
Identity and Access Management

Meta Controller Reference
Version 8.10.13, Edition October 2025



All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.

ii



Table of Contents
Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

DirX Identity Documentation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Notation Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1. DirX Identity Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.1. metacp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.1.1. ats (metacp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

1.1.2. ldapargs (metacp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59

1.1.3. meta (metacp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

1.1.4. obj (metacp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

1.1.5. util (metacp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

1.2. metacpdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

1.3. metahubdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

2. Attribute Configuration File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

2.1. Attribute Definition Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

2.1.1. Abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

2.1.2. Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183

2.1.3. Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183

2.1.4. Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

2.1.5. Attribute Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

2.1.6. Multi-Valued Attribute Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

2.1.7. Matching Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

2.1.8. Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187

2.2. Global Information Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187

2.2.1. Record Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187

2.2.2. Field Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188

2.2.3. Prefix (Base-64) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188

2.2.4. Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

2.2.5. Continuation Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

2.2.6. Enclosing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

2.2.7. Operation Code Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190

2.2.8. Add Modification Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190

2.2.9. Skip Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

2.2.10. Replace Modification Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

2.2.11. Delete Modification Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

2.2.12. New RDN Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192

2.2.13. Delete Old RDN Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192

2.2.14. New Superior Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193

2.2.15. Modification Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193

iii



2.2.16. Add Op Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194

2.2.17. Delete Op Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194

2.2.18. Modify Op Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194

2.2.19. Modify DN Op Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

2.2.20. Modify RDN Op Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

2.2.21. Ignore Empty Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

3. Directory Data File Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197

3.1. Tagged Data File Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197

3.2. Untagged Data File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199

3.3. LDIF Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

3.3.1. LDIF Content Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

3.3.2. LDIF Change Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202

3.3.2.1. Add Directory Entry Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202

3.3.3. Delete Directory Entry Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202

3.3.4. Modify Entry Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202

3.3.4.1. Add Attribute Value Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203

3.3.4.2. Delete Attribute and Delete Attribute Value Structure . . . . . . . . . . . . . . . . . . . . .  203

3.3.4.3. Replace Attribute Value Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204

3.3.5. Modify Distinguished Name/Modify Relative Distinguished Name Format. . . . .  204

3.4. Extensible Markup Language (XML) Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205

3.4.1. Directory Service Markup Language (DSML V1) Format . . . . . . . . . . . . . . . . . . . . . . . . .  205

3.4.2. Flat XML Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206

4. ChangeLog Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

4.1. DirX ChangeLog Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

4.2. iPlanet and OID Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

4.2.1. Add Object Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

4.2.2. Delete Object Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209

4.2.3. Modify Object Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210

4.2.4. Modify DN Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

5. String Representation for LDAP Binds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213

5.1. Simple and Structured Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213

5.1.1. Attribute Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213

5.1.2. Simple Attribute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

5.1.3. Structured Attribute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

5.1.4. Attribute Lists for Simple and Structured Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

5.1.5. Attribute Values in a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

5.1.6. Binary Attribute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

5.2. Distinguished Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

5.3. Search Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

5.3.1. Search Filter Expression Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

5.4. Reserved Attribute Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

5.5. Attribute Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

iv



5.5.1. Undefined Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

5.6. String Representations for Simple Attribute Syntaxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

5.6.1. Attribute Type Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

5.6.2. Bit String Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

5.6.3. Boolean Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

5.6.4. Object ID Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

5.6.5. Generalized Time Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

5.6.6. IA5 String Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

5.6.7. Integer String Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

5.6.8. Numeric String Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

5.6.9. Preferred Delivery Method Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

5.6.10. Printable String Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

5.6.11. UTC Time Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

5.7. String Representations for Structured Attribute Syntaxes . . . . . . . . . . . . . . . . . . . . . . . . . .  223

5.7.1. Attribute-Type-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224

5.7.2. Object-Class-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

5.7.3. OR-Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229

5.7.4. Facsimile-Telephone-Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230

5.7.5. Name-And-Optional-UID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

5.7.6. Postal-Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232

5.7.7. Teletex-Terminal-Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233

5.7.8. Telex-Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234

6. DirX Identity Program Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

6.1. Logging Configuration Files for metacp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

6.2. Directory Client Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245

6.3. SSL/TLS Certificate Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

6.4. SSL/TLS Key Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249

6.5. IDMS Configuration and Key Material Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250

7. DirX Identity Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255

8. Directory Synchronization Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259

8.1. Import from an LDIF Content File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259

8.1.1. Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260

8.1.2. Synchronization Profile Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261

8.1.3. Customizing This Synchronization Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263

8.2. Export to an LDIF Content File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264

8.2.1. Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264

8.2.2. Synchronization Profile Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265

8.2.3. Customizing This Synchronization Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267

9. Data Format Handling Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

9.1. Handling XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

9.1.1. Reading an XML Data File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

9.1.2. Writing an XML Data File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269

v



9.2. Handling ChangeLogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269

9.2.1. ChangeLog Sample Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272

Appendix A: Country Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275

Appendix B: Code Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283

B.1. Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283

B.2. Expert Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285

B.3. Tcl Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289

B.4. Character Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291

Legal Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295

vi



Preface
This manual is reference for the DirX Identity controller and its associated programs and
files. It consists of the following chapters:

• Chapter 1 provides reference pages for the identity controller command-line program
metacp and for the binary trace log file analyzers metacpdump and metahubdump.

• Chapter 2 describes the identity controller attribute configuration file format.

• Chapter 3 describes the data file formats supported by the meta controller.

• Chapter 4 describes the use of change log information.

• Chapter 5 describes the string representations and use of attribute syntaxes for LDAP
binds by the Identity controller to the meta directory store. It also contains a reference
page for simple syntaxes and reference pages for each of the structured syntaxes.

• Chapter 6 describes the files used by the metacp and metacpdump programs.

• Chapter 7 describes the environment variables used by the metacp, metacpdump and
metahubdump programs.

• Chapter 8 describes the synchronization templates supplied with DirX Identity.

• Chapter 9 describes procedures for use of data file formats like XML and change log.

• Appendix A provides a list of country codes.

• Appendix B provides detailed information on code conversion.

1

ch1-0-0_intro.pdf
ch2_acf.pdf
ch3_datafiles.pdf
ch4_chglog.pdf
ch5_LDAPsimple-struct.pdf
ch6_files.pdf
ch7_envvars.pdf
ch8_synctmps.pdf
ch9_procs.pdf
appa_Countries.pdf
appb_CodeConversion.pdf


DirX Identity Documentation Set
The DirX Identity document set consists of the following manuals:

• DirX Identity Introduction. Use this book to obtain a description of DirX Identity
architecture and components.

• DirX Identity Release Notes. Use this book to understand the features and limitations of
the current release. This document is shipped with the DirX Identity installation as the
file release-notes.pdf.

• DirX Identity History of Changes. Use this book to understand the features of previous
releases. This document is shipped with the DirX Identity installation as the file history-
of-changes.pdf.

• DirX Identity Tutorial. Use this book to get familiar quickly with your DirX Identity
installation.

• DirX Identity Provisioning Administration Guide. Use this book to obtain a description of
DirX Identity provisioning architecture and components and to understand the basic
tasks of DirX Identity provisioning administration using DirX Identity Manager.

• DirX Identity Connectivity Administration Guide. Use this book to obtain a description of
DirX Identity connectivity architecture and components and to understand the basic
tasks of DirX Identity connectivity administration using DirX Identity Manager.

• DirX Identity User Interfaces Guide. Use this book to obtain a description of the user
interfaces provided with DirX Identity.

• DirX Identity Application Development Guide. Use this book to obtain information how
to extend DirX Identity and to use the default applications.

• DirX Identity Customization Guide. Use this book to customize your DirX Identity
environment.

• DirX Identity Integration Framework. Use this book to understand the DirX Identity
framework and to obtain a description how to extend DirX Identity.

• DirX Identity Web Center Reference. Use this book to obtain reference information
about the DirX Identity Web Center.

• DirX Identity Web Center Customization Guide. Use this book to obtain information
how to customize the DirX Identity Web Center.

• DirX Identity Meta Controller Reference. Use this book to obtain reference information
about the DirX Identity meta controller and its associated command-line programs and
files.

• DirX Identity Connectivity Reference. Use this book to obtain reference information
about the DirX Identity agent programs, scripts, and files.

• DirX Identity Troubleshooting Guide. Use this book to track down and solve problems in
your DirX Identity installation.

• DirX Identity Installation Guide. Use this book to install DirX Identity.

• DirX Identity Migration Guide. Use this book to migrate from previous versions.

2

introduction:prf_identintroduction.pdf
release-notes:ReleaseNotes.pdf
release-notes:HistoryOfChanges.pdf
tutorial:prf_identtutorial.pdf
prov-admin-guide:prf_identprovadm.pdf
conn-admin-guide:prf_connectivity.pdf
user-interfaces-guide:prf_identgui.pdf
appl-dev-guide:prf_appldevgd.pdf
custom-guide:prf_identprovcustom.pdf
integration-framework:prf_identframework.pdf
web-center-ref:prf_identwebref.pdf
web-center-custom-guide:prf_identwebcustom.pdf
metacp-ref:prf_identcontref.pdf
conn-ref:prf_identagent.pdf
troubleshooting-guide:prf_identtrouble.pdf
install-guide:prf_install.pdf
migration-guide:prf_identmig.pdf


Notation Conventions
Boldface type
In command syntax, bold words and characters represent commands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntax, italic words and characters represent placeholders for information
that you must supply.

[ ]
In command syntax, square braces enclose optional items.

{ }
In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

|
In command syntax, the vertical bar separates items in a list of choices.

...
In command syntax, ellipses indicate that the previous item can be repeated.

userID_home_directory
The exact name of the home directory. The default home directory is the home directory of
the specified UNIX user, who is logged in on UNIX systems. In this manual, the home
pathname is represented by the notation userID_home_directory.

install_path
The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userID_home_directory/DirX Identity on UNIX
systems and C:\Program Files\DirX\Identity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

dirx_install_path
The exact name of the root of the directory where DirX programs and files are installed. The
default installation directory is userID_home_directory/DirX on UNIX systems and
C:\Program Files\DirX on Windows systems. During installation the installation directory
can be specified. In this manual, the installation-specific portion of pathname is
represented by the notation dirx_install_path.

dxi_java_home
The exact name of the root directory of the Java environment for DirX Identity. This location
is specified while installing the product. For details see the sections "Installation" and "The
Java for DirX Identity".

tmp_path

3



The exact name of the tmp directory. The default tmp directory is /tmp on UNIX systems. In
this manual, the tmp pathname is represented by the notation tmp_path.

tomcat_install_path
The exact name of the root of the directory where Apache Tomcat programs and files are
installed. This location is defined during product installation.

mount_point
The mount point for DVD device (for example, /cdrom/cdrom0).

