the working directory of the previous

activity if both activities run on the same machine (specifically, it follows the channel to the
intermediate connected directory that belongs to the previous job).

7.4.3.2. Distributed Machines with Shared File Systems

To get maximum performance, you can set up a shared file system between two machines.
Because DirX Identity cannot automatically detect this setup, you must configure it in the
Shared Paths tab of the C++-based Server object.

DirX Identity automatically sets a link to the file in the working directory of the previous
activity via the shared file system. This configuration guarantees the fastest possible
performance because data is now transferred by the native operating system facilities.

If you have set up absolute paths for file handling and these paths are accessible via the
shared file system, DirX Identity uses this mechanism.

Use a secure network connection if data files to be transferred contain
critical data.

155

7.4.3.3. Distributed Machines with No Shared File System Set Up

If a shared file system is not set up (or if it is not configured in DirX Identity), the file service
copies the data from the source to the target machine using the messaging service's
message queues. This mode of operation results in reduced performance (about one third
compared with a shared file copy).

The messaging service transfer uses the set-up port (see the data port in the messaging
service object in the configuration database). This port is the only port that must be
configured in addition to the LDAP port to overcome a firewall.

0 You can optionally encrypt the file transfer mechanism.

For relative paths, the data file is copied from the working directory on the source machine
to the working directory on the target machine.

If you have set up absolute paths for file handling, the file is copied from the fixed location
on the source machine to the working directory on the target machine.

Please note that DirX Identity Manager uses the same mechanism to access files in the
status area of all machines that belong to a DirX Identity domain.

156

Appendix A: Context-Sensitive Help

This chapter presents the context-sensitive help topics that are provided with DirX Identity.

To display the help topic associated with the current dialog or menu, press F1.

A.l. General

A.l.l. Content

The actual content of a file, which may be a Tcl script, mapping function, INI file, XML file
and so on.Use the Export button to export a file's contents from the configuration database
into a file in the file system.Use the Import button to import the contents of a file in the file
system into a contents object in the configuration database.

Related Topics

INI File

File ltem

Mapping Function
Tcl Script

XML File

A.1.2. Data File

Data files contain bulk data to be uploaded to or already downloaded from a connected

directory.The respective configuration object holds all data necessary to identify and access
the file.

Use this tab to assign the data file properties.The items shown in this tab are:

Name

the name of the data file configuration object.

Description

a description of the data file.

Version
the version of the data file.

File Name

the relative (short) name of the data file. This field can contain wildcards (specifically,
regular expressions) which allows to handle a collection of files. You can also define a
directory. Then all files in the directory are handled. Examples are:

trace*.trc - all trace files that contain a generated date.

*rep - all report files with the extension 'rep'.

??data.dat - all files that start with two characters and end with 'data.dat’.
C\myDataDirectory\ - all files that are contained in this directory.

157

Wildcard support depends on the specific agent that uses this file name
specification. For example, the meta controller does not support
wildcards. Check the corresponding agent documentation for more
information.

File Format
the format of the data contained in an LDIF content file. This item is only used in
connection with content type LDIF. It can take one of the following values:

UNKNOWN
a default value used for all files with a content different from LDIF.

TAGGED
the content of the file is tagged; that is, each item is in a separate row and written as
<name=><separator char><value>, for example Name:Miller.

NON-TAGGED
in an untagged data file, an individual attribute is identified based on its position in an
entry. Attributes are separated by an attribute separator or a field width for the
attribute can be defined. Example: ..|John|4375|Senior Developer]|...

LDIF-CHANGE

a data file in LDIF change format, containing a list of directory modifications. Each
entry in the change file contains a special LDIF "changetype" attribute that indicates
the type of directory modification to be made. Example:

dn: cn=Joe Isuzu, ou=sales, o=Isuzu, c=us

changetype: delete

FLAT-XML

a simple XML format that contains objects and their attributes.

DSML
directory Service Markup Language (DSML) V1 format.

Content Type

the content type of the data file. This could be one of the following items:

UNKNOWN

an unknown or unspecified content.

INI

the data file contains configuration data in an INI file format.

LDIF

the content is structured in an LDAP directory interchange format.

TCL

the data file contains a Tcl script.

158

XML

the content of the data file is structured in XML format.

Encoding

the character encoding of the file. You can use any valid code set. See the DirX Identity
Meta Controller Reference for details about code sets.

Note: By default, we use UTF-8 for all meta controller files and ISO-8859-1 for all other
files (most agents cannot currently handle UTF-8).

*Keep Spaces

by default, leading and trailing spaces are removed from all attributes. Setting this flag
allows for keeping spaces.

Save Mode

the save mode of the data file within the workspace.lt can take one of the following
values:

PERMANENT

the file is stored permanently in the work area, which means it will exist even after the
synchronization activity is finished.

TEMPORARY
the file will exist for as long as the synchronization activity is running.

Files that are needed as input for succeeding steps (activities) must be
set to PERMANENT.

Copy to Status Area

whether or not the file is copied to the status area after the activity is finished.

Related Topics
INI File

Tcl Script

XML File

A.1.3. Files

The Files tab lists all of the data files that comprise a connected directory.Use this tab to
add files to or delete files from the connected directory.

Data File

the list of data files that comprise the connected directory.To insert or delete a file, use
the respective button on the right.To display the properties of a data file, clicking on it,
then click the Details button on the right.

If you create a new connected directory in the Global View, the Files tab will
0 be empty during the copy procedure.The tab is filled in when you copy a

workflow that uses this connected directory.The workflow copy procedure

automatically creates all necessary data files in the connected directory

159

and links the newly created channels to it.Do not create data files by hand
during the connected directory copy procedure.

If DirX Identity were to copy all data files during the creation of the connected directory, a
lot of unnecessary data files would be created that workflows would never use.

Related Topics

Connected Directory
File Item

A.l.4. File Item
The properties of the indicated file, which may be a data file, a trace file, and so on.

Name

the name of the data file configuration object.

Description
the description of the data file.

Version
the version of the data file object.

File Name

the name or (optionally) path name of the file that must be recognized for status
handling or generated before an agent is run by the agent controller.This field can

contain wildcards (specifically, regular expressions) which allows handling a collection of

files.You can also define a directory.Then all files in the directory are handled.Examples
are:

trace*.trc - All trace files that contain a generated date.

*rep - All report files with the extension 'rep'.

??data.dat - All files that start with two characters and end with 'data.dat'.
C\myDataDirectory\ - All files that are contained in this directory.

Content Type
the content type of the data file. This could be one of the following items:

UNKNOWN

An unknown or unspecified content.

INI
the data file contains configuration data in an INI file format.

LDIF
the content is structured in an LDAP directory interchange format.

TCL

the data file contains a Tcl script.

160

XML

the content of the data file is structured in XML format.

Encoding

the character encoding of the file. Use any of the valid code sets. See the DirX Identity
Meta Controller Reference for details.

By default, we use UTF-8 for all meta controller files and 1ISO-8859-1 for
all other files (most agents cannot currently handle UTF-8).

Save Mode

the save mode of the data file within the workspace. It can take one of the following
values:

PERMANENT

the file is stored permanently in the work area, which means it will exist even after the
synchronization activity is finished.

TEMPORARY
the file will exist for as long as the synchronization workflow is running.

Copy to Status Area

whether (checked) or not (unchecked) the file is copied to the status area after the
activity is finished.

Related Topics

Configuration Files
File Handling
INI File

A.1.5. Query Folder

A query folder is a stored query that is used to filter a set of objects out of a much larger
one. Use this tab to specify the filter criterion.

Name

the name of the folder.

Description
the description of the folder.

Version
the version number of the folder.

Search Scope
the scope for the search operation. Specify one of the following values:

161

0-BASE OBIJECT

the search operation is performed on its start point only.

1-ONE LEVEL

the search operation extends to the start point and all objects that have the start
point as their parent.

2-SUBTREE

the search operation extends to the whole subtree below its start point.

Search Filter

the search criterion in LDAP syntax; for example:

" (&(dxmResult=closed.completed.ok) (objectclass=dxmWorkflowStatusData))

The following expression types can be used in the filter for time attributes:

- $base or $(base) - represents the current time, depending on base. base can be:

NOW or gmtime or time - the current time in GMT.
localtime - the current time in local time zone.

date - the time of this day start in GMT.

localdate - the time of this day start in the local time zone.

Examples:
dxrExpirationDate>=$NOW - retrieves all entries that will expire in future.

&(dxrStartDate>=%$(date)) (dxrStartDate<$(time)) - retrieves all entries that were
activated today up to now.

- $base operation constant or $(base operation constant) - the time plus or minus a

162

constant. The format of constant is:

nynMndnhnmns

where n is the number of time units. The time units are:
y years

M months

d days

h hours

m minutes

s seconds.

The order of time units is fixed, but each unit is optional. For example:

(dxrStartDate>=$(NOW-3h)) - retrieves all entries that were created within the last
three hours.

(dxrExpirationDate<$(gmtime+1ly6M)) - retrieves all entries that expire in one and a

half year.

A number without a time unit indicates days.

- $base operation $variable or $(base operation $variable) - the current time plus or
minus a variable.The values of these variables are the values described above for
constants; for example:

(dxrStartDate>=$(NOW-$Delta)) - each time the filter is evaluated (select it or use the
refresh button to start the evaluation) the variable is displayed with the previously
entered value.Change the value if necessary and click OK.

- $variable - the specified value is used in the filter, for example:

cn=$StartsWith* - selects all objects where cn starts with the specified value.Each time
the filter is evaluated (select it or use the refresh button to start the evaluation) the
variable is displayed with the previously entered value.Change the value if necessary
and then click OK.

Max Result
the maximum number of entries to be returned.

A.1.6. Specific Attributes

DirX Ildentity can extend objects with virtual or specific attributes.

You can find specific attributes in any tab of an object.The display of these attributes does
not differ from that of regular LDAP attributes.

All specific attributes that are not displayed in any of the other tabs are visible in the
Specific Attributes tab.You can use the Specific Attributes Editor to add, modify or delete
specific attributes in that tab.

Attributes visible in the Specific Attributes tab are extensions of the object that are not yet
described by the XML object description.

Please note that references can either refer to regular LDAP attributes or to specific
attributes.Examples are:

<?Job@dxmDisplayName/> for a regular LDAP attribute.

<?Job@dxmSpecificAttributes(Trace)/> for a specific attribute either visible directly in
the specific attributes tab or in one of the other tabs.

To learn more about references, see the chapter "Customizing Object References" in the
DirX Identity Customization Guide.

Related Topics

Channels
(Central) Configuration
Connected Directory

163

Job
Workflows

"Using the Specific Attributes Editor" in the DirX Identity User Interfaces Guide

A.1.7. Tcl Content

Use this tab to edit the content of a Tcl script file or a mapping function.A special editor is
provided to make the creation or modification of the script or the function as simple as
possible.However, basic knowledge about the Tcl language is necessary for all
modifications.For usage information on the Tcl editor, see the help topic in the DirX Identity
Manager online help.

There are Tcl content windows that allow viewing but not editing.This is the
case for the mapping script, where the content is created automatically

0 when you edit the Mapping Item tab.Therefore you should not change this
created content (all your changes would be lost after each change of the
Mapping Item tab).

Another reason for a non-editable content tab is that this script is located in
the DirX Identity installation area.Therefore you can only see a copy for
informational viewing at the user interface level.This content also cannot
be edited because this would not be reflected in the script that is really

0 used by the workflows.Never change these scripts, because they might be
changed during each update of the DirX Identity software (installation or
patch).If you want to change a piece of this information, copy the routine
from the script and put it into your local user_hooks script.Modify it
accordingly and it will replace the original function.

Related Topics

Mapping Function
Tcl Script

A.1.8. XML Content

Use this tab to edit the content of an XML file. XML files have pure text content and can
therefore be edited with any text editor.DirX Identity Manager provides a simple editor
control for this purpose.The two buttons below the editor enable the user to either export
or import XML files.

Import text...

click to import a text file which will then replace the current content of the XML file.A file
browser dialog is shown to select the file to be imported.

Export text...

click to export the current content of the XML file into an external text file.A file browser
dialog is shown to select the desired directory and to type in the name of the text file.

164

Related Topics

XML File

A.1.9. XML File

XML files are used in DirX Identity to define the extensions to any configuration object by
Extensible Markup Language (XML) items.Extensions are especially needed for connected
directory and job descriptions as well as for wizard configurations.

Use this tab mainly to assign a name to the XML file object.The properties shown in this tab
are:

Name
the name of the XML file.

Description
the description of the object.

Version
the version number of the XML file.

If the XML file defines a wizard, we recommend that the wizard name
specify the types of directories at the endpoints of the workflow (for

o example, LDAP and FILE).Between these endpoint values, you can include
other information (for example, LDAP-3step-FILE) to identify a more
specific wizard.

Related Topics

(Central) Configuration
GUI
Extensions

A.1.10. Object Descriptions

A folder for DirX Identity Manager object extension design.Use this tab to assign a name to
this folder.

Name
the name of the folder.

Description
the description of the folder content.

Related Topics

(Central) Configuration
GUI
XML File

165

A.1.11. Wizards

A folder for DirX Identity Manager wizard design.Use this tab mainly to assign a name to
this folder.

Name

the name of the folder.

Description
the description of the folder.

Related Topics

(Central) Configuration
GUlI

Wizards

XML File

A.2. Agents

A.2.1. Agent

An agent configuration object describes the configuration data associated with a particular
agent.Use the agent configuration object to describe each agent that is present in your
Identity environment.Agent configuration objects can describe customer-supplied agents
and agents developed by other companies in addition to the agents supplied with DirX
Identity.