4



1. DirX Identity Commands
DirX Identity provides the following commands:

• metacp - Invokes the meta controller. The meta controller is a directory client program
that system administrators can use to synchronize directories and manage the entries
in a Identity store. This program supports the following objects:

◦ ats - Manages the asynchronous transport service

◦ ldapargs - Manages service controls associated with an LDAP directory operation

◦ meta - Performs directory synchronization operations

◦ obj - Manages Identity store entries

◦ util - Implements the metacp utilities.

• metacpdump - Displays the contents of the binary trace log files generated by the meta
controller (metacp).

• metahubdump - Displays the contents of the binary trace log files generated by the
Server (IdS-C) (dxmmsssvr.exe and dxmsvr.exe).

The remainder of this section describes the DirX Identity commands and provides
command syntax and examples. The metacp command is described first, followed by
descriptions of all the objects it supports in alphabetical order. Next, the metacpdump and
metahubdump commands are described.

DirX Identity commands in scripts can use the backslash (\) as the line
continuation character. In interactive mode, there is no continuation
character. Instead, you must continue typing. The line automatically wraps
if your characters extend beyond the line end. If you press the Enter/Return
key, the information you have typed is sent to the system for processing.
You should press the Enter/Return key only when you have typed all
information required for the command to process.

The majority of the sample commands in this chapter uses continuation
characters and appears as they would appear in a script. The commands
are presented this way so that they can be formatted for readability.

1.1. metacp

Synopsis
metacp [script_name [arg1 [arg2 …]]
    [-noaudittrail]
    [-Enc encryption_mode 
    -Timeout timeout_value
    -Audit audit_level
    -CryptLogLevel crypt_level] |
    -c command |

5



    -V

Purpose
Provides a set of operations for directory synchronization and manages entries in an
Identity store. The meta controller (metacp) supports the following objects:

ats

Manages the asynchronous transport service

ldapargs

Manages service controls associated with an LDAP directory operation

meta

Performs directory synchronization operations

obj

Manages Identity store entries

The meta controller also supports the utilities described in the util page.

Arguments
script_name

Filename of a user-defined script containing metacp commands.

The given Tcl script will be loaded using the utf-8 encoding as default. If the Tcl script
holds data in a different encoding, then the following additional arguments must be
passed:

-encoding encoding

-encoding encoding is part of arg[n]. It is passed along to the Tcl script
as global Tcl variables. In order to write compatible Tcl scripts, it is
recommended to pass these two arguments at the end of the argument
list.

arg[n]

Argument to the user-defined script specified in script_name. Script arguments are
stored in global Tcl variables and can be evaluated in Tcl scripts. See the Tcl Variables
section in this chapter for more information.

Options
-c command

Executes the metacp or Tcl commands specified by command.

6



-V

Displays the metacp build version, in the format:

'metacp' build version: product_version build_id date time

For example:

'metacp' build version: 5.0B 19 1999:05:05 13:14

The metacp initialize operation also writes the build version to the metacp trace file.

-noaudittrail

Usuaally metacp evaluates the audit policies to decide whether or not audit information
should be supplied. If -noaudittrail is specified no audit information is generated (even if
the audit policies would allow to create audit information).

When running metacp in a security environment, the following options can be used:

-ENC encryption_mode

Specifies the security mode. Valid modes are ATTRIB_ADMIN_PW or ADMIN_PW.

ATTRIB_ADMIN_PW - bind passwords and attributes that are marked as encrypted (in
the corresponding attribute configuration file) are decrypted.

ADMIN_PW - only bind passwords are decrypted.

If metacp processes several LDAP directories in parallel (e.g. in case of an
LDAPtoLDAP workflow) and it runs with one of the encryption modes
described above, then the bind credentials for all the bind connections
need to be provided as encrypted values. It’s not possible to send
encrypted bind credentials to one of the directories and to send clear
text (or scrambled) bind credentials to the other directory.

This functionality only works correctly in an appropriate security environment like in the
DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide).

-Timeout timeout_value

Specifies the timeout value for the security mode. Values have to be given in
microseconds.

This functionality only works correctly in an appropriate security environment like in the
DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide for details.)

-AuditLevel audit_level

Specifies the audit level value for the security mode. Valid values are in the range of 0
and 4.

This functionality only works correctly in an appropriate security environment like in the

7



DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide).

-CryptLogLevel crypt_level

Specifies the logging level of the crypt library for the security mode. Valid values are
greater or equal to 0.

This functionality only works correctly in an appropriate security environment like in the
DirX Identity environment configured in security mode. (See DirX Identity Connectivity
Administration Guide).

Description
The meta controller is a command-line tool that system administrators can use to perform
directory synchronization. Use it to perform the following tasks:

• Initialize and clean up the metacp workspace

• Open connections to directories

• Create and manage metacp handles

• Read attribute configuration files

• Perform entry management during directory synchronization

• Create and manage directory search results lists

• Perform string-handling operations

• Create trace files that record directory synchronization progress

• Create and manage index lists

You can also use metacp as a command-line entry administration tool to communicate
with a Identity store and manage the entries contained within it.

Auditing Update Operation
metacp generates audit record information and stores it internally in the attribute
dxrHistory of the current object whenever there are attribute changes (for a modify
operation) or new objects with attributes that are relevant for auditing.

Therefore metacp reads the audit policies at startup time. It uses the bind DN and extracts
the DirX Identity domain from that information. Once a valid domain name can be
evaluated, it checks whether auditing is enabled at the domain (attribute dxrWriteHistory
is set to TRUE). If auditing is enabled, it reads all the relevant audit policies that are defined
in that domain; it therefore performs a search operation with base object cn=Audit
Policies,cn=Audit Trail,cn=domain and filter
(&(objectClass=dxrAuditTrailPolicy)(dxrWriteHistory=TRUE))

Note that the attribute dxrHistory is only filled when calling meta addentry or meta
modifyentry; it’s not filled when calling obj create or obj modify as these two operations
are basic operations that have the same functionality as DirX Directory dirxcp.

8



Sending JMS Messages
metacp can send JMS messages when new objects are created and when existing objects
are modified, deleted or moved. It uses information that is available in change event
policies; it therefore knows the relevant LDAP object classes of the objects for which such
JMS events (messages) should be generated. This feature enables the DirX Identity product
to run other workflows that should process the information about the changes of the
objects.

Therefore metacp reads the change event policies at startup time. It uses the bind DN and
extracts the DirX Identity domain from that information. Once a valid domain name can be
evaluated, it looks for the relevant change event policies; it therefore performs a search
operation

with base object cn=domain
and filter (&(objectClass= dxrChangeEventPolicy)(dxrIsActive=TRUE))

Tcl Command Language
The meta controller is built on a portable command language called the tool command
language (Tcl). Tcl permits the use of variables, if statements, list-processing functions, loop
functions, and many other features commonly found in command languages. The program
extends these features to provide a set of commands for directory synchronization and
structured file I/O. The program also includes task scripts to help directory users and
system administrators perform some routine management functions.

Including New Tcl Packages
The meta controller provides a few Tcl packages that are located in the following folder:

install_path/lib/tcl8.3

The packages are:

• encoding

• http1.0

• http2.3

• msgcat1.1

To include more Tcl packages perform the following steps:

• Copy the new Tcl package as a subfolder below install_path/lib/tcl8.3

• Rename all occurrences of the Tcl “list” command to “llist”

metacp has defined an own command “list” that returns all LDAP entries below a given
base node. Therefore, the original Tcl command “list” has been renamed to “llist”.

Check the packages listed above to see what changes have been done; for example

9



check the usage of the following statements:

if {[info commands llist] != ""} then {
     # DIR.X version with usage of “llist”
} else {
      # original version with usage of “list”
}

The Directory Client Configuration File
The meta controller uses the directory client configuration file (dirxcl.cfg) to convert
symbolic names of Identity stores to network addresses and to determine network
addresses of default servers. See the DirX Identity Program Files chapter for details about
this file.

Bind Types and Bind IDs
The meta controller supports multiple binds by using bind IDs and-for compatibility
reasons-the concept of a default bind. A bind ID is a string associated with an LDAP bind (a
connection to a Identity store through the LDAP v2 or LDAP v3 protocol). Specify the string
value of a bind ID in an obj bind operation. (See the obj bind operation for details.) Use the
bind ID in other operations to refer to a particular bind.

An obj bind command that does not specify a bind ID establishes a default bind. A
command that does not specify a bind ID refers to the default bind. Only one default bind
can exist at a time.

Synchronization Profiles and Synchronization
Templates
A synchronization profile is a Tcl script (or a collection of Tcl scripts) that contains Tcl
statements and meta controller commands that implement a specific synchronization
scenario to be carried out by the meta controller. The synchronization profile is the
mechanism that drives the meta controller’s directory synchronization functions. It consists
of three sections:

• The variable section

• The mapping section

• The control logic section

The contents of these sections are specific to a given synchronization scenario. The next
sections describe their general content.

The directory synchronization templates supplied in the Samples/metacp subdirectory of

10



the DirX Identity installation include sample synchronization profiles. See the Directory
Synchronization Templates chapter for more details about these templates.

The Variable Section

The variable section provides a way to configure the synchronization profile using Tcl
variables. Each Tcl variable defined in this section acts as a "profile switch" and is used to
establish parameters for the synchronization process. Configurable information that can be
set up with a profile switch includes:

• The names of the source and target attribute configuration files to be used

• The name of the meta controller trace file and the trace level to be set

• The Identity store bind and search parameters

The Mapping Section

The mapping section of a synchronization profile specifies rules for:

• Entry mapping

• Entry inclusion and exclusion

• Entry ownership

• Attribute mapping

• Attribute inclusion and exclusion

• Attribute value manipulation

• Attribute ownership

The Control Logic Section

The control logic section is the main body of the synchronization profile. It contains the Tcl
script code and metacp operations that perform the directory synchronization.

Attribute Configuration Files
An attribute configuration file defines the attributes that are present in a particular
connected directory and supplies formatting information that the meta controller is to use
when processing import and export data files associated with the connected directory. An
attribute configuration file must exist for each connected directory to be synchronized by
the meta controller (that is, a corresponding attribute configuration file must exist for each
DirX Identity agent present in DirX Identity). The attribute configuration file contains one
record for each attribute in the connected directory.

During a directory synchronization operation, the meta controller reads source and target
directory attribute configuration files (via a meta controller "read attribute configuration
file" operation specified in the synchronization profile) to obtain attribute and data file
formatting information about the directories it is synchronizing.

The meta controller uses attribute configuration files to determine connected directory

11



attribute abbreviations. Chapter 2 describes attribute configuration file format.

Invoking metacp
You can invoke metacp commands in interactive and command mode

Interactive Mode

Activate interactive mode by entering the metacp command without any arguments. At
the metacp prompt, enter a metacp or Tcl command; metacp runs the command, displays
the result, and is ready to accept another command.

% metacp
metacp> set home_dir /home/lionel
metacp> meta initialize -file $home_dir/tracefile -tracelevel 2
metacp>

Command Mode

Activate command-line mode from the system prompt by using one of the following
methods:

• Enter the metacp command with the filename of a script that contains metacp
commands, other valid Tcl commands, or both, as follows:

% metacp my_sync_profile.tcl

• Enter the metacp command with the -c option followed by a list that contains one or
more metacp commands or Tcl commands, for example:

% metacp -c "bind; modify ou=Sales/o=pqr -addattr
telephoneNumber=00498912312312"

Enter multiple commands by separating them with a semicolon (;) and enclosing the
commands in quotation marks (" "). Remember to escape shell metacharacters (for
example, by enclosing them in quotation marks). Multiple commands must be on a
single line.

When you use the -c option, operation results return to the interpreter, not to the shell.
If you enter multiple operations, the output of only the last operation is returned to the
shell. You can solve this problem by using the following workaround:

% metacp -c "bind; puts [obj show C=de -allattr]; puts [ldapargs show]"

Terminating metacp
Terminate an interactive metacp session by using the exit and quit commands. Use the

12



following syntax:

exit n

quit n

Use the n argument to specify the exit value returned to the shell. The following example
terminates a session and returns an exit value of 56 to the shell:

metacp> exit 56

Exit Codes
By default, metacp returns zero (0) on success and a non-zero value if a command fails. The
exit codes on failure are:

Code Type Description

1 Error An invalid command line was specified, for example, an invalid
option (for example, you specified metacp -z)

2 Error The specified file does not exist (for example, you specified metacp
zz.tcl, and zz.tcl does not exist)

3 Error The evaluation of the file failed (for example, you supplied an
incorrect command in the file)

4 Error The evaluation of the command failed (for example, you specified
an incorrect command on the metacp -c command line)

5 Error Tcl initialization failed

6 Error The initialization of the logging component failed.

7 Error The shared libraries (or one of it’s internal functions) used for
Password Synchronisation couldn’t be loaded.

8 Error Setting up the environment for Password Synchronisation failed
(e.g. initialization of crypt library; retrieval of private keys)

9 Error Internal memory allocation problem.

10 Error A serious error occurred during the execution of a script; a meta
operation failed.

11 Error A serious error while running the workflow occurred. The error will
be returned if illegal parameter combinations are specified in
control.tcl.

12 Error The minimum required number of source directory entries is not
available.

59 Error An error occurred while sending the notification file.

60 Warning A workflow terminated with warnings (e.g. because an entry to be
deleted belongs to another master, etc.)

61 Warning A directory update operation failed.

13



Code Type Description

200 Warning Some operations could not be performed correctly (for example a
join retrieved more than one hit). Manual intervention is necessary.

Scripts delivered with metacp use exit codes between 0 and 79 (exit codes
1 to 8 are generated by metacp itself, the remaining ones are generated by
script logic of the standard script). Exit codes between 80 and 199 can be
used in customer scripts. The use of exit codes lower than 80 or higher than
199 is prohibited in customer scripts.

Startup Scripts
When you invoke metacp, the following script files are run in the order shown:

[info library]/init.tcl
Contains the standard Tcl initialization scripts with definitions for the unknown command
and the auto_load facility. The Tcl command info library returns the location of the file
init.tcl.

$metacp_library/init.metacp
Contains the initialization scripts that implement the metacp commands and tasks. The
implementation sets the Tcl variable metacp_library to install_path/client/conf on Unix
and install_path\bin on Windows.

$HOME/.metacprc
Contains user customizations.

$TCL_PATH/user_script.tcl
Contains user-defined scripts within one or more user-specified directories defined with
the TCL_PATH environment variable.

Command Syntax
A metacp command has the following syntax:

[object] operation [argument] [-option [opt_arg]] …

where:

object

specifies the name of one of the following metacp administration objects:

ats

Manages the asynchronous transport service

ldapargs

Manages service controls associated with an LDAP directory operation

14



meta

Performs directory synchronization operations

obj

Manages directory objects

Specifying an administration object is optional. If you do not specify an object on the
command line, the default object is obj for operations that exist in both the meta and
the obj objects (like help and operations).

Refer to the individual object reference pages for complete descriptions of these
administration objects.

operation

Specifies the name of an action such as readattrconf, getentry, or gethandle, that is to
be performed on an administration object. Refer to the individual object reference pages
for complete descriptions of the operations supported by each metacp object. Common
operations for all metacp objects are help and operations.

argument

Specifies the name of one or more specific objects to operate on. Most, but not all,
metacp objects take an argument. Refer to the individual object reference pages for
descriptions of the arguments supported by various objects.

option

Specifies a qualifier that controls the precise behavior of a metacp command. Most, but
not all, metacp commands take options. Some options take an argument, opt_arg, that
can be a name or a value.

Line Continuation
meta controller commands in scripts can use the backslash character (\) as the line
continuation character. In interactive mode, there is no continuation character. Instead, you
must continue typing. The line automatically wraps if your characters extend beyond the
line end. If you press the Enter/Return key, the information you have typed is sent to the
system for processing. You should press the Enter/Return key only when you have typed all
information required for the command to process.

Command Processing
The metacp command supports the Tcl built-in commands as well as its own commands. A
command unknown to metacp is passed to the unknown command, which evaluates it as
follows:

• If unknown finds the command is in a metacp script file, metacp runs it.

• If unknown finds that the command is an executable UNIX or Windows program,
metacp runs it. Consequently, you can invoke any UNIX or Windows command from the
metacp prompt, for example,

15



ls -l.

• If unknown finds that you invoked the command at the top level of the metacp shell
and that the command requests C-shell like history substitution (such as !!, !number or
^old\^new), metacp emulates the C shell’s history substitution.

• If unknown finds that you invoked the command at the top level of the metacp shell
and the command is a unique abbreviation for another command, metacp runs that
command.

Abbreviations
The metacp command uses two mechanisms to allow all object names, operation names,
and options to be abbreviated to the shortest unique string in interactive commands.

The first mechanism relies on the unknown command, whose behavior is described in the
Command Processing section of this reference page.

The second mechanism is built into the individual metacp commands themselves. This
mechanism allows the operation name to be abbreviated to the shortest unique string
supported by the object, and the option names to be abbreviated to the shortest unique
string representing an option supported by an object and operation. For example, consider
the following metacp commands:

metacp> meta getentry -source
metacp> meta operations

In the abbreviated form, the same operation can be entered as follows:

metacp> meta getentry -s
metacp> meta op

Although abbreviating commands is a good way to save keystrokes in typing interactive
commands, abbreviations are not recommended for use in scripts. New procedures in
scripts can cause abbreviations to become ambiguous. Furthermore, abbreviations are not
always portable. When scripts move to other machines, some definitions may be left
behind so scripts will not work correctly. Always spell out complete names in scripts.

Tcl Variables
All metacp commands set several variables on invocation. The variables contain the name
of the directory in which startup scripts are stored, the return value of the last command,
and so on. To avoid unnecessary typing, you can substitute the value of these variables into
the next command.

Tcl variables behave just like other variables in metacp. Thus, you can trigger variable

16



substitution by placing a dollar sign ($) before the name of the variable. Alternatively, you
can trigger substitution by using set. You can set the Tcl variables only by using the metacp
program.

The metacp program defines the following variables:

_allowpartialresult

Specifies whether incomplete results are accepted as a result of a search operation.

If this variable is not specified or its value is 0 the synchronization profile script aborts
subsequent processing if it receives an incomplete result.

Specify the following values:

• 0 - Do not accept incomplete results.

• 1 - Accept incomplete results that have been received due to a SIZE-LIMIT problem.

• 2 - Accept incomplete results that have been received due to a TIME-LIMIT problem.

• 4 - Accept incomplete results that have been received due to an ADMINISTRATIVE-
LIMIT problem.

• 8 - Accept incomplete results that have been received due to the presence of
referrals.

• 16 - For LDAPv2 protocol only: Accept incomplete results that have been received
due to the presence of referrals.

If incomplete results due to several problems should be accepted you must combine the
values by a logical OR. A value of 9 for example specifies that incomplete results due to a
TIME-LIMIT problem and / or due to the presence of referrals should be accepted.

_entry_line

Specifies the current entry read from a datafile.

The meta addentry, modifyentry, removeentries use the last entry read from a data file
as additional trace information in the tracefile. That makes sense, if an object read from a
data file directly results in one of the operations just listed before.

But there are new synchronization scripts available (e.g. LDAP to LDAP synchronization)
where update operations are invoked without having read a record from the data file.

Therefore the last record read from the data file should be cleared using the following
command:

set entry_line ""

Otherwise the tracefile contains misleading trace information because the data record
listed there has no relation to the operation that has been invoked.

_errormsg

--Specifies whether the LDAP server should return additional information both in case of
errors and success:

17



• TRUE - Provide additional information from LDAP server.

• FALSE - Don’t provide additional information from the LDAP server.

On startup, metacp behaves as if _errormsg has been set to FALSE.

The additional information either starts with “LDAP-Result” or “LDAP-ERROR”.

Samples:

metacp> set _errormsg TRUE
metacp> bind -prot ldapv3
             {{LDAP-Result: Bind succeeded}}
metacp> modify cn=DomainAdmin,cn=my-company -replaceattr xxx=1234
             Error: Undefined attribute type passed in operation.
             (LDAP-ERROR: Cannot handle modification for attribute
type 'xxx')

_errormsgonly

Specifies whether the LDAP server should return additional information in case of errors.