An agent typically synchronizes only one type of connected directory, but the meta
controller is an example of an agent that synchronizes multiple directory types (LDAP and
file-based).

The path to the agent’s executable can be an absolute pathname or simply the name of
the agent's executable file. When the path is the file name, the operating system facilities
based on the path variable are used to find the executable.

DirX ldentity supports any type of executable; for example *.exe, *.cmd or *.bat executable
files on Windows systems.

The path property can also specify a "wrapping" batch file that the DirX Identity runtime is
to call to perform pre- or post-processing functions in addition to the agent’s
execution.Adding a wrapping batch file allows you to extend an agent's capabilities to work
with all of DirX Identity's features (for example, to prepare delta handling or to provide a
more meaningful exit code that is derived by examining the trace file result).Be careful
when using batch files to extend an agent’s functionality, because batch files are operating
system-dependent.

Use this tab to establish an agent’s properties.

166

Name

the name of the agent.

Description
the description of the agent.

Version

the version number of the agent.

Wrapper required
whether the agent needs an agent wrapper (checked) or not (unchecked).

Executable
the path of the agent executable. You can specify either a relative or absolute path.

As a rule, you should specify only the file name of the executable (for example,
metacp.exe). This will start the agent in the work area and allow easy reconfiguration
when changing the C++-based server or the work path. If you specify the executable
without the extension (for example, metacp), the agent can run on both Windows and
UNIX.

Using an absolute path starts the agent in the specified directory, making
reconfiguration more error-prone.

OK Status

the agent exit codes that indicate error-free execution. DirX Identity assumes that all exit
codes in this list represent an error-free run. You can use the OK Status property in the
job configuration object that uses this agent to override the exit codes defined here. Use
a semicolon (;) to separate multiple values in the list.

Warning Status

the agent exit codes that indicate execution with warnings. DirX Identity assumes that
all exit codes in this list represent runs with warnings. DirX Identity reports the warnings
indicated by these exit codes but does not abort the workflow. You can use the Warning
Status property in the job configuration object that uses this agent to override the exit
codes defined here. Several values in this list must be separated by a ;' character.

DirX Identity considers all other agent exit codes to represent an erroneous run and
stops the workflow's execution.

If the OK Status and Warning Status properties of a job and the agent have no values, DirX
Identity treats each exit code as error. Hence you must at least specify one of the agent's
success exit codes - usually exit code O - to make DirX Identity treat it as success.

Abort Execution Allowed

whether or not DirX Identity should stop the agent’s execution when an exception
occurs (typically as the result of manually aborting a workflow or shutting down the C++
server). By default, DirX Identity does not stop agent execution because the operation
kills the related agent process, which can destroy parts of the information or make it
inconsistent. Check this field to stop the agent’s execution on exception.

167

Agent Type

the agent's type (for example, NT, Exchange, Notes, and so on).The agent type
corresponds to an agent type configuration object.You can select another agent type
here.Perform Reload Object Descriptors afterwards or restart the DirX |dentity
Manager.This will change the display behavior of all related Job objects.

Directory Types

the connected directory types that the agent can handle.

Download AttrConf

whether (checked) or not (unchecked) to download attribute configuration files.The
meta controller needs attribute configuration files to control its operation.Check this
field if your agent is based on the meta controller or needs a download of these files for
other reasons.

Related Topics

Connected Directory

A.2.2. Agents

A folder for the agent configuration objects in the Connectivity configuration database.Use
this tab to assign a name to the agent folder.

Name
the name of the folder.

Description
the description of the folder.

Related Topic

Agent

A.3. Collections

A.3.1. Collection

A collection is a powerful method for exchanging data between different instances of
Connectivity databases.Typically, you use it to export object sets into your software
configuration system or to transfer them from the development system to an integration
or production system.The data is stored in LDIF file format.

file.See the DirX Identity User Interfaces Guide for more information about

0 the LDIF file format depends on the collection properties in the dxi.cfg
this file.

For more information about transporting data with collections, see the chapter
"Transporting Data" in the DirX Identity User Interfaces Guide.

168

Use this tab to define a set of objects, subtrees or rule-based object collections to be
exported.

Name

the name of the object.

Description
the description of the object.

Version
the version number of this object.

Path

the path to which the LDIF file is to be written. Use the file selector box to define the
path.

Objects

the objects to be exported. During the export operation, this list of objects is exported to
the LDIF file. Only the defined object is exported, no subtrees or linked objects. You can
define the objects with an object selector box.

Subtrees

the subtrees to be exported. After the export of the object list, the listed subtrees are
exported to the LDIF file. You can define the subtrees with an object selector box.

Rule-based

the rule specification to use when exporting objects. After the export of the subtree list,
the listed objects are exported based on a rule specification. Set the rule link to a rule
definition.

Collections

the collections to be exported. After the export of the rule-based list, the defined list of
collections is exported into the defined file of this collection (see the Path specification).

Related Topics

Collection
Collections
Collection Rule
Collection Rules

"Using Collections" in the DirX Identity User Interfaces Guide.

A.4. Collections

A folder for collection configuration objects. Use this tab to assign a name and a
meaningful description to the collection folder.

169

Name

the name of the folder.

Description
the description of the folder.

Related Topics

Collection
Collections
Collection Rule
Collection Rules

"Using Collections" in the DirX Identity User Interfaces Guide.

A.4.1. Collection Rule

A collection rule is an XML-based rule that defines the export rule for the rule-based tab in
the collection object.

Use this tab to define a set of objects and subtrees to be exported.

Name

the name of the object.

Description
the description of the object.

Version
the version number of this object.

Content
the rule definition in XML format.

A collection rule is to be defined in XML format, for example:

<rule>

<entry classes="dxmWorkflow" childLevel="1">
<link attribute="dxmActivity-DN" />

</entry>

<entry classes="dxmActivity" childLevel="1">
<link attribute="dxmRunObject-DN" />
</entry>

</rule>

This example exports a Tcl-based workflow object, follows the links to the activities, exports

170

these items and then follows the links to the run objects (typically jobs or other workflow
definitions).

The full syntax is:

<rule>
<entry classes="objectclasses" [filter="filter"]
[childLevel="childLevel"] [parentLevel="parentLevel"]

[action="action"] >

[<matchFilter ...> ... </matchFilter>]
[<childFilter ... > ... </childFilter>]
[<parentFilter ...> ... </parentFilter>]

[<link attribute="T1linkAttribute"/>]
[<link attribute="1l1inkAttribute">

<entry classes="objectclass" [filter="filter"]
[childLevel="childLevel"] [parentLevel="parentLevel"]
[action="action"] >

[<matchFilter ...> ... </matchFilter>]
[<childFilter ... > ... </childFilter>]
[<parentFilter ...> ... </parentFilter>]
</entry>
</1ink>]
</entry>
<l-- use this default entry to process objects that are not yet

matched by previous rules -->
</entry classes="*">

</rule>

with these sub elements:

objectclasses

a space or comma separated list of object classes that is used in the LDAP search to
retrieve this type of objects.

filter (optional)
if an LDAP filter is defined, only the objects that match the filter condition are exported.

"(cn=RoleCatalogue)" instead of "cn=RoleCatalogue".

G Filter definitions must be enclosed in brackets, for example use
Alternatively you can specify a matchFilter DSML filter clause.

171

childLevel (optional)

the depth of the sub tree to be exported. Possible values are:*
ignore* - ignore this entry completely

none - ignore this entry but follow the links

all or O - the whole subtree

1- just this entry and no sub objects (default value).

2 - this entry and one level of sub objects

3 - this entry and two levels of sub objects

IdapFilter

exports all children down to the level where the LDAP filter condition is valid (this object
and lower level objects are not exported).

Note that filter definitions must be enclosed in brackets, for example use
"(cn=RoleCatalogue)" instead of "cn=RoleCatalogue".

Alternatively you can specify a childFilter DSML filter clause.

parentLevel (optional)

the level of parent objects to be exported. Possible values are*
none -* no parents (default)

all or O - all parents

1- one level of parents above the given entry

2 - two levels of parents above the given entry

i+

IdapFilter

exports all parents up to the level where the LDAP filter condition is valid (this object and
higher level objects are not exported).

Note that filter definitions must be enclosed in brackets, for example use
"(cn=RoleCatalogue)" instead of "cn=RoleCatalogue".

Alternatively you can specify a parentFilter DSML filter clause.

action (optional)

an action that defines how the entry is processed:

default - processes the entry (export or delete). This is the default.

skip - this entry is not exported or deleted but its child and parent definitions are
processed.

linkAttribute (optional)

the name of the attribute to be followed to other objects.
Use this syntax to define a specific attribute: "dxmSpecificAttributes.channelparent".

When processing an LDAP object (for example a user), then the entry elements are
processed sequentially from top to bottom and the first matching element is used to
process the object.

172

Entries can contain link definitions. Link definitions can itself contain entry
6 definitions and so on. This allows defining a different behavior for the same
object at different levels. It is also a means to control endless loops

effectively. The inner elements have higher priority than the root elements
of the same type.

Hints for filter definitions
You can specify filter definitions in LDAP or DSML syntax.
- We recommend using LDAP filters because they are more compact and

easier to read.

- Note that LDAP filter definitions must be enclosed in brackets. For
example, use "(cn=RoleCatalogue)" instead of "cn=RoleCatalogue".

- If you need to specify values with special characters, for example '(' or '),
you have two options. For example, suppose you want to specify a value

of 'abc(def)’
- Use LDAP filter escaping:
. (cn=abc\28def\29)
~ - Use a DSML filter:
<matchFilter

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">
<dsml:equalityMatch name="cn">
<dsml:value>abc(def)</dsml:value>
</dsml:equalityMatch>

</matchFilter>"

See also the delivered sample rules for sequentially more complex
examples.

Related Topics

Collection
Collections
Collection Rule
Collection Rules

"Using Collections" in the DirX Identity User Interfaces Guide.

A.4.2. Collection Rules

A folder for collection rule objects.Use this tab to assign a name and a meaningful
description to the collection folder.

Name

the name of the folder.

173

Description

a description of the folder.
Related Topics

Collection
Collections
Collection Rule
Collection Rules

"Using Collections" in the DirX Identity User Interfaces Guide.

A.5. (Central) Configuration

The (central) configuration folder object contains a number of global parameters that
control the operations of the C++-based Server, workflow engine, agent controller,
scheduler and status tracker components.Be careful when changing these parameters,
because the changes you make can have a tremendous impact on DirX I[dentity runtime
operation.

The subtree under the Central Configuration object contains other important objects for
global configuration.

might be shared because it belongs to the Configuration folder".Be careful

0 All of these objects are marked with a red border and the text "This object
when editing such objects because this could affect other objects, too.

Use these tabs to set up the central configuration data.See the section "Basic Rules for
Central Configuration Object Parameters" for correct setting of the following properties:

Global Configuration
Name

the name of the central configuration definition.

Description
descriptive text for this object.

Version

the version of this configuration entry.

HA enabled

whether (checked) or not (unchecked) high availability is enabled for this domain.
Before checking this flag, make sure you set the other high availability parameters
correctly, especially those for defining the monitoring circle and the ports for backup
adaptors.

SSL

whether (checked) or not (unchecked) to secure connections between the Message
Brokers in this domain and their IMS clients with SSL/TLS.

174

Proposals

central configuration lists that can be used in mapping functions or other Tcl scripts.
Note: presently not in use.

Server
Polling Time

the time between the checks for urgent requests such as aborts and keep-alives. The
checks can be made by the C++-based Server or other components. The syntax
format is hh**mm**ss. The default is 5 seconds.

Keep Alive Time

the time between the C++-based Server's checks on whether static threads like the
scheduler and the status tracker are still running. If not, these components are
automatically restarted. The default is 5 minutes. The wait time until a new
component is started is calculated as 10 times the timeout defined in the
dxmmsssvr.ini file (per default 30 seconds) plus the polling time (see above) which
results per default to 10 x 30 +5 = 305 seconds (about 5 minutes). The syntax format is
hh**mm**ss.

Latency Factor

the latency factor, expressed as a percentage. DirX Identity uses this value when
calculating timeout values for workflows and jobs. Specifically, it multiplies a given
timeout value with this factor. The default is 20%. Workflow timeout values are
calculated as the sum of all job timeout values.

Thread Life Time

the time a thread can run in the C++-based Server. The default is 24 hours. Increase
this value if you have workflows that run longer than 24 hours. The syntax format is
hh**mm**ss.

Thread Cleaner Interval

the time between executions of the thread cleaner (part of the C++-based Server). The
syntax format is hh:mm:ss. The default is 30 minutes.

Encryption Mode
the attributes to be encrypted:

None

No encryption

AdminPW

Administrative passwords are encrypted (passwords of DirX ldentity’'s bind profiles
that are needed to connect to the connected directories).

Attributes&AdminPW
Attributes and administrative passwords are encrypted.

Status Tracker

175

176

Status Life Time

the default maximum time that status entries and related files will be retained
following execution of a workflow. The syntax format is hh:mm:ss. The default is 1
month (720 hours). You can use the Status Life Time property of a workflow
configuration object to set a workflow-specific status lifetime.

Status Compression Mode

Allows influencing the detail level and amount of status messages for all workflows
(default configuration). This switch can help reducing load on the status tracker or
simply avoid uninteresting status entries. These levels are available:

O - Detailed

Detailed messages are sent during the workflow lifetime (comypatibility mode,
default)

1- Compressed

Status messages are collected during the workflow run as far as possible and sent
at the very end of a workflow. This reduces the number of status messages by 50 %
or more.

2 - Minimized if OK
Only a workflow status entry is generated at the very end of a workflow if the

workflow ends with status OK. No activity status entries are generated and no data
is copied to the status area.

3 - Suppressed if OK

No status information is created at all and no data is copied to the status area if the
workflow ends with status OK.

You can use this default switch and you can set this feature at each workflow entry
individually.

Start Time

the start time for running the status tracker to delete status entries that have
expired.

Time Interval

the time between executions of the status tracker to delete status entries. The
syntax format is hh:mm:ss. The default is 24 hours.

Deviation

the maximum allowed deviation for running the status tracker to delete status
entries. This is a plus range around the Start Time. The syntax format is hh:mm:ss.
The default is 2 hours.

Monitor only Provisioning Errors

whether (checked) not (unchecked) monitor entries from the Java-based
Provisioning workflows contain only error messages or other types of messages as
well. By default, monitor entries for Java-based Provisioning workflows contain

messages like “INF(JOIN208): Object "cn=Alexander Gerber 5217,ou=accounts and
groups,ou=Intranet,o=sample-ts" successfully modified.” in addition to potential
error messages. Check this flag to suppress these types of messages and capture
only error messages in monitor entries. As this flag is evaluated inside the Java-
based Server, changing the flag does not immediately affect running Java-based
Servers. A Load IdS-J configuration will propagate this change to the running
Java-based Server. Internally the server periodically rereads/refreshes this flag
every 30 minutes.

Scheduler
Schedule Sync Interval

the interval between the scheduler’s checking of its schedule configuration objects.
Changing a schedule object in the DirX Identity Manager forces the scheduler to
reread the new schedule information. If this trigger mechanism does not work
correctly, the scheduler rereads all schedules regularly at the interval specified here.
The syntax format is hh**mm**ss. The default is 1 hour.

Disable Scheduling

enables/disables scheduling at all connected C++-based servers. You can also switch
this flag with the Disable/Enable Scheduling menu at the Schedules folder.

Specific Attributes
This tab allows you to set global parameters that are valid for all scenarios.

Sub-Folders
The central configuration object contains the following subfolders:

Agent Types
Connected Directory Types
Connector Types
DirX Identity Servers
GUI

JavaScripts
Messaging Services
Notifications
Resource Families
Services

Standard Files
Supervisors
Systems

TCL

Topics

Related Topics

C++-based Server
Specific Attributes
Status Handling
Workflows

177

A.5.1. Agent Types

A folder for agent type configuration objects.Use this tab to assign a name to the agent
type folder.

Name

the name of the folder.

Description
the description of the folder.

Related Topics

Agent Type

Agents

Agent

(Central) Configuration

A.5.1.1. Agent Type

The Agent Types selection is a folder for the property descriptions of all the standard agent
types supplied with DirX Identity.It allows for the extension of DirX Identity with new
agents.The details of these types are described by a corresponding XML file (for example,
the tabs and properties of the object) that is located in the folder Object Descriptions.

When you create a new agent type, it inherits the properties of one of the standard agent
types.Consequently, you only need to describe in the XML file the differences between your
new agent type and the standard one on which it is based.See chapter "Customizing
Objects" in the DirX Identity Customization Guide for details.

The Wizards folder contains all wizards defined for this agent type.You can define
additional wizards.

Because agents can have typical configuration files (for example, for import or export) you
can place these files underneath the corresponding agent type configuration object.These
central configuration files can then be referenced from any job, and edits to a central
configuration file object apply to all jobs that reference the object.If your environment does
not require this kind of centralization, you can keep the configuration files directly
underneath the corresponding job configuration object.In this case, the files are set up as
job-specific configuration files.

Use this tab to assign a name for the agent type.The properties shown in this tab are:

Name

the name of the agent type. This name must match the corresponding tag in the XML
file.

Description
the description of the agent type.

An agent type configuration object can be refined by an optional XML file configuration

178

object. If an agent type does not have an associated XML file, it is represented as a generic
agent type.

Agent type configuration objects can contain sub-objects; for example, Tcl script or "ini" file
templates.

Related Topics

Agent Type
Agents
Agent

XML File

A.5.2. Connected Directory Types

The Connected Directory Types selection is a folder for the property descriptions of all the
standard directory types supplied with DirX Identity. It allows you to extend DirX Identity
with new connected directory types. The details of these types are described by a
corresponding XML file (for example, the tabs and properties of the object) that is located in
the folder Configuration Objects.

Use this tab to assign a name to the connected directory type folder.

Name
the name of the folder.

Description
the description of the folder.

Related Topics

Connected Directory Type
Connected Directory
(Central) Configuration

A.5.2.1. Connected Directory Type

The connected directory type configuration object defines a particular type of connected
directory.The connected directory type object helps you to define new customer-specific
directory types and integrate already existing synchronization solutions into a DirX |[dentity
scenario with full control by the DirX Identity Manager.

When you create a new connected directory type, it inherits the properties of one of the
standard connected directory types.Consequently, you only need to describe in the XML file
the differences between your new connected directory type and the standard one on
which it is based.See chapter "Customizing Objects" in the DirX Identity Customization
Guide for details.

The Wizards folder contains all defined wizards for this connected directory type.Additional
wizards can be defined by the customer.

179

Because connected directories can have typical information (for example, the attribute
configuration information of a standard schema), you can place this information
underneath the corresponding connected directory type configuration object.These central
files can then be referenced from any connected directory, and edits to this central object
apply to all of these connected directories that reference the object.If this centralization is
not necessary, you can keep the files directly underneath the corresponding connected
directory configuration object.In this case, the files are set up as directory-specific attribute
configuration files.

Use this tab mainly to assign a name to the connected directory type.

Name

the name of the connected directory type. This name determines the display behavior of
all objects based on this type. For the related XML description see the Object
Descriptions folder beyond this object.

Description

the description of the connected directory type.

Type
the type of the connected directory. This field is used by the meta controller to
determine the channel type to be handled (see the conn_param(dir_type) references in
the control.tcl script). Typical values the standard script can handle are File and LDAP.

A connected directory type configuration object can be refined by an optional XML
configuration object. If a connected directory type does not have an associated XML file, it is
represented as a generic connected directory object.

Related Topics

Connected Directory Type
[_.connected_directories]
Connected Directory
Object Descriptions

XML File

Agent
Agent Types
Files

A.5.3. Connector Types

The Connector Types folder collects the set of all connector types known to DirX Identity.
There is a subfolder for each connector type. This allows you to extend DirX Identity with
new connectors. Currently, the only object you need to supply for a new connector is an
object description for the Set Password workflow. It is located in the folder Object
Descriptions and contains the list of modifiable properties for the workflow configuration
and the description how to present them in the Manager.

The Wizards folder contains all wizards defined for this connector type. This folder is

180

currently not used and is reserved for future extensions.
Use this tab to assign a name to the connector type folder.

Name

the name of the folder.

Description
the description of the folder.

Related Topics

Connector Type
(Central) Configuration

A.5.3.1. Connector Type

A connector type object defines a particular type of connector.With the help of the
connector type configuration object, the user is able to define new customer-specific
connector types and can thus integrate new custom connectors built with the Identity
Integration Framework into DirX ldentity.

Use this tab to assign the parameters for the connector type.The properties shown in this
tab are:

Name

the name of the connector type.

Description
the description of the connector type.

Version

the version of the connector type.

Programming Language

the programming language used. This value restricts the servers where this connector
can be deployed; C++ and C# type connectors can run within IdS-C, Java type
connectors can only run within 1dS-J.

Available values are:

C++

standard object-oriented C++ language

CH#

Microsoft's C# language (not yet available)

Java
Oracle's Java programming language

181

Shared Library

the shared library that implements this type of connector.

Connected Directory Type
the type of connected directory the connector can handle.

Connector type configuration objects can contain sub-objects; for example an "ini" file
template.

Related Topics

Connector Types
(Central) Configuration
INI File

A.5.4. DirX Identity Servers

A folder for the DirX Identity server configuration objects in the configuration database
under (Central) Configuration.

Name

the name of the folder.

Description
descriptive text for this object.

The folder contains all configured Java-based and C++-based Servers as sub-objects.
Related Topics

(Central) Configuration
C++-based Server
Java-based Server

A.5.4.1. Java-based Server

A.5.4.1.1. Adaptor - General

Adaptor entries reside below Java-based Server (IdS-J) entries and represent an adaptor
that reads events from an event source.

Use this tab to specify the following adaptor properties:

Name

the name of the adaptor.

Description
a description of the adaptor.

182

Active (read-only)

whether or not the adaptor is active.lf set, it indicates that this adaptor is loaded into the
Java-based Server.

Subscription ID (read-only)

the name of the adaptor. It must be unique within all the adaptors of the same Java-
based Server. When subscribing to IMS topics, it helps to build a unique client
identification together with the domain and 1dS-J name.

Wait before retry (ms)

the wait time before a retry after a connection problem to the Java Messaging Service
(IMS) has occurred (default: 30 seconds).

Encoding (read-only)
the encoding of the XML configuration.

Topic

the name of the queue from which the adaptor reads or the topic to which the adaptor
subscribes. If it subscribes to a topic, this is the part that identifies the type of messages.
The topic is built as follows: domain* prefix.*cluster

Broadcast interval (ConfigurationHandler only)

the interval in minutes at which the JMS list is broadcast to all subscribers
(PasswordListener).

Related Topics
Adaptor - Limits
Adaptor - Configuration

Java-Based Server - General
Manage Servers - Adaptors

A.5.4.1.2. Adaptor - Limits
Use this tab to specify the following properties:

Purger

removes already deleted events from the adaptor queue.

Interval (ms)
the interval between purger runs (default: 60 seconds).

Time Limit (ms)

the maximum time for a purger run (default: 15 seconds).

Priority
thread priority (default: 8).Value range is 1 (low) to 10 (high).

183

Pending Requests
defines upper and lower limits for the number of pending requests.

High Water

the maximum number of pending requests stored in this adaptor’'s workspace.If this
limit is reached, the adaptor stops reading events from the JMS queue.

Low Water

the number of pending requests stored in this adaptor's workspace when the server
starts reading events from the JMS queue again.

Repository
parameters for the adaptor-specific repository most-recently-used cache in memory.

MRU Cache Capacity (read-only)

units (requests) held in memory (default: 1500). The rest is kept in the file-based
repository.

MRU Segment Cache Capacity (read-only)
cache for faster access to the segment files (default: 50).

Related Topics

Adaptor - General
Adaptor - Configuration

Java-Based Server - General

Manage Servers - Adaptors

A.5.4.1.3. Adaptor - Configuration

This tab displays the complete XML definition for this adaptor configuration that is read as
part of the Java-based Server configuration during server startup.

You can see that many values in the XML definition are expressed as variables, for example:

<technicalDomain>$\{DN4ID(THIS)@dxmTechnicalDomain}</technicalDomain>

or

<interval>$\{DN4ID(THIS)@dxmSpecificAttributes(purgerinterval)?</inte

rval>

These variables are replaced by its values when the configuration is loaded. You can see the
resolved XML definition in the server.xml file in the logs directory of the Java-based Server.

184

Related Topics

Adaptor - General
Adaptor - Limits

Java-Based Server - General

Manage Servers - Adaptors

A.5.4.1.4. Java-Based Server - General

The Java-based Server (IdS-J) provides a runtime environment for Java-based workflows
running in a distributed environment.An instance of a Java-based Server must run on each
machine in the Connectivity domain where activities and connectors shall run.

The DirX Identity Java-based Server configuration object describes the configuration
information for one instance.The DirX Identity installation procedure automatically creates
a Java-based Server configuration object when selected during installation and
configuration on a machine.

Use the Java-based Server tab to specify the following properties:

Name

the name of the server.For the naming scheme, see the section "Naming Schemes".

Description
a description of the server.

State
the state of the server (read-only). Possible values are:

STARTED

the server was successfully started.

STOPPED
the server was intentionally stopped.

Service

the service object that specifies the IP address and port number of the DirX Identity
server performed at runtime. To display its properties, click the Properties icon on the
right.

Scheduler

whether (checked) or not (unchecked) the scheduler runs on this server. For each
domain, exactly one server must host the scheduler for Java-based workflows.

When you select design mode , You can display the server's XML

configuration in a Configuration tab. Changing the configuration requires
6 extensive knowledge of the Java-based Server configuration. The

configuration contains references to LDAP attributes that are resolved

185

during server startup (Load IdS-J Configuration does not reload this
configuration!). The resolved XML configuration can be found and checked
in install_path\ids-j-domain-Sn\log\server.xml.

If you change attributes in this tab, you must restart the Java-based Server.
Running the "Load IdS-J Configuration' command is not sufficient because

0 it only loads the workflow definitions. Server restart is also necessary if
attributes of a related object (service, system or messaging service) are
changed.

Related Topics

Java-based Server - Domain
Java-based Server - Connectors
Java-based Server - Repository
Java-based Server - Limits

Java-based Server - Resource Families
Java-based Server - Status and Auditing
Java-based Server - Configuration

Adaptor - General

Manage Servers - Adaptors

A.5.4.1.5. Java-based Server - Domain

Use this tab to define domain-specific parameters, including:

Domain

the name of the Provisioning domain on which this server operates.