• TRUE - Provide additional information from LDAP server.

• FALSE - Don’t provide additional information from the LDAP server.

On startup, metacp behaves as if _errormsgonly has been set to FALSE.

The additional information starts with “LDAP-ERROR”.

In case of errors the output is the same as described for TCL variable _errormsg.

_escapebackslash

Specifies whether the escape character backslash (\) is escaped by an additional
backslash in requests and results. Specify one of the following keywords:

• TRUE - Backslashes are escaped.

• FALSE - Backslashes are not escaped.

_localcode

Specifies the character set that can be chosen from the character set table.

For compatibility reasons the following keywords are still valid:

• LATIN1 - Default Windows character set (only used in data files). This is the default
value if no _localcode variable is defined.

• UTF8 - LDAP / Tcl character set (only used in data files).

• PC850 - PC DOS characer set only (only used in DOS windows).

18



See Code Conversion appendix for details.

_md_req_attr_limit (defined in init.metacp)

Specifies the maximum number of attributes that is passed in a search request as
requested attributes. It is used to decide whether to pass the attribute list explicitly or
whether to use the -allattr option. (For details see the obj search command.)

_partialresulttype

Specifies the reason for an incomplete result returned by a search operation. This
variable is an output parameter of the search operation.

The search operation returns the following values:

• 1 - Incomplete results due to a SIZE-LIMIT problem.

• 2 - Incomplete results due to a TIME-LIMIT problem.

• 4 - Incomplete results due to an ADMINISTRATIVE-LIMIT problem.

• 8 - Incomplete results due to the presence of referrals.

• 16 - For LDAPv2 protocol only: Incomplete results due to the presence of referrals.

If incomplete results due to several problems are returned the return value is the
combination of a logical OR. A value of 9 for example specifies that incomplete results
due to a TIME-LIMIT problem and due to the presence of referrals are returned.

_sendchangeevents

Specifies whether change events shall be sent. Specify one of the following keywords:

• TRUE - send change events if change event policies are present.

• FALSE - disable the triggering of events even if event policies are enabled.

_trimSpaces

Specifies whether leading and trailing SPACE characters of attribute values are ignored
when reading records from a data file. If _trimSpaces is not defined, metacp ignores
leading and trailing SPACE characters. Specify one of the following keywords:

• TRUE - leading and trailing SPACE characters are ignored. (Default value.)

• FALSE - leading and trailing SPACE characters are not ignored.

If _trimSpaces is FALSE SPACE characters between the attribute prefix and the attribute
value in the data file are considered as part of the attribute value. However, if the
attribute prefix definition in the attribute configuration file contains for example trailing
SPACE characters these spaces are not considered as part of the attribute value. (See
section "Prefix" in chapter "Attribute Configuration File Format" for details.)

Example:

• The attribute prefix definition in the attribute configuration file is
'TelephoneNumber: '. (Attend to the SPACE character at the end of the prefix
definition.)

19



• _trimSpaces is FALSE.

• The data file contains the following records. (The " character is not part of the record.):

one space behind the attribute prefix but no value

"TelephoneNumber: "

(one space between attribute prefix and value, two trailing spaces behind the attribute
value)

"TelephoneNumber: 12345  "

metacp evaluates the following attributes and values:

• attribute TelephoneNumber and no TelephoneNumber value

• attribute TelephoneNumber and the value 12345 (plus two trailing spaces)

metacp_library

Holds the name of the directory in which the metacp startup scripts are stored. This
variable cannot be set by the user.

When you specify script arguments on the metacp command line, the following Tcl global
variables are set to the following values:

argv0

script_name

argc

number of script arguments

argv

Tcl list of script arguments

When you specify the -c option on the metacp command line, or when you do not specify
any arguments or options, these Tcl global variables are set as follows:

argv0

program name of metacp as specified on the command line

argc

0

argv

An empty Tcl list (\{ })

20



Line Recall and Editing
You can edit a line before it is sent to metacp by using control characters and escape
sequences. To use a control character, press and hold down the Ctrl key while pressing the
appropriate character key. To use an escape sequence, press and release the Esc key and
then press and release one or more character keys. Escape sequences are case-sensitive;
control characters are not.

You can enter an editing command anywhere on a line. In addition, you can press the
RETURN key anywhere on the line.

To indicate that an action should be repeated a desired number of times, precede the
escape or control characters with Esc n, where n is the number of times to repeat the
action. For example, ESC 4 Ctrl-d (pressing the Esc key and the number 4 key and then
pressing and holding down the Ctrl key while pressing the d key) deletes the next four
characters on a line. ESC 4 Esc DEL deletes the previous four words on a line.

Control Characters for Editing
Use the control characters shown below for line editing. For example, press and hold down
the Ctrl key while pressing the A key to move to the beginning of a line.

Ctrl a

Move to the beginning of the line.

Ctrl b

Move left (backward) one character. You can repeat this action by preceding the control
characters with Esc n.

Ctrl d

Delete the character highlighted by the cursor. You can repeat this action by preceding
the control characters with Esc n.

Ctrl e

Move to the end of the line.

Ctrl f

Move right (forward) one character. You can repeat this action by preceding the control
characters with Esc n.

Ctrl g

Sound the terminal bell.

Ctrl h

Delete character before the cursor. You can repeat this action by preceding the control
characters with Esc n.

Ctrl i

Complete the filename. (The TAB key performs the same function.) (See the Filename

21



Completion section.)

Ctrl j | Ctrl m

Send the completed line to metacp. (The RETURN key performs the same function).

Ctrl k

Delete to the end of the line (or column). You can repeat this action by preceding the
control characters with Esc n.

Ctrl l

Redisplay the line.

Ctrl n

Get the next line from history You can repeat this action by preceding the control
characters with Esc n.

Ctrl p

Get previous line from history You can repeat this action by preceding the control
characters with Esc n.

Ctrl r

Search backward (or forward if n) through history for text; start a line if text begins with
an up arrow.

Ctrl t

Transpose characters.

Ctrl v

Insert next character even if it is an edit command.

Ctrl w

Delete to the mark. See Esc SPC in the table of escape characters.

Ctrl x Ctrl x

Exchange the current location and mark. See Esc SPC in the table of escape characters.

Ctrl y

Restore the last deleted text to the current cursor location.

Ctrl [

Start an escape sequence. (The Esc key performs the same function.)

Ctrl ]c

Move forward to the character indicated by c.

Ctrl ?

Delete the character before the cursor You can repeat this action by preceding the
control characters with Esc n.

22



Escape Characters for Editing
To use an escape character, press the Esc key, release it, and then press the appropriate
character key. For example to delete the previous word, press the Esc key, then the Ctrl key
while pressing the H (capital H) key. Escape characters are case-sensitive, so follow the
capitalization in the table.

ESC Ctrl H | ESC DEL

Delete the previous word (the action can also be performed by the BACKSPACE key).
You can repeat this action by preceding the escape characters with Esc n.

ESC SPC

Set the mark (this action can also be performed by the SPACE BAR); Refer to the Ctrl x
Ctrl x and Ctrl w control characters in the control character table.

ESC .

Get the last word from the previous line. You can repeat this action by preceding the
escape characters with Esc n.

ESC ?

Show possible filename completions (see the Filename Completion section in this
chapter).

ESC <

Move to the start of history.

ESC >

Move to the end of history.

ESC b

Move backward one word. You can repeat this action by preceding the escape
characters with Esc n.

ESC d

Delete the word highlighted by the cursor. You can repeat this action by preceding the
escape characters with Esc n.

ESC f

Move forward one word. You can repeat this action by preceding the escape characters
with Esc n.

ESC l

Make the highlighted word lowercase. You can repeat this action by preceding the
escape characters with Esc n.

ESC u

Make the highlighted word uppercase. You can repeat this action by preceding the
escape characters with Esc n.

23



ESC y

Restore the last deleted text to the current cursor location.

ESC w

Copy the text from the cursor position up to the up to mark.

ESC nn

Set repeat count to the number indicated by nn.

Filename Completion
The metacp command supports filename completion. For example, suppose the root
directory has the following files in it:

readme

readme.txt

If you type a command and characters and then press the TAB key, metacp completes as
much of the filenames as possible given the characters supplied by characters. For
example, if you type ls and then press the TAB key, metacp completes the filename the
name as far as readme. However, because readme could be the file named readme or the
file named readme.txt, metacp cannot complete the filenames, so it beeps to signal the
conflict. If you then press Esc-?, metacp displays the two possible names: readme and
readme.txt and prompts you with ls readme. You can then complete the entire filename or
enough of the filename for metacp to complete it.

Example
The following command sequence illustrates the use of metacp and Tcl commands to
create an entry in a connected directory. In this example, metacp has already been
invoked.

puts "create new entry"
catch { meta addentry -entry rh_LDAP } status

if {$status == ""}
then {puts "operation ok"}
else {puts "$status"}

Return Values
All metacp operations return either a NULL to indicate the successful completion of an
operation or a list of information requested by the user (such as the results of a search
operation). If an error occurs, metacp returns an error message. The program uses the Tcl
native error handling facility to log additional error information returned from commands.

24



This information is stored in two global variables:

• The errorInfo variable, which contains the stack trace of the error messages.

• The errorCode variable, which is a Tcl list that contains two elements, METACP (which
identifies the program) and the numeric value of the error code. The following table lists
the metacp error codes and error messages that can be returned

4401

error while reading abbreviation file or syntax error with respect to abbreviations, e.g.
abbreviation unknown

4402

errors while converting string to internal structures and vice versa e.g. invalid attribute
value

4403

Conflicting option …

4404

Unknown option …

4405

Missing RDN.

4406

Missing new superior.

4407

Missing object name.

4408

Missing attribute information.

4409

Missing information for the new attribute values.

4410

Missing Directory Service Agent name.

4411

Missing Presentation Service Access Point address.

4412

Missing user name.

4413

Missing password.

25



4414

Missing filter value.

4415

Missing scope of search.

4416

Missing time limit.

4417

Missing size limit.

4418

Missing target system.

4419

Missing arguments.

4420

Invalid time limit …

4421

Invalid size limit …

4422

Unknown argument …

4423

Unable to initialize workspace.

4424

Perform bind operation first.