Request Workflow Timeout Check (read-only)

whether (checked) or not (unchecked) this server hosts the Request Workflow Timeout
Check job for the Provisioning domain.The Request Workflow Timeout Check (previously
named Full Check) is a special job that regularly checks timeouts of request workflows
and their activities.If it detects a timeout, it sends a request so that the workflow engine
updates the workflow state and, for example, terminates the activity or workflow.The
Request Workflow Timeout Check job must run on exactly one server per domain.

Related Topics

Java-based Server - Connectors
Java-based Server - Repository
Java-based Server - Limits

Java-based Server - Resource Families
Java-based Server - Status and Auditing
Java-based Server - Configuration

Adaptor - General

186

Manage Servers - Adaptors

A.5.4.1.6. Java-based Server - Connectors

Use this tab to display a list of connectors and the following information about them:

Name
the name of the connector.

Version

the version of the connector.

Shared Library

the shared library that implements this connector.

Select a connector and click the Properties button on the right to display the properties of

this connector.

The list is populated and updated automatically during the DirX Identity
configuration procedure. If you want to install your own connectors, you
should create a corresponding Connector Type and include it into the table

to document this fact.

Changing attributes in this tab requires a restart of the |dS-J server. Using
the command "Load 1dS-J Configuration" is not sufficient because it only
loads the workflow definitions. Server restart is also necessary if attributes
of a related object (service, system or messaging service) are changed.

Related Topics
Connector Types

Java-Based Server - General

Java-based Server - Domain
Java-based Server - Repository
Java-based Server - Limits

Java-based Server - Resource Families
Java-based Server - Status and Auditing
Java-based Server - Configuration

Adaptor - General

Manage Servers - Adaptors

A.5.4.1.7. Java-based Server - Repository

Use this tab to display and edit parameters for repository control and backup.

Repository Control

187

Repository Folder

the folder of the persistent Java-based Server repository.All persistent information (for
example the dead letter queue and the adaptor repositories) are written to this
folder.The default is install_path/ids-j/repository.Specify a full path name.

Backup

You can define a regular synchronized backup for the Java-based Server and the DirX LDAP
server.The repository content is saved to a configurable location in a consistent state
(recoverable).To enable backup operation:

- Set the parameters in this tab that enable backup.
- Activate the real-time Joint Backup workflow.

- Specify a schedule.
Backup parameters include:

Active
enables/disables backup.

Backup Folder

the folder where the backups are stored. The default value is install_path/ids-j/backup.
The result is one zip file named account-nnnn-YYYYMMDD-HHMMSS
-JavaRepository.zip for all Java-based Server repositories. Specify a fully-qualified
existing path name. On Windows, you can use a shared network drive; but then the 1dS-J
service must run under a different account from the system account.

Note that during the backup procedure, all server activities are stopped.

Changing attributes in this tab requires a restart of the |dS-J server. Using
the command "Load 1dS-J Configuration" is not sufficient because it only
loads the workflow definitions. Server restart is also necessary if attributes
of a related object (service, system or messaging service) are changed.

Related Topics

Java-Based Server - General

Java-based Server - Domain
Java-based Server - Connectors
Java-based Server - Limits

Java-based Server - Resource Families
Java-based Server - Status and Auditing
Java-based Server - Configuration

Adaptor - General

Manage Servers - Adaptors

188

A.5.4.1.8. Java-based Server - Limits

Use this tab to display and edit parameters for tuning and optimization.
Pending Requests

The server reads external events via the configured adaptors and stores them in its
persistent workspace.Worker tasks can produce additional internal events.This section
allows you to specify a limit for the maximum number of events stored in the workspace.

High Water

the maximum number of events stored in the workspace after which the server should
stop reading external events.

Low Water

the number of events stored in the workspace at which the server should start reading
external events again.

the server checks this limit and the memory limit below. The first limit
reached stops reading external events.

Memory

The Java-based Server is configured to use a specific amount of memory. On the other
hand, it reads external events and produces internal ones. Use the fields in this section to
specify when the Java-based Server should stop reading external events and when it
should start reading them again.

High Water
the limit in % at which the Java-based Server stops reading external events.

Low Water
the limit in % at which the Java-based Server starts reading external events again.

GC Delay

the wait time in seconds after a garbage collection call. The garbage collector is called if
an adaptor was suspended after reaching the high water limit. The garbage collector
tries to free memory. If the low water mark is reached, the adaptor is re-activated.

the server checks this limit and the pending request limit. The first limit
reached stops the server from reading external events.

Disk Usage

The Java-based Server is configured to check disk usage through logging and repository
files. On the other hand, it reads external events and produces internal ones. Use the fields
in this section to specify when the Java-based Server should stop reading external events
and when it should start reading them again.

189

High Water

the limit (as a percentage (%)) at which the Java-based Server stops reading external
events.

Low Water

the limit (as a percentage (%)) at which the Java-based Server starts reading external
events again. At this point, warning messages are written to the server log file.

0 set both values to 100 if you do not want to run the disk usage check

Batch Queue

For better performance, the Java-based Server combines incoming requests to batch jobs
that are processed by worker threads together. This procedure significantly reduces
initialization per event.

Queue Size (default 200)

the maximum number of events per batch job. When this limit is reached, the batch job
is closed for further processing.

Timeout (default 1000)

the maximum time in milliseconds to wait between incoming events unless the batch
job is closed for further processing.

Tomcat

This part of the tab contains parameters of the embedded Apache Tomcat that you may
need to adapt to your environment. Tomcat is used by the Web Admin, Server Admin and
for request workflow handling.

Maximum No. of Threads

the maximum number of threads that are used by the embedded Tomcat container in
the server (default: 14).

Server-Specific Threads
This part of the tab contains some parameters that are related to specific server threads.

No. of WorkflowengineThreads

the number of threads that are used for the workflow engine itself which starts and
controls workflow activities (default: 2).

No. of ResultEntriesThreads

the number of threads that are used for processing the end result of realtime events
(default: 2). If you have a high amount of realtime events in your Identity environment,
then it would make sense to increase the number of result entries threads.

Changing attributes in this tab requires restarting the Java-based Server.
Using the command "Load IdS-J Configuration" is not sufficient because it

190

only loads the workflow definitions. Restarting the server is also necessary if
attributes of a related object (service, system, or messaging service) are
changed.

Related Topics

Java-Based Server - General

Java-based Server - Domain
Java-based Server - Connectors
Java-based Server - Repository
Java-based Server - Resource Families
Java-based Server - Status and Auditing
Java-based Server - Configuration

Adaptor - General

Manage Servers - Adaptors

A.5.4.1.9. Java-based Server - Resource Families

Use this tab to configure the resource families for each Java-based Server (1dS-3).This
mechanism allows for controlling the number of threads for specific purposes in this
server.As for load balancing, a subset of the messages is forwarded from one |dS-J to
another, a message can be processed on every |dS-J in the same domain.As a result, make
sure that all the resource families needed for running provisioning and request workflows
are available on every |dS-J. The number of threads per server and resource family will
indirectly influence the message load a server receives: the more slowly it processes
messages, the fewer messages it will receive.

Available

the list of available resource families that have not been assigned.
Note: You can change or extend this list under Configuration » Resource Families

Selected

the list of assigned resource families.For each resource family, you can define the
number of threads that shall run within this server.

Use the up- and down-arrow buttons between the two panes to add or remove resource
families.

Related Topics

Java-Based Server - General

Java-based Server - Domain
Java-based Server - Connectors
Java-based Server - Repository
Java-based Server - Limits

Java-based Server - Status and Auditing
Java-based Server - Configuration

Adaptor - General

191

Manage Servers - Adaptors

A.5.4.1.10. Java-based Server - HA (High Availability)

Use this tab to display and edit parameters for High Availability:

Automatic Monitoring (supervisor only)
whether (checked) or not (unchecked) the supervisor is running.

Monitor C++-based servers (supervisor only)

whether (checked) or not (unchecked) the supervisor hosted by this Java-based server
(running as a Java-based Server component) is responsible for automatically monitoring
all the C++-based Servers.If one of these servers is not available, the monitoring
supervisor moves its workflows, activities and the Status Tracker to another C++-based
Server.Note that this flag is evaluated only if Automatic Monitoring is checked.Set this
flag for only one Java-based Server.

Monitored Java-based Server (supervisor only)

the Java-based Server to be monitored.When High Availability is enabled, the adaptor
repositories of a monitored Java-based Server are backed up in real-time from the
backup adaptor in a monitoring supervisor, which runs as a component in a Java-based
Server.If the monitored server fails, the monitoring supervisor automatically (or an
administrator manually using Server Admin) restores the messages from the repository
backups and sends them to the Message Broker.

Supervisor Configuration (supervisor only)
the reference to the configuration entry for the supervisor.

A.5.4.1.11. Java-based Server - Status and Auditing
Use this tab to display and edit parameters for status handling and auditing.
Auditing - General

Status Life Time

the lifetime of status entries of statistic entries of successful performed workflows in the
monitoring area of the Connectivity database.

Status Life Time Error

the lifetime of status entries of statistic entries of workflows that failed in the monitoring
area of the Connectivity database.Usually this life time is longer than the life time of
successfully performed workflows.

Synchronous

whether or not synchronous auditing is enforced.When set, the initiating workflow waits
until the status entry / audit information is written to the status area or audit
queue.When clear, auditing occurs asynchronously later on.If a lot of audit information is
produced, it is possible that audit information is delayed for hours.Thus we recommend
to run the server in synchronous mode.

192

JIMS-based Auditing

whether or not audit XML files are generated. When clear, you need to provide the DirX
Audit IMS plug-in that delivers audit messages via JMS directly to DirX Audit.

Auditing - File-based

Audit Trail Folder

the path where the audit trail information for real-time workflows is written. By default,
the path is install_path*\ids-j\logs*.

Maximum No. of Records Per File

the maximum number of messages an audit file can contain (default: 10000). If this
number is reached, the file is closed and a new file is opened.

Auditing - IMS-based

Bind Profile

a link to a bind profile holding a user name and password. We recommend creating a
JMS bind profile at the corresponding Identity Store connected directory and setting the
anchor to JMS. The specified user should have access rights sufficient for writing into the
gueue specified in IMS Queue Name.

URL Message Broker

the URL of the message broker that you have configured in the DirX Audit Configuration
Wizard.

IJMS Queue Name

the name of the message queue that you have configured in the DirX Audit
Configuration Wizard for the DirX Identity IMS collector.

Audit Trail Folder

the directory in which the JMS plug-in stores the audit messages as temporary files
when the JMS message broker is not available (one message per file).By default, the
directory is local to the server.This is indicated by the placeholder ${IDM_HOME} which
represents the home folder of the Java-based Server.If you specify a relative path, keep
in mind that it is generated relative to the working folder of 1dS-J (dxi_install_path/ids-j-
domain-Sn/bin).

Logging

This section defines parameters for the logging files (server-.txt or warning-.txt). These
parameters include:

Logging Files Folder

the fully-qualified path where the IdS-J writes its warning and server logging files. By
default, the path is install_path\ids-j\logs.

Maximum No. of Records Per File

the maximum number of messages a logging file can contain (default: 10000). If this
number is reached the file is closed and a new file is opened.

193

Maximum No. of Files

the maximum number of logging files in the logging directory (default: 100). If this
number is reached, the oldest file is deleted before a new one is opened.

server.xml| Dump Interval (sec)

the interval at which the server writes to the server.xml file (default: 3600 seconds =1 h).
This file contains the complete configuration information updated at the selected
interval. This information is important for analysis if the server encounters problems.

Maximum No. of Overview Files

the maximum number of overview files (default: 500) written by the Web Admin into the
path install_path\ids-j\logs\overview.

Eventlog Configuration

Enable (default: true)
enables/disables logging to the Windows event viewer.

Level (default: Warning)
the level of logging from Info to All.

Syslog Configuration

Enable (default: true)
enables/disables syslog information generation on UNIX platforms.

Host
the host where to send the syslog information.

Port
the port where to send the syslog information.

Level (default: Warning)
the level of logging from Info to All.

Changing attributes in this tab requires a restart of the IdS-J server. Using
the command "Load IdS-J Configuration" is not sufficient because it only
loads the workflow definitions. Server restart is also necessary if attributes
of a related object (service, system or messaging service) are changed.

Related Topics

Java-Based Server - General
Java-based Server - Domain
Java-based Server - Connectors
Java-based Server - Repository
Java-based Server - Limits

Java-based Server - Resource Families
Java-based Server - Configuration

194

Adaptor - General
Manage Servers - Adaptors

A.5.4.1.12. Java-based Server - Configuration

This tab displays the complete XML definition for this adaptor configuration that is read as
part of the Java-based Server configuration during server startup.

You can see that many values in the XML definition are expressed as variables, for example:
<technicalDomain>$\{DN4ID(THIS)@dxmTechnicalDomain}</technicalDomain>
or

<interval>$\{DN4ID(THIS)@dxmSpecificAttributes(purgerinterval)}</inte
rval>

These variables are replaced by their values when the configuration is load. You can see the
resolved XML definition in the server.xml file in the logs directory of the Java-based Server.

This tab is only visible if design mode is selected in the Identity
Manager toolbar.

Related Topics

Java-Based Server - General

Java-based Server - Domain
Java-based Server - Connectors
Java-based Server - Repository
Java-based Server - Limits

Java-based Server - Resource Families
Java-based Server - Status and Auditing

A.5.4.1.13. Domain for Identity Servers

This tab displays all common properties for the Java-based Servers of a domain.These
properties include:

Domain

the domain name.
Related Topics

Java-Based Server - General
Java-based Server - HA (High Availability)

195

A.5.4.1.14. Manage Servers - Adaptors

Some of the JMS adaptors - called the permanent adaptors - can run in parallel on each
Java-based Server.Others - the topic subscribers - must run on exactly one server per
domain.You can disable a permanent adaptor on one or more Java-based Servers; for
example, if you want to reduce load from one server.For the subscriber adaptors, you can
select the server on which they should run.

- On the left side, you can see all installed Java-based Servers for the selected domain.
- On the top, you find the names of all available adaptors.

- In the middle, you can assign an adaptor to a specific Java-based Server or you can
disable it.

workflows are active and loaded and that all necessary resource families

0 If you assign an adaptor to a specific server, be sure that the corresponding
are assigned to that server.

Related Topics

Adaptor - General

Java-Based Server - General

Manage Servers - Request Workflow Timeout Check

A.5.4.1.15. Manage Servers - Request Workflow Timeout Check

The Request Workflow Timeout Check component runs on exactly one Java-based Server
per domain.This tab allows you to select this server.The left side of the tab displays the
installed Java-based Servers.

Related Topics

Adaptor - General

Java-Based Server - General

Manage Servers - Adaptors

A.5.4.1.16. Manage Servers - Supervision

Each Java-based Server can monitor another Java-based Server in the same domain.

- The left side of the tab displays the installed Java-based Servers.
- The column "Automatic Supervision" shows whether supervision is active.

- The column "Supervised Server Name" shows the display name of the server to be
monitored (an empty field means monitoring is not configured)

Related Topics

196

Adaptor - General
Java-Based Server - General
Manage Servers - Adaptors

A.5.4.1.17. Manage Servers - Schedule

The scheduler for Java workflows runs on exactly one Java-based Server per domain. This
tab allows you to select this server. The left side of the tab displays the installed Java-based
Servers.

Related Topics
Adaptor - General
Java-Based Server - General

Manage Servers - Adaptors

A.5.4.2. C++-based Server

A.5.4.2.1. C++-based Server - General

The C++-based Server provides a runtime environment for the meta controller and the DirX
Identity agents on distributed machines. An instance of a C++-based Server must run on
each machine in the meta directory environment on which an agent is to run.

The C++-based Server configuration object describes the configuration information for one
instance of a C++-based Server. The DirX Identity installation procedure automatically
creates a C++-based Server configuration object when it installs a C++-based Server on a
machine.

Use this tab to view and set the properties of a C++-based server:

Name

the display name of the server.

Description
a description of the server.

Version

the version number of the server.

Server Type

type of this server. Possible values are:

Primary

each DirX Identity Connectivity domain must have a primary server (this is the first one
that was installed). The primary server runs the Status Tracker by default.

197

Secondary
additional servers in a domain are marked with this value.

Status Tracker

enables/disables the Status Tracker component for this server. There should only be one
server in with the Status Tracker is running. If you change this flag, you must restart the
service.

During startup, the server checks whether the registered flag is set. If not, it simply
registers. If it is set, checks are performed. The parameters in the INI file are checked
against the parameters in the configuration database. If the parameters are correct, the
server is registered. If not, the startup process is aborted. This mechanism prevents two
different servers from registering at the same C++-based Server object (which could result
in a lot of confusion).

C++-pbased Server startup is controlled by the dxmmsssvr.ini file in the path
install_path\DirX Identity\server. All necessary startup parameters are defined there.

Related Topics

Service

C++-based Server - SOAP Listener
C++-based Server - SPML Receiver
C++-based Server - Configuration
C++-based Server - Paths

C++-based Server - Agents

C++-based Server - Agent Server State
C++-based Server - IMX Access
Standard Files

A.5.4.2.2. C++-based Server - SOAP Listener

Use this tab to view and edit the parameters of the C++-based SOAP listener.

Soap Service

the name of the related SOAP service. To display its properties, click the Properties icon
to the right.

Socket Accept Timeout

the C++-based Server commmunication parameter that controls how quickly the server
reacts to control events like configuration changes or requests to shut down. The value
should be in the interval between approximately 100 and 1000 milliseconds.

Socket Receive Timeout

the C++-based Server communication parameter that defines how long the C++-based
Server should wait for data sent to it via the SOAP interface. This value depends on the
workload of the communicating partner, mostly the Java-based Server. If you experience
"Receive timeout" errors, you should increase the value.

198

Thread Check Interval

the interval in milliseconds that controls how often the C++-based Server adjusts the
number of threads. This value should be approximately 1to 3 seconds. In highly dynamic
environments (where work load is changing quickly), set it to a lower value.

Accept / Retry number

the number of times the C++-based Server should try to accept a connection before it
generates a fatal error.

Related Topics

C++-based Server - General
C++-based Server - SPML Receiver
C++-based Server - Configuration
C++-based Server - Paths

C++-based Server - Agents

C++-based Server - Agent Server State
C++-based Server - IMX Access

A.5.4.2.3. C++-based Server - SPML Receiver

Use this tab to view and edit the parameters of the C++-based SPML receiver.

URL Prefix
the prefix of the URL of the SOAP service (default: dxm.idsc).

Min. Number Receiver Threads

the minimum number of threads in the C++-based Server that receive SOAP
connections and interpret its data.

Max. Number Receiver Threads

the maximum number of threads in the C++-based Server that receive SOAP
connections and interpret its data. For ideal server performance, there should be one
receiver thread for every configured connector thread. You only set the minimum and
maximum values here; the actual number of threads is controlled automatically by the
server depending on the current workload.

Low Water Mark
the low-water mark of the SPML receiver ICOM queue (currently not used).

High Water Mark

the maximum number of requests that the C++-based server can accept without
pushing them to the connectors. If some connectors do not work, the server accepts up
to this number of requests and then refuses further requests. When the connectors start
working again, they process the queued requests. The queue is deleted when the server
is restarted.

ICOM Timeout

the interval at which the C++-based Server checks its internal queues. This value should
be approximately 150 milliseconds.

199

Related Topics

C++-based Server - General
C++-based Server - SOAP Listener
C++-based Server - Configuration
C++-based Server - Paths

C++-based Server - Agents

C++-based Server - Agent Server State
C++-based Server - IMX Access

A.5.4.2.4. C++-based Server - Configuration

Use this tab to manage services and their limits.
Services:

Service

the service object that contains the IP address and port number of the DirX Identity
server. To display its properties, click the Properties icon on the right.

File Service:

Buffer Size

the buffer size used by the file service queue (in bytes). The configured size can be
anything between 32 KB (32768) and 1 GB (1073741824), the default value is1 MB
(1048576). The size must be higher than the size of the biggest file transferred between
two different C++-based Server instances.

Encryption Mode
the encryption mode for the transferred files. Select from the following values:

NONE
transfer in clear text

Scrambled

transfer in scrambled format (not readable but no high security)

Encrypted
transfer in encrypted format (not readable with high security)

Limits:

Max number of threads

the maximum number of threads that can be running in parallel in the server. The
default value is 512, and you can only decrease this number because it is the maximum.

The required number of threads for a workflow can be calculated as: 1 +
number_of_activities. Thus a workflow with 2 activities needs 3 threads
during runtime. If a workflow runs distributed, the threads are distributed
accordingly as defined.

200

KeyGet Timeout

the wait time for the agent to get the decryption key from the DirX Identity server
during startup (in seconds; the default value is 100). Set this time to a slightly higher
value if the agent runs on a slow machine.

Related Topics:

C++-based Server - General
C++-based Server - SOAP Listener
C++-based Server - SPML Receiver
C++-based Server - Paths

C++-based Server - Agents

C++-based Server - Agent Server State
C++-based Server - IMX Access

A.5.4.2.5. C++-based Server - Paths

Use this tab to manage C++-based Server paths.
Path Definitions

Installation Path

the pathname of the server’s installation directory. Do not change this field because it is
handled automatically by the installation routine.

Work Path

the pathname of the server’'s current working directory. All agents run with relative
paths use the server’'s current working directory.

Status Path

the pathname for the directory where status entry files produced by workflow runs are
stored. On Windows, a UNC path can also be used.

Shared Paths

If you have set up shared file systems to connect your machines in the DirX Identity domain
with high performance, you must configure the information here. This information is used
by both the C++-based server and the DirX Identity Manager (if it resides on a machine
where a C++-based Server exists - otherwise you must set up the information in the
bindprofile.xml file).

Use this part of the tab to define mapping information between the local file path and the
remote file path. For each shared file definition, set one line in the table:

Server

the server to which you have access via the shared file system.

Shared Path
the path through which the remote server file system is accessible.

201

Target Path

the path on the remote server that needs to be mapped.

Example 4. Shared Paths

A shared file system exists between the local machine and the remote machine with
the C++-based Identity Server name MyRemoteOne. You can access the shared files
via the path G:\ from your local machine. The path on the remote machine is
C:\Program Files\Atos\DirX Identity\work. Then the parameters are:

Server = MyRemoteOne
SharedPath = G:\
TargetPath = C\\Program Files\Atos\DirX Identity\work

Let's assume the file C:\Program Files\Atos\DirX Identity\work\wfl\actl\data.ldif shall be
accessed via workflow wfl and activity actl. Then DirX Identity checks whether one of
the target paths fits with the first part of the file name. If it does, the file name is
changed to G:\wfl\actl\data.ldif. If no hit is found, the file is transferred to the work
directory on the local machine ..\work\wfl\act2\data.ldif via the file service.

Related Topics

C++-based Server - General
C++-based Server - SOAP Listener
C++-based Server - SPML Receiver
C++-based Server - Configuration
C++-based Server - Agents

C++-based Server - Agent Server State
C++-based Server - IMX Access

Standard Files
Files

A.5.4.2.6. C++-based Server - Agents

Use this tab to list all agents that are installed on the same machine as the respective C++-
based Server. The tab shows two tables:

Agents

lists all agents that are installed on the machine where this C++-based Server resides
(these entries are links to the corresponding agent object). Use the buttons to the right
of the table to add and delete entries.

Versions

lists all agents and their version numbers that are installed where this C++-based server
resides. You should use this information for reference during debugging or when errors
are encountered. Use the buttons to the right of the table to add and delete entries.

0 Both lists are filled and updated automatically during the DirX Identity

202

installation procedure. If you want to install your own agents, you should
edit both tables to document this action.

Related Topic

Agent

C++-based Server - General
C++-based Server - SOAP Listener
C++-based Server - SPML Receiver
C++-based Server - Configuration
C++-based Server - Paths

C++-based Server - Agent Server State
C++-based Server - IMX Access

A.5.4.2.7. C++-based Server - Agent Server State

Use this tab to view the status of the C++-based Server and set its state.

Registered

whether the server is running. Registered is checked and not registered is unchecked.

Start Time

the time stamp for the last activation of the server.

End Time

the time stamp for the last termination of the server. If this field is empty, the server is
currently running.

Disable Scheduling

enables/disables scheduling of this server. You can disables scheduling of all C++-based
Servers with the Disable Scheduling flag at the central configuration object.

Related Topics

C++-based Server - General
C++-based Server - SOAP Listener
C++-based Server - SPML Receiver
C++-based Server - Configuration
C++-based Server - Paths
C++-based Server - Agents
C++-based Server - IMX Access

A.5.4.2.8. C++-based Server - IMX Access

Use this tab to view and edit the parameters of the C++-based server JMX access.

JIMX Service

the name of the JMX access service. Click the Properties icon to display additional
properties.

203

JIMX URL Prefix
the prefix of the IMX Access URL.

IMX Accept Timeout (ms)

the C++-based Server commmunication parameter that specifies how fast the server
reacts to control events like configuration changes or requests to shut down. Specify a
value between 100 and 1000 milliseconds.

JIMX Receive Timeout (ms)

C++-based Server communication parameter that specifies how long the C++-based
Server waits for receiving data over JMX. This value depends on the workload of the
communication partner. Increase this value if "receive timeout" errors occur.

Related Topics

C++-based Server - General
C++-based Server - SOAP Listener
C++-based Server - SPML Receiver
C++-based Server - Configuration
C++-based Server - Paths

C++-based Server - Agents

C++-based Server - Agent Server State

A.5.4.2.9. C++-based Server - Connector

A connector object defines a connector. It is a sub-object of a C++-based Identity Server
object (IdS-C). A connector represents an instance of a connector type definition.

Use this tab to assign the parameters for the connector. The properties shown in this tab
are:

Name

the name of the connector.

Description
the description of the connector type.

Version

the version of this definition.

Connector Type

the corresponding connector type object. Allows running several connectors for one
connected directory.

Is Active

activates/deactivates the connector. Changing this parameter requires restarting the
corresponding server.

Connected Directory
the connected directory with which this connector works.

204

Bind Profile

the relevant bind profile of the linked connected directory to login.

Minimum Number of Threads

the minimum number of threads of this connector type that run on this C++-based
Server to process the corresponding requests.

Maximum Number of Threads

the maximum number of threads of this connector type that can run on this C++-based
Server to process the corresponding requests. Set this number higher when you await a
high workload for the connector. Set maximum to 1 when you have some connector
whose implementation is not thread-safe

Low Water Mark

low-water mark of the connector’s internal queue.

High Water Mark

high-water mark of the connector's internal queue.

ICOM Timeout
the ICOM timeout in milliseconds.

Logging Number

the number of the serviceability logging component. The range can be between 1and
10. Higher numbers define more detailed logging.

Related Topics

Connector Types
(Central) Configuration

A.5.4.2.10. Get Server State

You can request server state information by opening any of the C++-based Server objects
(located in the Expert View). Right-click on the object and then select Get Server State.