4425

Missing value.

4426

Format error - …

4427

Mismatched quotes - …

4428

Invalid parameter passed as an argument.

4429

Too many arguments.

26



4430

Entry not found.

4431

Subordinates not found.

4432

Insufficient memory to perform operation.

4435

Ambiguous option …

4436

Too many values.

4437

Missing authentication type.

4438

Unknown error.

4447

Invalid argument argument_value.

4501

Wrong bind session type. (Session type is DAP session whereas LDAP session is required
(or vice versa).)

4502

Missing bind id.

4503

Invalid bind id …

4504

Latin.1/UTF8 conversion failed.

4505

Bind session identifier already in use.

4506

Missing server name.

4507

Missing server address.

4509

Missing protocol.

27



4510: Invalid protocol …

4511

Cannot set "_cwo": _cwo is supported for a default DAP bind only.

4513

A structured attribute can’t be used in the sort keys of paged results. (Only relevant for
DAP protocol.)

4514

Wrong syntax for sortkey(s).

4515

Paging is not possible in this state.

4517

Invalid value (either for page size or paging type PAGING (for LDAP)).

4518

Missing path name for Certificate-DB.

4519

SSL/SASL connections not supported (on SVR4).

4520

ASN.1 BER encoding failed.

4521

ASN.1 BER initialization failed.

4522

ASN.1 BER decoding failed.

4523

LDAP result control not found.

4524

Base64-decoding/encoding failed.

4525

Missing mechanism.

4526

Missing Key3DB - file name.

4527

Missing 'key3password' value.

28



4528

Missing 'certsubject' value.

4529

Missing parameter '-sasl'.

4601

Unknown option.

4602

Unknown argument.

4603

Invalid argument …

4605

Unknown operation …

4606

Missing operation.

4607

Too many arguments.

4608

Ambiguous operation.

4609

Error: Cannot unset …

4610

Insufficient memory.

4611

Missing bind id.

4615

Conflicting option …

4801

Operation affects multiple DSAs.

4802

An alias is encountered where an alias is not permitted.

4803

An alias is dereferenced that names an object that does not exist.

29



4804

ASN.1 decoding failed.

4805

ASN.1 encoding failed.

4806

Initialization of ASN.1 utility failed.

4807

Attribute or attribute value already exists.

4808

Bad argument.

4809

Bad class.

4810

Bad context.

4811

Bad name.

4812

Bad session.

4813

Bad workspace.

4814

Directory system is busy.

4815

Operation can’t be abandoned.

4816

Operation requires chaining operation mode.

4817

Problem with communication stack.

4818

DUA configuration file missing.

4819

DUA configuration file corrupted.

30



4820

Connection is busy.

4821

Constraint violation.

4822

DIT is inconsistent.

4823

Object already exists.

4824

Credentials expired.

4825

Fatal error.

4826

The function does not apply to the object to which it is addressed.

4827

The function was aborted by an external force.

4828

Communication problem (ICOM-attach failed).

4829

Communication problem (ICOM-detach failed).

4830

Communication problem (ICOM-receive failed).

4831

Communication problem (ICOM-send failed).

4832

Inappropriate authentication.

4833

Inappropriate matching.

4834

Initialization failed.

4835

Insufficient access rights.

31



4836

Operation interrupted.

4837

Invalid attribute syntax.

4838

Invalid attribute value.

4839

Invalid credentials.

4840

Invalid memory reference.

4841

Invalid signature.

4842

Invalid workspace.

4843

Loop detected while performing operation.

4844

Insufficient memory to perform operation.

4845

Fatal error.

4846

The attribute type is not included in the AVA.

4847

An attempt was made to start a synchronous operation with outstanding asynchronous
operations.

4848

Naming violation.

4849

Network problems.

4850

Security error with no other information being available.

4851

Attribute or attribute value doesn’t exist.

32



4852

The object doesn’t exist.

4853

Operation to be abandoned doesn’t exist.

4854

Workspace doesn’t exist.

4855

Operation not allowed on non-leaf entries.

4856

Operation not allowed on RDN.

4857

Unsupported feature.

4858

Object class modification prohibited.

4859

Object class violation.

4860

Referral or partial outcome qualifier is outside the required scope.

4861

An invalid pointer supplied as a function argument.

4862

Protection required (signed operation required).

4863

Generation of signature failed.

4864

Validation of signature failed.

4865

System error.

4866

Temporary difficulty encountered.

4867

Time Limit Exceeded

33



4868

Abandon failed: too late.

4869

Too many outstanding operations.

4870

Too many sessions. No more session can be started.

4871

The DSA does not have the administrative authority over the particular naming context.

4872

Directory system unavailable.

4873

Critical service extension cannot be provided.

4874

Undefined attribute type passed in operation.

4875

Unexpected PDU passed/received in operation.

4876

Directory system is unwilling to perform the operation.

4877

Warning.

4878

Local abort received.

4879

Abandon received.

4880

Can’t invoke operation.

4881

Communication problem (Can’t create subscriber).

4882

Bind to DSA failed.

4883

Can’t convert DSA name of DUA configuration file.

34



4884

Can’t convert requestor name.

4885

Can’t convert target name of DUA configuration file.

4886

Can’t convert DSA address of DUA configuration file.

4887

Communication problem (Can’t enable binding).

4888

Communication problem (Can’t delete binding).

4889

(Unknown) error returned from DSA.

4890

Incoming authentication failed.

4891

Outgoing authentication failed.

4892

Remote abort received.

4893

(Unknown) service error.

4894

(Unknown) attribute error.

4895

(Unknown) name error.

4896

Referral returned.

4897

(Unknown) security error.

4898

Abandon failed.

4899

(Unknown) update error.

35



4900

Administrative Limit Exceeded

4901

Invalid query reference.

4902

Unknown error from DSA received.

4903

Reject received.

4904

Missing default DSA / LDAP server.

4905

Illegal LDAP filter.

4906

LDAP protocol error.

4907

Unknown DUA error.

4908

New superior object doesn’t exist.

4909

LDAP operation error.

4910

Offset range error.

4911

Missing sort control.

4912

Evaluation Copy expired.

Attribute Configuration File Errors

Attribute configuration file errors are returned in one of two formats:

1. error - Error in line number number of attribute configuration file file

2. error - Error in attribute configuration file file

The errors are listed below.

36



6001

Cannot open file (error format 2)

6002

Cannot read from file (error format 2)

6003

Missing quotes (error format 1)

6004

Missing attribute abbreviation (error format 1)

6005

Missing attribute name (error format 1)

6006

Missing attribute prefix (error format 1)

6007

Missing attribute suffix (error format 1)

6008

Missing structured information for an attribute (error format 1)

6009

Illegal structured information for an attribute (error format 1)

6010

Missing recurring separator (error format 1)

6011

Missing matching rule (error format 1)

6012

An abbreviation is used that is not yet defined in the attribute configuration file (error
format 1)

6013

Illegal field length of an attribute (error format 1)

6014

Illegal matching rule of an attribute (error format 1)

6015

Illegal value for number of lines to be skipped (error format 1)

6016

Invalid octal value (error format 1)

37



6017

Duplicate abbreviation of an attribute. (error format 1)

6018

Duplicate attribute name of an attribute. (error format 1)

6019

Duplicate prefix of an attribute. (error format 1)

Command-Line Syntax Errors
The command-line syntax errors are listed below.

6050

Option option not specified (the option has not been specified, but is mandatory in this
context)

6051

Attribute configuration file does not contain abbreviation abbreviation (an abbreviation
has been used that is not defined in the related attribute configuration file)

6052

Unknown flag - "flag" (an invalid flag value has been specified)

6053

Invalid sort order - "order" (an invalid sort order has been specified)

6054

Invalid mark tag - "tag" (an invalid mark tag has been specified)

6055

Missing RDN (a required RDN argument has not been specified)

6056

Missing attribute information

6057

Conflicting argument - "argument"

6058

Illegal combination of flags - "string"

6059

Invalid initialization mode - "string"

38



Miscellaneous Error Conditions
The miscellaneous error conditions are listed below.

6100

Format error in TCL list - "list"

6101

Memory insufficient

6102

Please call meta initialize first

6103

Inappropriate file mode of handle "handle_name" (A connection handle of type FILE
does not have the appropriate file mode for performing the operation)

6104

Superior information already exists (superior information has already been specified for
the given DN)

6105

Superior information not found

6106

Inappropriate connected directory type of handle handle_name (the handle specified by
handle_name is not of the correct subtype for performing the operation)

6107

'Add' operation failed (consult the trace file for the reason)

6108

'Remove' operation failed (consult the trace file for the reason)

6109

'Modify' operation failed (consult the trace file for the reason)

6110

'Modify-DN' operation failed (consult the trace file for the reason)

6111

Cannot write object into dump file (returned by meta writerecord)

6112

Unknown handle passed as input parameter - "handle_name"

6113

Handle is not the correct type - "handle_name"

39



6114

Cannot replace or delete handle. It is still used for handle "handle_name" (an attempt
was made to overwrite or delete a handle that is used by one or more dependent
handles)

6115

Handle name used for input and result handle - "handle_name"

6116

Operation code must be defined if only new entry is specified (a meta modifyentry
operation was attempted without specifying the -oldentry option

6117

Cannot set Tcl variable array "handle___name" (consult the exception log file for the
reason)

6118

Cannot get Tcl variable array "handle_name" (consult the exception log file for the
reason)

6119

Cannot locate record with the given file offset

6120

Cannot determine file offset of the input data record

6121

Illegal file offset provided for index list

6122

Cannot append new elements to the already sorted index list

6123

Index list has already been sorted

6124

Invalid record (entry in data file is not in the required format)

6125

Error while skipping lines at the beginning of file "file_name"

6126

Unknown operation code "string" encountered

6127

Unknown attribute modification "string" encountered

6128

Handling of LDIF changes is not enabled

40



6129

Old entry must not be specified if new entry represents LDIF changes

6130

Tag specification not supported for the type of the given handle - "handle_name".
(gethandle with -reset on a handle whose type is different from RESULT)

6131

Operation not supported for unsorted results

6132

Operation not supported for input handles with the LDIF change property

6133

Error while parsing LDAP name "DN-string"

6134

Name specification not supported for the type of the given handle - "handle_name"

6135

Index list is not sorted.

6136

Names have not been kept in index list.

6137

No values available for attribute 'attribute_value'

6138

Invalid component in last RDN value.

6139

Base64-decoding/encoding failed.

6141

Data file is locked.

6142

Incomplete search result returned.

6143

Sorting criteria is not a single valued attribute.

6144

Unknown encoding.

6149

Sort modes are different.

41



6150

Sort keys are different.

6151

Bound connections are different.

6152

Exact action flags are different.

6400

'ats initialize' has to be called first.

6402

Error while opening the protocol file.

6403

Error while reading the protocol file.

6405

Error while writing the protocol file.

6405

Illegal timeout value.

The program also provides a catch command to help scripts catch errors and invoke error
handlers.

Logging
The meta controller uses the DirX Identity client logging configuration files dirxlog.on,
dirxlog.off and dirxlog.cfg. To set up these files to log information for the meta controller,
insert the following line after the tracing specification of component dir in the file
install_path/client/conf/dirxlog.cfg or in the file specified in the DIRX_LOGCFG_FILE
environment variable:

mdi:meta.1.9:GOESTO:dir

Supported logging levels are:

• 0 - Disable trace logging

• 1 - Perform entry and exit logging; at this level, all metacp functions except those which
are frequently called are logged

• 2 - Log frequently-called metacp functions as well as performing entry and exit logging

• 9 - Log structures of functions

Here is an example of a dirxlog.cfg file; the metacp logging line is highlighted in boldface
text:

42



dir:sys.1,sock.1,vthr.1,icom.1,shr.0,ctx.0,\
osi.1,rpc.1,ros.1,adm.1,\
sec.1,api.1,daspp.1,\
bth.1,norm.0,match.0,\
conf.1,asn1.0,util.1:BINFILE.6.2000:%s/client/log/LOG%d
mdi:meta.1.2:GOESTO:dir
FATAL:GOESTO:dir
ERROR:TEXTFILE.1.100:%s/client/log/USR%d
NOTICE:GOESTO:ERROR
WARNING:GOESTO:FATAL
NOTICE_VERBOSE:GOESTO:FATAL

Use the metacpdump program to view the contents of the generated log file.

For complete information about the logging components discussed here, see:

• The DirX Identity Program Files chapter for a description of logging configuration file
format.

• The Environment Variables chapter for a description of the directory client program
environment variables.

• The description of metacpdump in this chapter for program usage information.

Viewing Output
In interactive mode, Tcl lists are written to stdout. However, in command-line mode, the Tcl
lists are not displayed. To display them, use the Tcl command puts. For example, the
commands:

% metacp -c "bind; puts [show cn=naik,ou=Sales,o=pqr,c=de]"
% metacp -c "bind; catch {show cn=naik,ou=Sales,o=pqr,c=de}
result; puts $result"

print the results of a obj show operation to stdout.

Many of the metacp operations take a -pretty option, which causes the results of the
operation to be formatted into tables. Each page of -pretty output is 23 lines in length. Use
the following metacp scrolling commands to view multiple pages of output:

n

View the nth page

-[n]

Skip [n pages] backward

43



+[n]

Skip [n pages] forward

$

View the last page

q

Exit viewing

SPACE

Advance to the next page

CR

Advance one line

If you specify the -pretty option, the return value is empty (not a Tcl list).

LDAP Session Tracking
Session Tracking was introduced to improve LDAP audit logging. For each LDAP operation,
it enables the user to identify the DirX Identity component, the directory user and the client
address of the computer where DirX Identity is running.

metacp supports LDAP session tracking.

If the LDAP server of the DirX Directory installation supports the Session Tracking Control,
metacp provides the following information in the LDAP audit record for each operation:

Controls # :1
Ctrl Type :1.3.6.1.4.1.21008.108.63.1 (Session Tracking Control)
Critical :no
SID-IP :IP_address_of_computer_where_metacp_is_running
SID-Name :DXI metacp [process_ID_of_metacp_process]
SID-Oid :1.3.6.1.4.1.21008.108.63.1.3 (Sasl-Auth-Username)
SID-Info :user name_of_connected_user

SID-Name :DXI metacp [process_ID_of_metacp_process] helps you to identify all LDAP
operations that metacp invoked. The process_ID_of_metacp_process and SID-IP
:IP_address_of_computer_where_metacp_is_running identifies a single metacp process
that invoked the LDAP operation.

In the following excerpt of an LDAP audit logfile the user with the common name
cn=DomainAdmin,cn=MyCompany performed a bind operation over the metacp process
with the process id 7596 from the computer with the IP address 10.93.25.163. Then the user
performed a search and finally an unbind operation. The session tracking information
identifies the user and the metacp process involved:

----------------- OPERATION 000002 ----------------

44



 Create Time    :Tue Sep 8 16:02:18.977999 2015
 Start Time     :Tue Sep 8 16:02:18.977999 2015
 End Time       :Tue Sep 8 16:02:18.977999 2015
 OpUUID         :400b39df-3c0e-4e74-baf8-545864b4a93a
 DapBindId      :00160008
 Concurrency    :1
 OpStackSize    :1
 OpFlow In/Out  :0/0
 Duration       :0.000000 sec
 User           :cn=DomainAdmin,cn=My-Company
 IP+Port+Sd     :[127.0.0.1]+52645+1568
 Op-Name        :LDAP_Con34_Op0
 Operation      :BIND
 Version        :3
 MessageID      :1
 Bind-Type      :simple
 Security       :normal
 DAP-Share-Count:1
 Controls #     :1
   Ctrl Type    :1.3.6.1.4.1.21008.108.63.1 (Session Tracking
Control)
   Critical     :no
   SID-IP       :10.93.25.163
   SID-Name     :DXI metacp [7596]
   SID-Oid      :1.3.6.1.4.1.21008.108.63.1.3 (Sasl-Auth-Username)
   SID-Info     :cn=DomainAdmin,cn=My-Company
 Bytes Received :178
 Bytes Returned :29
 Socket Mode    :plain
 Abandoned      :no
 Result Code    :0 (success)
 Error Message  :Bind succeeded.

----------------- OPERATION 000003 ----------------
 Create Time    :Tue Sep 8 16:02:37.384999 2015
 Start Time     :Tue Sep 8 16:02:37.384999 2015
 End Time       :Tue Sep 8 16:02:37.384999 2015
 OpUUID         :ba682d7b-216e-452c-be18-ba266a70ca8e
 DapBindId      :00160008
 Concurrency    :1
 OpStackSize    :1

45



 OpFlow In/Out  :0/0
 Duration       :0.000000 sec
 User           :cn=DomainAdmin,cn=My-Company
 IP+Port+Sd     :[127.0.0.1]+52645+1568
 Op-Name        :LDAP_Con34_Op1
 Operation      :SEARCH
 Version        :3
 MessageID      :2
 Base Obj       :cn=My-Company
 Scope          :baselevel
 Filter         :(objectclass=PRES
 Size Limit     :0
 Time Limit     :0
 Deref Alias    :always
 Types Only     :no
 Req Attr #     :1
   Req Attr     :* (all user attributes)
 Found Entries  :1
 Found Attrs    :41
 Found Values   :50
 Controls #     :1
   Ctrl Type    :1.3.6.1.4.1.21008.108.63.1 (Session Tracking
Control)
   Critical     :no
   SID-IP       :10.93.25.163
   SID-Name     :DXI metacp [7596]
   SID-Oid      :1.3.6.1.4.1.21008.108.63.1.3 (Sasl-Auth-Username)
   SID-Info     :cn=DomainAdmin,cn=My-Company
 Bytes Received :187
 Bytes Returned :1574
 Socket Mode    :plain
 Cached Result  :no
 Abandoned      :no
 Result Code    :0 (success)
 Error Message  :Search succeeded. Found 1 Entries (0 Aliases), 41
Attributes, 50 Values. (ChainedResult=no)

----------------- OPERATION 000004 ----------------
 Create Time    :Tue Sep 8 16:02:45.388000 2015
 Start Time     :Tue Sep 8 16:02:45.388000 2015
 End Time       :Tue Sep 8 16:02:45.388000 2015

46



 OpUUID         :873c7078-e9c1-4831-b470-e9bcbff7f153
 DapBindId      :00160008
 Concurrency    :1
 OpStackSize    :1
 OpFlow In/Out  :0/0
 Duration       :0.000000 sec
 User           :cn=DomainAdmin,cn=My-Company
 IP+Port+Sd     :[127.0.0.1]+52645+1568
 Op-Name        :LDAP_Con34_Op2
 Operation      :UNBIND
 Version        :3
 MessageID      :3
 Controls #     :1
   Ctrl Type    :1.3.6.1.4.1.21008.108.63.1 (Session Tracking
Control)
   Critical     :no
   SID-IP       :10.93.25.163
   SID-Name     :DXI metacp [7596]
   SID-Oid      :1.3.6.1.4.1.21008.108.63.1.3 (Sasl-Auth-Username)
   SID-Info     :cn=DomainAdmin,cn=My-Company
 Bytes Received :139
 Bytes Returned :0
 Socket Mode    :plain
 Abandoned      :no
 Result Code    :0 (success)

See Also
ats, ldapargs, meta, obj, util

1.1.1. ats (metacp)

Synopsis
ats acknowledge
    [-handle handle_name]
    -messageid message_ID
    -topic topic_name
    -timeout timeout

ats initialize
    [-bindid bind_session_id]
    [-handle handle_name]

47



    [-prot protocol_file_name]
    [-repeat repeat_count]
    [-servername MSS_servername]
    [-timeout timeout]
    [-topicprefix topic_prefix]
    [-type type]
    [-cluster cluster]
    [-resource resource]

ats publish
    [-handle handle_name]
    -header message_header_information
    [-message message_body]
    -topic topic_list

ats receive
    [-handle handle_name]
    -timeout timeout
    -topic topic

ats replay
    -prot protocol_file_name

ats send
    [-handle handle_name]
    -header message_header_information
    [-message message_body]
    -topic topic

ats subscribe
    [-handle handle_name]
    -topic topic_list
    -timeout timeout
    [-onemessage]
    [-nodestroy]

ats terminate
    [-handle handle_name]

ats help

ats operations

Purpose
A metacp object that manages the asynchronous transport service. This is a messaging
service that is based on JMS (Java messaging service). It supports the publish - subscribe
model. A unlimited number of publisher clients can send messages to a defined topic to
the message server. Other clients can subscribe to topics. That is that they get all messages
that were published to a specific topic. There are no specific rules how to define topics and

48



messages.