A window opens that shows all objects and their state in this server (click Details to see all
of the information). The window is refreshed automatically every 15 seconds. This window
can stay open while you work with DirX Identity Manager in parallel (for example, you can
start workflows and then watch the objects appear and disappear in the server state
window).

To abort a workflow, right-click it in the list and then select Abort workflow. Note: aborting
a workflow does not kill running agent processes when the Abort Execution Allowed flag is
not set in the corresponding agent object.

StartUpTime

start time of the server and time the server is on-line (local time, difference to GMT is
indicated).

205

The meaning of the columns in the window for each component is:

Name

the component name (for non-standard components, the DN).

Type
the component type (scheduler, status tracker, workflow engine, agent, and so on).

InstID
the unique instance ID.

Start time
the start time of the component (local time).

Disabled

whether or not the scheduler component is disabled.

LastMsgType
the last received message type (create, execute, ...).

Ack
the number of acknowledge messages sent.

IdleTime

the amount of time that the component has been waiting for requests.

ActiveTime
the amount of time that the component has been processing a request.

LastMsgReturn
the last acknowledge return code sent.

A5.5. GUI

A folder for extensions to DirX Identity Manager's graphical user interface.Use this tab
mainly to assign a name to the folder.

Name

the name of the folder.

Description
the description of the folder.

Related Topics

(Central) Configuration

206

A.5.5.1. Extensions

A folder for DirX Identity Manager user interface extensions (virtual object extensions).
The properties shown in this tab are:

Name

the name of the folder.

Description
the description of the folder.

The files from the folder extensions are automatically downloaded only during startup of
the DirX Identity Manager (file systemn folder: install_path\Gui\conf\extensions).So don't
forget to restart the DirX Identity Manager when you change any of the files in this folder.

Related Topics

(Central) Configuration
GUlI
XML File

A.5.5.2. Report

The report dialog shows in the upper list all reports that can be used for the selected
object.Only one object can be selected at a time.The pre-configured reports are:

- Generic - outputs the report information in a generic format.All attributes of all
contained objects are displayed.This report in XML format is especially useful for further
processing.

- object - reports the objects in a similar format as shown at the user interface level.This
report type in HTML format is targeted for documentation.You can include the result
easily into your documents.

You can also define your own reports.For information about how to set up your own
reports, see the section "Customizing Status Reports" in the chapter "Customizing
Auditing" in the DirX Identity Customization Guide.

The options in the report dialog are:

- Report List - show the list of available pre-configured reports.
- Search Base - display the selected object. You can change it here.

- Search Scope - choose the search scope. Available options are:
BASE OBJECT - the report will only contain the selected object.
ONE LEVEL - the report will only contain the children of the selected object (the
selected object is not contained!)
SUBTREE - the report will contain the selected object and the whole set of children at
any depth.

e some reports cannot work with all options.

207

- Type - select the output format. Available options are:
XML - pure XML format. Best suited for further processing with XSLT processors or
report tools with XML interface.
HTML - standard HTML format. Can be included easily into your documentation.

- Output to Viewer - whether (checked) or not (unchecked) the report result is displayed
in a new window with a simple HTML or XML viewer.

- Output File - when Output to Viewer is not checked, you can select the output file

name and location here.

Select Run Report to start the report or Cancel to exit the report dialog.

entries or you use very detailed reports) Java could run out of memory. Be

0 If you try to report a huge amount of data (for example you selected a lot of
sure to have enough memory (or increase the Java memory accordingly).

Here are some recommendations for running reports on objects:

- Reporting a job or connected directory object should not be a problem.

- Do not report a very complex object (like the complete default application scenario or a
folder with a lot of workflows). Report only one workflow at a time.

- Do not use the internal viewer for a large amount of data. Use for example the Internet
Explorer instead (but this tool also has restrictions regarding the maximum size of HTML
files).

A.5.5.3. Report Definition
The Report Definition object contains the following items:

Name

the display name of the report definition object

Description
a text description of the report definition object

Version

the version of this object

Content Type

restricts the usage of this report definition. For example, selecting Workflow in this field
means that this report can only be used for objects of type workflow.

Content tab

the producer and consumer definitions in XML format. See the section "Customizing
Status Reports" in the chapter "Customizing Auditing" in the DirX Identity
Customization Guide for details.

Format tab

the XSLT conversion rules. See the section "Customizing Status Reports" in the chapter

208

"Customizing Auditing" in the DirX Identity Customization Guide for details.

A.5.5.4. Report Properties

Report properties specify the behavior of the report agent.

Search Base
the distinguished name at which to start the search.

Report Name
the name of the report file.

Report Output Format

the format of the output. Possible values are:
XML - XML format
HTML - HTML format

Related Topics

Files
Content

A.5.5.5. Reports

A folder for DirX Identity Manager report definitions. Use this tab to assign a name to this
folder.

Name
the name of the folder.

Description
the description of the folder content.

Related Topics

(Central) Configuration
GUI
Report

A.5.6. JavaScripts

The JavaScripts folder stores Java scripts that can be called from all Java-based workflows.
Create your own folders if you need to extend DirX Identity with your script extensions.

The scripts provided here are used to define the mapping for password change workflows.
The statistics script defines the calculation of the statistics information for status entries.

Use this tab mainly to assign a name for the JavaScript folder. The properties shown in this
tab are:

209

Name

the name of the folder.

Description
the description of the folder.

Related Topics

(Central) Configuration
JavaScript Content
JavaScript File

A.5.6.1. JavaScript Content

Use this tab to edit the content of a JavaScript file.JavaScript files have pure text content
and can therefore be edited with any text editor.DirX Identity Manager provides a simple
editor control for this purpose.The two buttons below the editor allow you to export or
import JavaScript files.

Import text...

click to import a text file which will then replace the current content of the JavaScript
file.A file browser dialog is shown to select the file to be imported.

Export text...

click to export the current content of the JavaScript file into an external text file A file
browser dialog is shown to selected the desired directory and to type in the name of the
text file.

Related Topics

JavaScript File

A.5.6.2. JavaScript File

JavaScript files are used in DirX Identity to define JavaScript user hooks and programs.

Use this tab mainly to assign a name to the JavaScript file object.The properties shown in
this tab are:

Name

the name of the JavaScript file.

Description
the description of this object.

Version
the version number of this object.

Related Topics

210

(Central) Configuration
JavaScript Content

A.5.7. Messaging Services

A folder for the messaging service configuration objects in the configuration database
under the folder configuration.Use this tab to name the folder.

Name

the name of the folder.

Description
the description of the folder.

For messaging, the Apache Active MQ is used.A list of all installed message brokers is given
in this folder.

There are two installation options:

- Multiple message brokers sharing one database for persistent messages. Only one
broker at a time is accessing the database and accepts client connections. The shared
database has to be located on a sheared network drive.

- Single message broker installation. The database can either be located on local drive or
shared network drive.

The clients get their connection information from LDAP, where the installation procedure
has stored the necessary data. Therefore, only message brokers installed by the DirX
Identity installation procedure can be accessed by the clients. They use a static list of
brokers.

For High Availability and failover, the ActiveMQ operations are used. If the accessed broker
fails, the next broker takes over. The decision of which broker is the next is determined by
the fastest exclusive access to the database.

Related Topics

(Central) Configuration
Messaging Services

A.5.7.1. Messaging Service - Failover Transport Options

By default, this field is empty and the default failover configuration is used. We strongly
recommend that you do not change the configuration, as it affects broker-to-broker and
client-to-broker coommunication. This field can be used for project-specific changes.

If you use the failover transport options, the syntax is as follows:
type value

where type and value are separated by a space character. Keep in mind that ActiveMQ
requires this option to be specified in case-sensitive format.

21

Example:

maxReconnectAttempts 5

For details on the failover options see the Active MQ documentation:
https://activemaq.apache.org/failover-transport-reference.html.
Related Topics

Messaging Services

A.5.7.2. Message Broker

The message broker object represents an ActiveMQ message broker. Use this tab to view
and change the parameters of a message broker. Parameters include:

Name

the name of the message broker used internally and as the operating system service
name.

Description

a description of the message broker.

Message repository

the location of the database for persistent messages. In case of multiple brokers, this
database has to be located and accessible on a shared network drive

Service

the name of the service, including connection parameters like port number, SSL usage
and client authentication

Related Topics

Messaging Services

A.5.7.3. Message Broker - Transport Options

By default, this field is empty and the default failover configuration is used. We strongly
recommend that you do not change the configuration, as it affects broker-to-broker and
client-to-broker communication. This field can be used for project-specific changes.

If you use the transport options, the syntax is as follows:
type value

where type and value are separated by a space character. Keep in mind that ActiveMQ
requires the option to be specified in case-sensitive format.

Example:

212

https://activemq.apache.org/failover-transport-reference.html

wireFormat.maxInactivityDurationInitalDelay 30000

For details on the transport options see the Active MQ documentation:

https://activemg.apache.org/configuring-transports.html.

A.5.7.4. Status Tracker (Topic)

Messages covering monitoring information on Tcl-based workflows are published to the
Status Tracker topic. The status tracker runs on exactly one C++-based Server, subscribes to
this topic and stores the message information into the Monitor area of the Connectivity
database.

0 This tab may not be visible depending on the messaging service in use.

The tab shows all the properties of the status tracker message topic. It is strongly
recommended that you do not edit any of the fields shown here since this could damage
the current installation!

Prefix

the prefix for the status tracker queue (for example, Dxm.statustracker).

Subscriber Queue

the subscriber queue for the status tracker queue (for example,
Dxm.statustracker.subscription).

Stream

the stream for the status tracker queue (for example, Dxm.statustracker.STREAM).
Related Topics

Messaging Services

A.5.8. Resource Families
A folder for DirX Identity resource family definitions.
Use this tab to assign a name to this folder.

Name

the name of the folder.

Description
the description of the folder content.

Related Topics

Resource Family

213

https://activemq.apache.org/configuring-transports.html

A.5.8.1. Resource Family

Resource families control the deployment of activities on Java-based Servers.You can use
resource families to control the load distribution of certain workflow types between Java-
based Servers.However, because Java workflows can be distributed over all Java-based
Servers of one domain, you should make sure that you assign each relevant resource family
to each Java-based Server.

On one side, activities must be associated with resource families - each activity requires a
certain resource family.On the other side, Java-based Servers provide resource families.An
activity can only be processed on servers that host the required resource family.

A resource family is an abstract entity and represents a set of inter-changeable resources of
some type.Typically these are connected directories of some type (LDAP or ADS or ...).If you
need to access several connected directories of the same type, use different instance-
specific resource families (for example LDAP1, LDAP2, ..).Another example can be a
specialized system that can be used for encryption or other time-consuming tasks.

Use this tab to enter the properties of a resource family object.The items shown in this tab
are:

Name

the name of the resource family.
0 do not use blank spaces in the name!

Description
the description of the object.

When you assign a specific resource family to a Java-based Server, you can configure the
number of threads that will be created for this resource family on this server.

Related Topics

Java-based Server - Connectors
Java-based Server - Resource Families
Resource Families

A.5.9. Services

A.5.9.1. Service

The service configuration object describes the configuration information for a particular
service.Use the service configuration object to describe the different services in use in the
Identity domain.A service configuration object can provide full or partial information about
the service, such as its location within the network (IP address and/or server name), port
numbers and a link to the corresponding system object on which it runs.

Name

the display name of the service object.

214

Description

A description of the service.

Version

the version number of the service object.

Server Name

the server name, if the service name is not sufficient or needs to be different when
several access methods to the service are necessary (for example, per LDAP, which
requires the IP address and port, or per native API, which requires a specific server
name).

IP Address

the TCP/IP address of the server. This can be a number such as 218.34.52.12 or a DNS
name. Use of DNS names is recommended.

Note: Due to compatibility reasons, the batch type workflows use this field. This field is
not used by the IdS-J server and its components (workflows etc.). Instead they use the
corresponding field in the system object.

Data Port
the data port number of the service for connections that do not use SSL.

SSL

whether (checked) or not (unchecked) the service requires SSL. Set this flag if this service
requires a secure SSL connection (in this case, the Secure Port field is used instead of the
data port).

Client Authentication

whether (checked) or not (unchecked) the service requires client authentication.

Secure Port
the secure port number of the service. Use this field to set up SSL connections.

User Name

the user name used for authentication when connecting to the mail server. This field is
only shown when a mail service is configured (the attribute
dxmSpecificAttributes(ismailservice) is set to true).

User Password

the user password used for authentication when connecting to the mail server. This field
is only shown when a mail service is configured (the attribute
dxmSpecificAttributes(ismailservice) is set to true).

System

the system on which the service runs. To display its properties, click the Properties
button on the right.

Related Topics

215

Messaging Services
C++-based Server
Connected Directory
System

A.5.9.2. Services

A folder for the service configuration objects in the configuration database under the folder
configuration.

Name
the name of the folder.

Description
descriptive text for this object.

Within a property page, the content of this folder is shown as a pop-up list of a combo box:

Service

the service object currently used by the object whose properties are displayed.Use the
arrow button to pop up the list of all available service objects in the service folder.Use the
Properties button to display the properties of the currently selected service object.

connected directory copy mechanism will keep these structures for copied

0 Service folders can be used to reflect customer-specific structures.The
objects.

Related Topic

(Central) Configuration
Service

A.5.10. Standard Files

This folder allows defining standard files that are handled by the IdS-C server by default.If
an agent writes such a file (defined by its file name), the server handles it as if it were an
individual definition for this agent.