Arguments
operation

The name of the ats operation for which to display help information.

Operations

ats acknowledge
Destroys a message from the message server. The syntax is as follows:

ats acknowledge
    [-handle handle_name]
    -messageid message_ID
    -topic topic_name
    -timeout timeout

Options

-handle handle_name

Specifies an ATS session identifier in order to support multiple ATS sessions in parallel

-messageid message_ID

Specifies the message id of the message that is to be destroyed from the server. The
message_ID is the result returned by the corresponding ats subscribe operation. It is a
base64 encoded string that represents the internal message identifier of the underlying
messaging system, for example QU1RIFFNX3NjaG1pZDAyIBS8nz8gABYF.

-topic topic_name

Specifies the name of the topic the client uses for deleting the message, for example
dxm.event.pwd.changed.

-timeout timeout

The operation stops after timeout seconds. A value of 0 implies that the underlying
message system returns after destroying the message.

The ats acknowledge operation destroys the message with the specified ID from the
server.

Example

ats acknowledge
      -messageid QU1RIFFNX3NjaG1pZDAyIBS8nz8gABYF
      -topic dxm.event.pwd.changed

49



      -timeout 1

ats initialize
Initializes a connection to the message server. The syntax is as follows:

ats initialize
    [-bindid bind_session_id]
    [-handle handle_name]
    [-prot protocol_file_name]
    [-repeat repeat_count]
    [-servername MSS_servername]
    [-timeout timeout]
    [-topicprefix topic_prefix]
    [-type type]
    [-cluster cluster]
    [-resource resource]

Options

-bindid bind_session_id

-handle handle_name

Specifies an ATS session identifier in order to support multiple ATS sessions in parallel

-prot protocol_file_name

Specifies the filename of the protocol file. All messages sent and all messages received
are written into this file. This file can be used for the ats replay operation if the same
messages should be re-sent.

Publish operations are written into the protocol file in the following format:

Operation=publish
Header=message_header_1
Header=message_header_2
...
Message=message
Topic=topic_1
Topic=topic_2

Subscribe operations are written into the protocol file in the following format:

Operation=subscribe
Header=message_header_1
Header=message_header_2
Topic=topic_1
...
TimeOut=time_out_in_seconds
Message=message

50



Currently only one ATS connection is supported in the protocol file.
Furthermore no other options can be specified together with the options
–prot.

-repeat repeat_count

Specifies the number of retries for retrieving the message queue server information.
Default value, if missing, is 10.

-timeout timeout

Specifies the timeout to be used for retrieving the message queue server information.
Default value, if missing, is 30.

-topicprefix topic_prefix

Specifies the topic prefix to be used as part of a JMS topic if metacp should send
automatically JMS messages (containing the SMPL representation of an update
request), for example "dxm.event" as part of the topic

dxm.event.LDAP.cluster='my-cluster'.resource='my-resource'

-type type

Specifies the type to be used as part of a JMS topic if metacp should send automatically
JMS messages (containing the SMPL representation of an update request), for example
"LDAP" as part of the topic

dxm.event.LDAP.cluster='my-cluster'.resource='my-resource'

-cluster cluster

Specifies the cluster to be used as part of a JMS topic if metacp should send
automatically JMS messages (containing the SMPL representation of an update
request), for example "my-cluster" as part of the topic

dxm.event.LDAP.cluster='my-cluster'.resource='my-resource'

-resource resource

Specifies the resource to be used as part of a JMS topic if metacp should send
automatically JMS messages (containing the SMPL representation of an update
request), for example "my-resource" as part of the topic

dxm.event.LDAP.cluster='my-cluster'.resource='my-resource'

The ats initialize operation initializes connection to the message server. The connection
must be terminated by performing an ats terminate operation.

The message server is identified by using an MSS server name and retrieving its related
message server. The relevant information is read from the directory and therefore an LDAP
connection needs to be available.

There are two ways to select a message server:

• If no options are given, the ats initialize operation reads the bind information stored in

51



the configuration file install_path*/server/conf/dxmmsssvr.ini* to retrieve all relevant
information from the DIT for setting up a connection to the messaging system. In that
case, the complete set of bind information must be available in the configuration file,
namely the password (and optionally PIN).

• In order to setup a JMS connection to any other message server, the MSS server name
can be given in the parameter –servername. An existing LDAP connection is required
and is identified either by the bind session given in –bindid, or the default LDAP bind
session is used. Furthermore the parameters –repeat and –timeout will be evaluated.

If metacp should propagate JMS requests (containing the SPML representation of an
update request) to a given JMS topic then specify the options -topicprefix, -type, -cluster,
and -resource. When metacp later on performs the update operations (using meta
addentry, meta modifyentry, meta removeentries, or meta modifydn) JMS messages are
propagated automatically to the given topic.

Example

ats initialize -prot ATS_trace01
ats initialize -servername myMSS -bindid myLDAPbind

ats publish
Publishes a message. The syntax is as follows:

ats publish
    [-handle handle_name]
    -header message_header_information
    [-message message_body]
    -topic topic_list

Options

-handle handle_name

Specifies an ATS session identifier in order to support multiple ATS sessions in parallel.

-header message_header_information

Is a comma separated list of header fields, for example
DXMVersion=1.0,DXMInstId=100,DXMOperation=…,…

You can define your own messages. See the event manager utility script in the DirX
Identity default applications for examples for messages.

-message message_body

Specifies the message text. There are no specific rules how to define the message text.

-topic topic_list

Is a comma separated list of topics for that the message is published, for example

52



dxm.command.main,DXM.stateTracker,DXM.myserver.fileservice.

The ats publish operation publishes a message. The operation returns the message ID on
success.

Example

1. The following ats publish operations creates a workflow instance at the server. It returns
the message ID main_1067593458_2888_0:

ats publish
   -topic dxm.command.main
   -header DXMReplyTo=dxm.command.event.mss_reply,
       JMSReplyTo=dxm.command.event.mss_reply,
       DXMVersion=1.10,
       DXMObjectName=cn=BA_MetaStore2CSVfile_Full\,
         dxmC=CSVfile\,
         dxmC=uid-c0671b98-96a4c-e98fe4f404--7f95\,
         dxmC=Workflows\,
         dxmC=DirXmetahub,
       DXMObjectType=3,
       DXMInitiatorType=1,
       DXMType=1,
       JMSType=1

2. The following ats publish operation executes the instance created in example 1. It
returns the message ID main_1067593458_2888_1:

ats publish
   -topic dxm.command.main
   -header DXMReplyTo=dxm.command.event.mss_reply,
        JMSReplyTo=dxm.command.event.mss_reply,
        DXMVersion=1.10,
        DXMObjectName=cn=BA_MetaStore2CSVfile_Full\,
          dxmC=CSVfile\,
          dxmC=uid-c0671b98-96a4c-e98fe4f404--7f95\,
          dxmC=Workflows\,
          dxmC=DirXmetahub,
        DXMOperation=10,
        DXMWorkflowActivity=,
        DXMType=8,
        JMSType=8,

53



        DXMInstId=main_1067593458_2888_0

3. The following ats publish operation destroys the instance created in example 1. It
returns the message ID main_1067593458_2888_2:

ats publish
   -topic dxm.command.main
   -header DXMReplyTo=dxm.command.event.mss_reply,
       JMSReplyTo=dxm.command.event.mss_reply,
       DXMVersion=1.10,
       DXMType=2,
       JMSType=2,
       DXMInstId=main_1067593458_2888_1

ats receive
Receives messages from the message service using specified topic (that identifies the
message service’s queue). The syntax is as follows:

ats recive
    [-handle handle_name]
  -timeout timeout
  -topic topic

Options

-handle handle_name

Specifies an ATS session identifier in order to support multiple ATS sessions in parallel.

-timeout timeout

The operation stops after timeout seconds. A value of 0 implies that operation returns all
currently available messages and then stops.

-topic topic

Specifies the topic name that gets mapped to the message service’s queue name.

The ats receive operation reads a message from the message service’s queue defined in
the option -topic.

Example

ats receive -topic dxm.my.topic -timeout 5

If you look at the sample of ats send then the result is the following:

54



{dxm.my.topic DXMVersion=1,DXMType=10 {Hello world}}

ats replay
Re-sends all publish operations that have been written to the specified protocol file in
another session. The syntax is as follows:

ats replay
    -prot protocol_file_name

Options

-prot protocol_file_name

Specifies the filename of the protocol file that has been written in another session.

The ats replay operation performs all publish operations that it finds in the specified
protocol file. (See also the ats initialize operation.)

Example

*ats replay -prot ATS_trace01*

ats send
Sends a message to the queue. The syntax is as follows:

ats send
    [-handle handle_name]
    -header message_header_information
    [-message message_body]
    -topic topic

Options

-handle handle_name

Specifies an ATS session identifier in order to support multiple ATS sessions in parallel.

-header message_header_information

Is a comma separated list of header fields, for example
DXMVersion=1.0,DXMInstId=100,DXMOperation=…,…

You can define your own messages.

-message message_body

Specifies the message text. There are no specific rules how to define the message text.

55



-topic topic

Specifies the topic name that gets mapped to the message service’s queue name.

The ats send operation sends a message to a message service’s queue. The operation
returns the message ID on success.

Example

ats send -topic dxm.my.topic
              -header DXMVersion=1,DXMType=10
              -message "Hello world"

ats subscribe
Subscribes to the specified topic list. The syntax is as follows:

ats subscribe
    [-handle handle_name]
    -topic topic_list
    -timeout timeout
    [-onemessage]
    [-nodestroy]

Options

-handle handle_name

Specifies an ATS session identifier in order to support multiple ATS sessions in parallel

-topic topic_list

Is a comma seperated list of topics the client wants to subscribe to, for example
dxm.command.main,DXM.stateTracker,DXM.myserver.fileservice.

-timeout timeout

The operation stops after timeout seconds. A value of 0 implies that operation returns all
currently available messages and then stops.

-onemessage

The operation stops after the first message has been returned.

-nodestroy

The operation does not destroy the messages returned. These messages must be
destroyed by performing an ats acknowledge operation. The corresponding message
Ids are returned.