Name

the name of the folder.

Description
descriptive text for this object.

You can define all types of files here, for example Notification files, INI files or Tcl scripts.
Related Topics

Files
INI File

216

Tcl Script

A.5.11. Supervisors

A.5.11.1. Supervisor

The supervisor controls other DirX Identity components in a high-availability environment
to detect problems and to inform administrators or perform an automatic fail-over
procedure.The properties of a supervisor object are:

Name

the name of the object.

Description
the description of the object.

Version

the version number of the object.

*Notification

the link to a notification object that allows sending e-mail to an administrator if
problems occur.

Mode

the mode the supervisor performs currently. Switch the mode to influence the
supervisor operation.

Stop

the supervisor performs a controlled stop as soon as possible and ends the supervisor
program.

Suspend

the supervisor performs a controlled stop as soon as possible and waits in a loop for
further commands. Use this value if you intend to reconfigure parts of the active
configuration. Switch to operate after re-configuration.

Operate

the supervisor performs normal operation.

Active Configuration

reference to the active configuration entry under the supervisor parent node. If Mode is
set to Operate, this configuration is active and the supervisor controls its elements.
Choose another configuration to reconfigure this one as active configuration.

Automatic Failover

enables/disables automatic fail-over. If set, the supervisor performs automatic fail-over. If
clear, the supervisor informs the administrator via e-mail about the problem.

217

Initial Delay

the amount of time the supervisor is to wait after startup or re-configuration before
checking the components. This delay allows the components to start up and run
correctly before the supervisor checks them.

Sleep Time
the interval to sleep after all checks.

Wait Tolerance

the time period to wait before failure is assumed.If a component does not respond
within the wait tolerance, a failure is assumed.The supervisor informs the administrator
via notification (it also starts to perform the automatic fail-over routine if Automatic
Failover is activated).

Related Topics

C++-based Server
Supervisor

Supervisor - Configuration
Supervisor - Server

A.5.11.2. Supervisor - Configuration

Each subentry below the supervisor entry can contain a complete (possible) configuration
in a high availability environment.It can contain several high availability server objects.Use
this tab to set up a Tcl-based supervisor configuration or a Java-based supervisor
configuration.

The properties of a supervisor configuration object are:

Name

the name of the object.

Description
the description of the object.

Version

the version number of the object.

Status (Tcl-based supervisor configuration only)

the status of this configuration entry. Possible values are:

INACTIVE
this configuration is currently not used

ACTIVE

this is the active configuration entry

218

Monitoring Interval (Java-based supervisor configuration only)

the time (in minutes) between consecutive monitoring.

Retry count (Java-based supervisor configuration only)
the number of retries after which a monitored server is considered to be down.

Related Topics

Supervisors
Supervisor
Supervisor - Server

A.5.11.3. Java Supervisor Mail

The supervisor runs as a component of a Java-based Server. Use this tab to configure the
properties of supervisor e-mails.

Service

the link to the service object that contains the mail host address.

Subject

the external text file to which to export the current content of the JavaScript file.Clicking
this button opens a file browser dialog.Select the desired directory and enter the name
of the text file.

From

an e-mail address.

To

one or more e-mail addresses.

CcC

zero or more e-mail addresses.

Body
the e-mail text.

A.5.11.4. Supervisor - Server

The supervisor configuration server objects link a C++-based server object with workflows
to be run on it (when the configuration is active).They may also contain a link to the
corresponding fail-over configuration if this server fails.The properties of a supervisor
configuration server object are:

Name
the name of the object.

Description
the description of the object.

219

Version

the version number of the object.

C++-based Server
the C++-based Server that is used as a high availability server in this configuration.

Workflows

the list of workflows that are re-configured to this C++-based Server when this
configuration is active.Note: The re-configuration does not support distribution of the
workflows and activities to distributed servers.

Fail-over Configuration

the configuration to be used by the supervisor during automatic fail-over when this
server fails.If no server link is present, the supervisor informs the administrator and goes
to suspend mode.

Related Topics

Supervisors
Supervisor
Supervisor - Configuration

A.5.11.5. Supervisors

A folder for the supervisor configuration objects in the configuration database.

Name

the name of the folder.

Description
descriptive text for this object.

Version

version of this object.
Related Topic

Supervisor

A.5.12. Systems

A.5.12.1. System

The system configuration object describes the configuration information for a particular
host system.Use the system configuration object to describe the different hardware
platforms in use in the Identity environment.

A system configuration object can provide the location within the network (IP address
and/or server name) and it can keep additional information about the system'’s hardware
characteristics (CPU type, hard drive and RAM sizes) and the operating system it runs for

220

documentation purposes.
The system configuration object has the following tabs:

System

Mostly informational data.Use this tab to record in the Connectivity Configuration
database the information about the systems in use at your site.Once you have created a
system configuration object, you must maintain it yourself (DirX Identity does not
maintain it for you).

Resources
Contains the resource families this system can handle.

Security

Defines security-relevant information; for example, the trust store and key store on this
system.

The properties of the system object are:

Name

the name of the system.

Description
the description of the system.

Version

the version number of the system.

IP Address

the TCP/IP address of the server. This can be a number such as 218.34.52.12 or a DNS
name. Use of DNS names is recommended.

Note: This field is only used by the |dS-J server and its components (workflows etc.). For
compatibility reasons, the batch type workflows use the corresponding field in the
service object.

Operating System

the system’s operating system (for example, Windows 2022 Server).

CPU Type
the system’s CPU type (for example, Intel Pentium V).

HD Size [MB]

the size of the system’s hard disk (in megabytes).

RAM Size [MB]
the size of the system’s RAM (in megabytes).

Resource Families
the resources this system can handle. See the resource family object for more

221

information.

Key Store Path

the path to the key store on this system. The default is:._
install_path_*/security/java/keystore*.

Key Store Password
the password to access key store defined in Key Store Path.

Trust Store Path

the path to the trust store on this system. The default is:
install_path/security/java/truststore.

Trust Store Password
the password to access the trust store specified in Trust Store Path.

Related Topic

Resource Family
Service

A.5.12.2. Systems

A folder for the system configuration objects in the configuration database under the folder
configuration.

Name

the name of the folder.

Description
the description of the folder.

Within a property page, the content of this folder is shown as a pop-up list of a combo box:

Service

the system object currently used by the object whose properties are shown.Use the
arrow button to pop up the list of all available system objects in the service folder.Use
the properties button to display the properties of the currently selected system object.

Related Topic

(Central) Configuration
System

A.5.13. Tcl

A.5.13.1. Mapping Function

A mapping function is used to convert an attribute or a set of attributes of a source
directory entry into an attribute of a target directory entry.Usually, such mapping functions

222

perform just simple operations like character escaping (removal or replacement of non-
alphanumerical characters.However, more complex functions construct distinguished
names or superior directory tree nodes.

Use this tab mainly to assign a name to a mapping function.

Name

the name of the mapping function.Note that this name will be used by the mapping
editor to construct the mapping item.This name must match the name used in the Tcl
proc header.

Description

the description of the mapping function.

Version
the version number of the mapping function.

Argument Count

the number of arguments this mapping function will take (at least the minimum
number for a Variable Argument Count). The mapping editor uses this value to insert as
many rows as needed when the mapping function is selected for use in a particular
mapping item.

Variable Argument Count

whether (checked) or not (unchecked) the argument count of the mapping function is
variable. The mapping editor uses this flag to allow the user to add additional rows to the
respective mapping item where this mapping function is used, or to delete superfluous
rows down to the number given in Argument Count.

Related Topics

(Central) Configuration
Control Scripts
Mapping Functions
Mapping Scripts
Other Scripts

Profile Scripts

Tcl

"Using the Mapping Functions" in the DirX Identity User Interfaces Guide
"Using the Mapping Editor" in the DirX Identity User Interfaces Guide

A.5.13.2. Mapping Functions

The Mapping Functions folder contains the pre-defined list of mapping functions delivered
with DirX Identity in the Default folder.The mapping editor uses the contents of this folder
to provide a set of predefined mapping functions when you use the Mapping Function
column in the mapping editor provided with DirX Identity Manager.These functions can
also be extended with customer-supplied functions in a parallel folder.

223

Use this tab to assign general properties to the mapping function folder.

Name

the name of the folder.

Description
the description of the folder.

Related Topics

(Central) Configuration
Control Scripts
Mapping Functions
Mapping Scripts
Other Scripts

Profile Scripts

Tcl Script

A.5.13.3. Tcl Folder

The Tcl folder stores Tcl files and procedures that are common to all meta controller jobs.
Create your own folders if you need to extend DirX Identity with your script extensions.

Use this tab mainly to assign a name for the Tcl script folder. The properties shown in this
tab are:

Name

the name of the folder.

Description
the description of the folder.

Related Topics

(Central) Configuration
Control Scripts
Mapping Functions
Mapping Scripts
Other Scripts

Profile Scripts

A.5.14. Topics
The folder that contains the topic and queue names used for DirX ldentity messaging.

Name

the name of the folder.
Description - descriptive text for this folder.

Related Topics

224

Topic

A.5.14.1. Topic
This configuration object describes a topic or queue used for DirX Identity messaging.

Name

the name of the topic or queue specification.This name is only for documentation.lt is
not used by the software.

Description
descriptive text for this topic.

Topic Alias
the alias name of the topic or queue exchanged with the Java-based Server.This is the
name that is used by software components to look up the topic value.

Topic Value

the name of the topic or queue.JMS clients use this value to identify the topic or queue
to which they are sending message or from which they are receiving messages.

For more information about topics, see the section "Understanding the Java Messaging
Service" in the "Managing DirX Identity Servers" chapter.

Related Topics

Understanding the Java Messaging Service

A.6. Connected Directories

A.6.1. Attribute Configuration - Details

Use this tab to view and edit information about the attribute configuration associated with
a connected directory. This is the information the meta controller needs to handle
connected directories. For details, see the DirX Identity Meta Controller Reference.

The Details tab consists of two tabs - Attribute List and Global Info - and the following
buttons for importing and exporting attribute configurations:

Import CFG File

click to select and import an attribute configuration file to replace the current
configuration.

Export CFG File

click to export the current attribute configuration to a selected attribute configuration
file.

Attribute List

Lists the name, abbreviation, prefix, suffix, encryption flag, multi-value separator, length,

225

and match rule for each attribute. Only the abbreviation is needed for LDAP directories. The
other parameters are needed for other directory types, such as the File type.

S

whether or not the attribute is to be deleted during a schema update. This feature is
helpful if you use one attribute configuration for both the connected directory and the
intermediate connected directory (most DirX Identity default applications are
configured this way). Check this field for all attributes that are only available in the
intermediate file connected directory but not in the target connected directory. A
schema update in the target connected directory will then preserve these attributes
(example: ADS). For schema update details see "Using the Schema Displayer" in the
chapter "Using DirX Identity Manager" in the DirX Identity User Interfaces Guide.

Name

the name of the attribute (normally set equal to the Abbreviation). In some cases, you
can define a name mapping here. For example in the ODBC workflows the
Table.Attribute name in the ODBC database is mapped to the attribute name in the
intermediate file (for example HR.Department=DEP).

Abbreviation
the abbreviation of the attribute. For LDAP directories, this field is the LDAP name.

Prefix

the value that precedes the attribute value in the file.
Note: For XML files the prefix must be followed by a colon (for example:
"telephoneNumber:")

Suffix
the value that follows the attribute value in the file.

E
whether or not the attribute is transferred in encrypted mode (for example, a password
attribute) and must be decrypted by the agent before use.
MYV Separator
the separator used for multi-valued attributes.
Length
the maximum length of the attribute. Zero stands for an infinite length.
Match rule
the match rule for this attribute.
Global Info

Displays global information that applies to all the attributes in the current configuration:

Record separator
one or more characters (or the octal representation of one or more characters) enclosed

226

in single quotation marks ('') that the meta controller is to use to distinguish between
entries in a connected directory data file.

Field separator

one or more characters (or the octal representation of one or more characters) enclosed
in single quotation marks ('') that the meta controller is to use to distinguish between
attribute values in entries within a connected directory data file that uses a tagged
format.

Comment

one or more characters (or the octal representation of one or more characters) enclosed
in single quotation marks (‘') that the meta controller is to use to identify comment lines
in an LDIF-formatted connected directory data file or any other connected directory
data file.

Skip lines
an integer value that is greater than or equal to O that specifies the number of lines from

the beginning of the file that the meta controller is to ignore when processing an import
file.

Continuation line

one or more characters (or the octal representation of one or more characters) enclosed
in single quotation marks ('') that the meta controller is to use to identify continued lines
in an LDIF-formatted connected directory data file or any other data file with
continuation lines.

Enclosing seq

one or more characters (or the octal representation of one or more characters) enclosed
in single quotation marks ('') that the meta controller is to use to identify the start and
end of an entry in a connected directory data file.

Op code field

the attribute within an LDIF change file that holds the LDIF change file operation code
for an entry in the change file.

Add mod field

the attribute in an LDIF change file that represents the "add" attribute modification
operation of an LDIF "modify object" change operation.

Replace mod field

the attribute in an LDIF change file that represents the "replace" attribute modification
operation of an LDIF "modify object" change operation.

Delete mod field

the attribute within an LDIF change file that represents the "delete" attribute
modification operation of an "LDIF "modify object" change operation.

Prefix (Base-64)

the prefix Base 64 field defines information that the meta controller is to use to identify a

227

basec4-encoded LDIF attribute using the attribute's private prefix followed by this
global prefix information. Enter one or more characters (or the octal representation of
one or more characters). If this field is not set, the meta controller uses only each
attribute’s private prefix when it parses the data file.

New superior field

the attribute within an LDIF change file that represents the "new superior" parameter in
an LDIF "modify DN" change operation.

New RDN field

the attribute within an LDIF change file that represents the "new RDN" parameter in an
LDIF "modify DN" change operation.

Mod RDN op code
the keyword in an LDIF change file that represents the LDIF "modify RDN" operation.

Del old RDN field

the attribute within an LDIF change file that represents the "delete old RDN" parameter
inan LDIF "modify DN" change operation.

Mod DN op code
the keyword in an LDIF change file that represents the LDIF "modify DN" operation.

Add op code

the keyword in an LDIF change file that represents an "add object" LDIF change
operation.

Mod op code

the keyword in an LDIF change file that represents the LDIF "modify object" operation
code.

Delete op code

the keyword in an LDIF change file that represents the LDIF "delete object" operation
code.

Mod separator

the attribute in an LDIF change file that identifies the end of an attribute modification in
an LDIF "modify object" change operation.

Ignore empty value

whether or not the meta controller returns empty attributes (attributes with no value) in
the results of an obj search operation on a connected directory.

LDIF files can contain the string version:1 at the beginning. DirX Identity
determines LDIF files when all these fields are set to these values:

Add op code:add

Delete op code:delete
Mod op code:modify
Mod DN op code:moddn

228

Mod RDN op code:modrdn
When all fields are set correctly, the string version:1 is generated as first
line into the LDIF file.

Related Topics

"Using the Attribute Configuration Editor" in the chapter "Using DirX Identity Manager" in
the DirX Identity User Interfaces Guide
Schema - Object Classes and Attributes

"Attribute Configuration File Format" in DirX Identity Meta Controller Reference

A.6.2. Attribute Configuration - General

When synchronization between two connected directories is performed, the data of the
source directory is downloaded by the respective directory agent into an exchange file and
imported into the target directory by another agent. One of these agents is the meta
controller program, which performs additional tasks to convert the data by applying
appropriate mapping rules and ensuring consistency of the exchanged data. These tasks
require the understanding of the data semantics which in turn makes it necessary to have
a description of the downloaded data. This description is provided by the attribute
configuration. For more information about the content of an attribute configuration, see
the Attribute Configuration - Details help topic, which describes the structure in detail.

Use this tab mainly to enter a name for the attribute configuration. The properties shown in
this tab are:

Name

the name of the attribute configuration.

Description

the description of the attribute configuration.

Version

the version number of the attribute configuration.
Related Topic

Attribute Configuration - Details
File ltem

A.6.3. Attribute Configuration Template

Use this tab to enter the attribute configuration information according to the given
parameters.

See "Using the Schema Displayer" and "Using the Attribute Configuration Editor" in the
chapter "Using DirX Identity Manager" in the DirX Identity User Interfaces Guide for more
information.

229

A.6.4. Bind Profile

A bind profile is needed to authenticate during setup of a connection to a connected
directory.Bind profiles keep the administrative passwords that can be encrypted.

Use this tab to enter the required data for authentication.The properties shown in this tab
are:

Name

the name of the bind profile.

Description
the description of the bind profile.

Version

the version number of the bind profile.
Bind Parameters

User

the user name for accessing a connected directory.

For IBM Notes, the value for the field User must be the path and file name of the User’s
ID file. For example:

C\IBM\Notes\admin.id

Password

the user password for accessing a connected directory. To change the password, click
the icon on the right. A password dialog opens that requires you to enter the new
password twice.

Alternatively, you can reset the password to a default value with the right-most button.

the password is set in two fields in the directory:

- First, it is stored in the userPassword attribute of the bind profile object.
Be sure to configure the directory correctly to use one-way encryption
for this field. This field is used to authenticate users to change their
passwords correctly. Because of the one-way encryption, DirX Identity
0 cannot use this field for synchronization purposes.

- Second, the value is stored in the dxmPassword attribute. This field can
either contain a scrambled value (if Encryption Mode in Configuration
entry » Server tab is set to None and Disable Encryption is not set) or an
encrypted value (otherwise). DirX Identity does not allow you to set a
password in clear text into this field. This field is used to authenticate
against the target connected directory to perform the synchronization
task (for example, to synchronize passwords).

Authentication
(for LDAP Connected Directories only) the type of authentication:

230

- SIMPLE authentication with user name and password
- ANONYMOUS authentication without user name and password

Protocol
(for LDAP Connected Directories only) the LDAP protocol version:

- LDAPV2
- LDAPV3

Security Token

(for Salesforce Connected Directories only) the automatically generated key that is
added to the end of the password in order to log into Salesforce from an untrusted
network.

Security Parameters

Disable Encryption

whether (checked) or not (unchecked) encrypted passwords are automatically
unscrambled. Set this flag if DirX Identity is to unscramble the dxmPassword value
automatically before it is written into a configuration file (a Tcl or an INI file) because the
agent cannot unscramble the value itself. If Encryption Mode is not set to None, setting
or resetting Disable Encryption requires you to re-enter the correct password.

Use Encryption (SSL) (relevant only for Tcl-based ADS workflow types)

whether (checked) or not (unchecked) to use SSL. Note: for realtime ADS workflows, the
SSL flag setting in the workflow’s join » ts port controls whether or not to use SSL.

SSL Connection (relevant only for certain workflow types; for example, LDAP workflow
types
whether (checked) or not (unchecked) to use SSL.

Client Authentication

For LDAP workflow types, additional parameters for client-side SSL can be set. (Note that
the flag SSL Connection must be set, too):

Client Authentication
whether (checked) or not (unchecked) to use client-side SSL.

Path to Key Store File

the file name of the file-based key store containing the public certificate/private key pair
and the relevant CA certificates for this client certificate.

Key Store Password
the password for accessing the key store.

Key Store Alias

the alias name of the key store entry (optional).

23]

Path to Trust Store File

the file name of the file-based trust store containing the LDAP server CA certificate.

Trust Store Password
the password for accessing the trust store.

Anchor

the text value that helps to select the correct bind profile during reference resolution.
See Reference Descriptions for details.

There may be additional bind profile properties associated with a specific connected
directory type. See the DirX Identity Connectivity Reference for details about these
connected directory-specific properties.

Related Topics

Connected Directory

A.6.5. Bind Profile Container

A folder for the bind profiles associated with the connected directory. Use this tab to assign
a name to the folder.

Name

the name of the folder.

Description

descriptive text for this object.
Related Topic

Bind Profile

A.6.6. Bind Profiles

A list of the bind profiles associated with the connected directory. Use this tab to add,
delete, or modify a bind profile.

Bind Profiles

the associated bind profiles.

To edit a bind profile, select it in the list and click the Properties button on the right.
To add a new bind profile, click the first button on the right.

To delete a bind profile, select it and click the second button on the right.

Click the third button to display the distinguished names of the table entries in text
format.

For an HCL Notes connected directory, you need to define a separate bind profile for each

232

certifier ID file (see the DirX Identity Connectivity Reference for details).
Related Topic

Bind Profile

A.6.7. Channels

A folder for the channel configuration objects in the configuration database.Use this tab to
assign a name to the channel folder.

Name
the name of the folder.

Description
the description of this folder.

Related Topics

Channels
Job
Connected Directory

A.6.8. Connected Directories

A folder for the connected directory configuration objects in the configuration database.
Use this tab to assign a name to the folder.

Name
the name of the folder.

Description
descriptive text for this folder.

Related Topics

Connected Directory
Channels

A.6.9. Connected Directory

A connected directory is a single data store in an Identity environment that exchanges data
with the directory service.The connected directory object describes the configuration
information for a particular connected directory.

Connected directories can either be located in the connected directories folder or under a
job configuration object in the jobs folder for a Tcl-based workflow (these are called
intermediate connected directories because they are only used in the middle of a workflow
to exchange data via files).

233

Connected directories can have other properties assigned to them, for example, a set of
login accounts (bind profiles) that the workflows use to gain access to the connected
directories.

The connected directory configuration object can also have additional properties that
depend on its type (for example, an Active Directory domain name or the ODBC data
source name).

The connected directories also contain the data to be synchronized.You can use the DirX
Identity Manager to view the contents of LDAP and file-type directories.

Use the Connected Directory tab to enter general properties of the connected directory.
The items shown in this tab are:

Name
the name of the connected directory.

Description
the description of the connected directory.

Version

the version number of the connected directory.

Service
the link to the logical or physical access parameters (TCP/IP addresses etc.).

Directory Type

the connected directory’s type (for example, LDAP, Notes, and so on). To display its
properties, click the Properties button on the right. You can select another connected
directory type here. Perform Reload Object Descriptors afterwards or restart the DirX
Identity Manager. This action will change the display behavior of the connected
directory object itself and all related Channel objects.

Subtype

the subtype that can be used, for example, by scripts to modify the behavior accordingly
(example: RACF).

Attribute Configuration

The related schema description in a format that DirX Identity can use. To display its
properties, click the Properties button to the right.

Viewer Command

the command for viewing the content of the connected directory (for example, setting
Notepad for a file or MS Access for an .mdb database). This cormmand is used by the
open command for the connected directory. For configuration hints, see description
below.

Wizard

the wizard that can configure the connected directory. DirX Identity calls the wizard by
building the name conndir-*wizard.xml*. This file must be located in the wizard folder

234

under Configuration » GUI.

Associated Server

the Java-based Server(s) on which to run Provisioning workflows for this connected
directory. For more details on this topic and how to activate this setting, see the section
"Managing DirX Identity Servers" » "Distributed Deployments and Scalability" »
"Separating Traffic for Selected Connected Systems" in this guide.

Listeners per Target System

the number of IMS listeners (threads) per Java-based Server that should process
Provisioning workflows for a target system associated with this connected directory. By
default, each Java-based Server registers one listener for the corresponding queue. Note
that only one listener is created for password changes.

There may be additional properties associated with a specific connected directory
(depending on the Directory Type property). For example:

- Bind profiles, when the connected directory uses authentication

- File information, when the directory is a file-type directory.

- Schema information, when the directory’'s schema can be read automatically by DirX
Identity.

- Channels, which are links between jobs or activities in the connected directory

A.6.9.1. Configuring the Viewer Command

You can associate a viewer command with most of the connected directories. This viewer
command is used when you perform the open command from the context menu.

Different configuration methods exist:

- Connected directories of type LDAP - define the server and base node that shall be
opened in the Data View. Two formats are possible:
server
server:base_node

Set the server name to the name field of the server (open a top-level node in the Data View
with the Server command to view this field).

For example:

PQR
PQR:ou=development

The connected directory type definition must support this type of viewer
command. Go to the Connected Directory Type (for example, by clicking
the respective link in the Connected Directory property page), expand the
subfolder "Object Descriptions" and then edit the XML object (for example,

235

ads-conndir.xml) below. Select the "Content" property page and replace
the action

<action class="siemens.dxm.actions.ActionRunApp" name="open"
parameter="cdViewer.cfg" />

with

<action class="siemens.dxm.actions.ActionOpenDataView"
parameter="$[dxmOpenCommand]" name="open" />

- Connected directories of type File - define the relevant file viewer program and a fixed
or variable parameter:

viewer path_and_filename
viewer $(reference)

where reference is a relative reference starting from the connected directory.
For example:
notepad C:\MetahubData\data.ldif

notepad $(dxmFile-DN@dxmFileName)

If the connected directory contains more than one file, one of the files is
opened by random method.

- Special connected directories - check the documentation of the relevant vendor for the
correct viewer command.

Example:
"mmec c\Windows\system32\lusrmgr.msc" for the user management on Windows

Related Topics

Bind Profile

Connected Directory Type
Files

Operational Attributes
Scenario

Service

Specific Attributes
Workflows

A.6.10. Operational Attributes

A connected directory’'s operational attributes control its runtime behavior.The operational

236

attributes used by a particular connected directory depend on its type:
Use Operational Attributes

whether the scripts handle operational attributes (by default: dxmOprMaster,
dxrStartDate, dxEndDate, dxrState) for directory entries (True) or whether custom
routines must be created (False).Supply one of the following values:

TRUE - operational attributes shall be handled.

FALSE - operational attributes shall not be handled (define custom routines instead)

You can define other operational attributes in the Initialize user hook
function.Set the opr(master) to opr(enddate) field values accordingly.

Master Name

the master name of this directory. It can be used to set the dxmOprMaster attribute of
directory entries.

Creation/Search Base

the base node that can be referenced by the scripts as a starting point for all operations.
DirX Identity works with 'ou=mthb,0=PQR' as the default.

Note: This field can contain references. See section "Customizing Object References" in
the DirX Identity Customization Guide for more information.

Tombstone Base

the node to which deleted entries will be moved when Deletion Mode in the Entry
Handling tab is set to "MOVE".

Note: This field can contain references. See the section "Customizing Object References"
in the DirX Identity Customization Guide for more information.

GUID Prefix

the short prefix used to generate a local GUID together with the unique identifier (Local

GUID Attribute) from this entry master. This value is used by the workflow that exports
from this directory.

Local GUID Attribute

the attribute name that holds the unique identifier in this connected directory. This

value is used to compose the local GUID together with the GUID prefix. Is used by
workflow that exports from this directory.

GUID Attribute

the attribute that should be filled with the generated GUID value in this connected
directory. This attribute is used by a workflow that imports into this directory.

Object Classes
the l