The ats subscribe operation subscribes to the topic list specified in the option -topic.

The operation returns all messages available on success. If the -nodestroy option is

56



specified the returned messages contain also the base 64 encoded message IDs that must
be used when performing the ats acknowledge operations to destroy the messages from
the server. The messages are returned in aTcl list with the following format:

{topic1 header_info_t1_1 message_t1_1 [message_ID_t1_1]}
{topic1 header_info_t1_2 message_t1_2 [message_ID_t1_2]}
…
{topic2 header_info_t2_1 message_t2_1 [message_ID_t2_1]}
{topic2 header_info_t2_2 message_t2_2 [message_ID_t2_2]
…

Example

ats subscribe
      -topic dxm.event.pwd.changed
      -timeout 20
      -onemessage
      -nodestroy

The return value is as follows:

{dxm.event.pwd.changed
{JMSType=513,
DXMVersion=1.10,
DXMUserData=
<event name="dxm.event.PWD_CHANGED">
<source application="APETA" type="ADS" resource="ASW" />
<entry>
<identifier type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
    <id>1002</id>
</identifier>
<operationalAttributes>
    <attr name="encryptedAttributes"> <value>password</value> </attr>
</operationalAttributes>
<attributes>
    <attr name="username"> <value>test</value> </attr>
    <attr name="password">
            <value>{E:00000001:cn=server-admin,
                          1.3.12.2.1107.1.3.102.4.13.17=DirXmetahub}
                           i7qivioOPuaAlicWdTZztGHewT8WSP65iix
                           VvpPT4txUz17IMAnavlb7deREKVYU
                           /ak2FjuIv815ZLltfFpz8Sm7nA4qpeZBW

57



                           2mj67dwWIqvBH2QRkeAOOd+RGRbw
                           0nzAlM93rNcpNnSrPqj8qiwr2RnY2WvX
                           j+izJmNiKoZsYk=
            </value>
    </attr>
    <attr name="passwordexpired"> <value>0</value> </attr>
</attributes>
</entry>
</event>,
JMSExpiration=86400,
JMSMessageID=_1067432986_-1_1,
JMSDeliveryMode=0,
JMSDestination=dxm.event.pwd.changed,
JMSPriority=1,
JMSRedelivered=0,
JMSTimestamp=1067433251}
QU1RIFFNX3NjaG1pZDAyIBS8nz8gABYF}

where

"dxm.event.pwd.changed" represents the topic,

"QU1RIFFNX3NjaG1pZDAyIBS8nz8gABYF" at the end represents the base 64 encoded
message ID that must be used when performing the ats acknowledge operation

and the remaining information represents the message.

ats terminate
Terminates a connection to the message server. The syntax is as follows:

ats terminate
    [-handle handle_name]

The ats terminate operation terminates a connection to the message server. It releases all
resources. The connection was previously initialized by an ats initialize operation.

Options

-handle handle_name

Specifies an ATS session identifier in order to support multiple ATS sessions in parallel

Example

58



ats terminate

ats help
Returns help information about the ats object and its operations. The syntax is as follows:

ats help

Example

ats help

ats operations
Returns a list of operations that can be performed on the ats object. The syntax is as follows:

ats operations

The list of available operations is in alphabetical order except for help and operations,
which are listed last.

Example

ats operations

The output of the sample command is as follows:

acknowledge initialize publish replay subscribe terminate help
operations

1.1.2. ldapargs (metacp)

Synopsis
ldapargs help [operation | -verbose]

ldapargs operations

ldapargs modify
    [-bindid bid]
    {-default |
    [-dereferencealias {ALWAYS | NEVER | SEARCHING | FINDING}]}

59



    [-followreferral {TRUE | FALSE}]
    [-sizelimit {limit | INFINITE}]
    [-timelimit {limit | INFINITE}]}

ldapargs show [-bindid bid] [-pretty]

Purpose
A metacp object that manages the service controls for LDAP binds. The ldapargs object
operations can only be issued for established LDAP binds.

Arguments
operation

The name of the ldapargs operation for which to display help information.

Operations

ldapargs help
Returns help information about the ldapargs object and its operations. The syntax is as
follows:

ldapargs help [operation | -verbose]

Options

-verbose

Displays information about the ldapargs object.

Used without an argument or option, the ldapargs help command returns brief
information about each ldapargs operation. Use the operation argument to return a
description of the options associated with the operation you specify. Alternatively, you can
use the -verbose option to return a description of the ldapargs object itself.

Example

ldapargs help

The output of the sample command is as follows:

modify Modifies the service controls.

show Shows the service controls.

60



help Displays help text for the 'ldapargs' object and its
operations.

operations Lists the operations that can be performed on the 'ldapargs'
object.

ldapargs modify
Changes the service controls for LDAP binds. The syntax is as follows:

ldapargs modify
    [-bindid bid]
    {-default |
    [-dereferencealias {ALWAYS | NEVER | SEARCHING | FINDING}]}
    [-followreferral {TRUE | FALSE}]
    [-sizelimit {limit | INFINITE}]
    [-timelimit {limit | INFINITE}]}

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

-default

Sets the service controls and options to the following values:

Dereference Alias ALWAYS

Follow Referral TRUE

Size Limit INFINITE

Time Limit INFINITE

Do not use this option with any other options except with the option -bindid.

-dereferencealias {ALWAYS | NEVER | SEARCHING | FINDING}

Controls handling of aliases in directory operations. An alias is an entry that refers to
another entry (the target). During directory operations, aliases can be replaced by the
target entry (dereferenced). To control when this occurs, specify one of the following
keywords:

• ALWAYS

• NEVER

• SEARCHING - Aliases are dereferenced during an obj search operation but are not
dereferenced when locating the base object of the search.

• FINDING - Aliases are dereferenced when locating the base object of the search but
are not dereferenced during the obj search operation.

61



The default value is ALWAYS.

-followreferral {TRUE | FALSE}

Controls whether referrals returned by an obj search operation are followed
automatically. The default value is TRUE.

-sizelimit {limit | INFINITE}

Sets the maximum number of objects returned for obj list and obj search operations.
Specify a non-negative integer or the keyword INFINITE. The default value is INFINITE.

-timelimit {limit | INFINITE}

Sets the maximum elapsed time in seconds for completion of an obj list or obj search
operation. If an obj list or obj search operation does not complete by the specified limit,
the operation returns an arbitrary selection of results accumulated before exceeding the
time limit. Specify a non-negative integer or the keyword INFINITE. The default value is
INFINITE.

The ldapargs modify operation changes one or more service control settings to be used in
all subsequent operations of the specified LDAP bind. Specify one or more of the options
that correspond to the service controls you want to set. Alternatively, you can specify the
-default option to set the control services to their default values.

Service control settings for a specific bind ID are lost when an obj unbind operation is
issued for this bind ID. A subsequent obj bind operation resets the service controls to the
default values for the specified bind ID. The service controls are not reset to the default
values if the default bind is used. (See the obj bind operation for details.)

Examples

The following sample command performs the following tasks for the LDAP bind
corresponding to the binding id hawkL3:

• Limits the size of the results returned to 500 objects

• Limits the amount of time to 30 seconds in which an operation can complete

ldapargs modify -bindid hawkL3 -sizelimit 500 -timelimit 30

The following sample command sets the service controls for the LDAP bind corresponding
to the bind ID hawkL3 to the default values:

ldapargs modify -bindid haekL3 -default

ldapargs operations
Returns a list of operations that can be performed on the ldapargs object. The syntax is as
follows:

62



ldapargs operations

The list of available operations is in alphabetical order except for help and operations,
which are listed last.

Example

ldapargs operations

The output of the sample command is as follows:

modify show help operations

ldapargs show
Shows the service control settings currently in use for LDAP binds. The syntax is as follows:

ldapargs show [-bindid bid] [-pretty]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

-pretty

Displays the results of the operation in tabular format.

By default, the results of the ldapargs show operation are returned as a Tcl list. Use the
-pretty option to display the results in a tabular, more readable format.

Example

bind -prot LDAPv3
ldapargs show -pretty

The output of the sample command is as follows:

Dereference Alias - ALWAYS
Follow Referral - TRUE
Size Limit - INFINITE
Time Limit - INFINITE

63



1.1.3. meta (metacp)

Synopsis
[meta] addentry
    -entry entry_handle
    [-updateattr attribute_list]

[meta] appendresult
    -source source_search_result_handle
    -target target_search_result_handle

[meta] createindexlist
    [-exactaction]
    -conn connection_handle
    -handle index_list_handle
    [-type distinguished_name_syntax]

[meta] encryptdata
    -result result_handle
    -databindid data_bind_id
    -keybindid key_bind_id
    [-oldserialnumber old_serial_number]

[meta] encryptvalue string

[meta] escapechar string
    -characters characters

[meta] findentry
    -result result_handle
    -name distinguished_name or attribute_value
    -entry entry_handle
    [-getattr flag]
    [-tag tag]
    [-numbermatches number_variable]

[meta] getchangelog
    -name distinguished_name
    -changetype operation_change_type
    -changes list of changes
    -source handle_to_pseudo_LDIF-file
    -target entry_handle

[meta] getentry
    -source source_handle
    {-target entry_handle [-tag tag] [-mark]
    [-name distinguished_name [-countmatches flag]] |
    -reset}

64



[meta] gethandle
    -entry entry_handle
    -conn connection_handle

[meta] getnumentries
    -result result_handle

[meta] getstatistic statistic_variable

meta help [operation | -verbose]

[meta] initialize
    -file trace_file
    [-tracelevel level]
    [-maxtracerecords recordnumber]
    [-maxentries number]
    [-mode initialization_mode]
    [-nostatistics]

[meta] modifydn
    -entry entry_handle

[meta] modifyentry
    -newentry entry_handle
    [-oldentry entry_handle]
    [-tag tag]
    [-allowrename rename_flag]
    [-updateinfo update_flag]
    [-updateattr attribute_list]

[meta] openconn
    -type directory_type
    [-file filename -mode file_open_mode
    [-format file_format] [encoding encoding]]
    [-attribute attribute_list [-processallattr]]
    -attrconf attr_conf_handle
    -conn connection_handle
    [-bindid binding_id]
    [-ldifhandle LDIF_file_handle]

[meta] openldif
    -file filename
    -ldifhandle LDIF_file_handle

meta operations

[meta] readattrconf
    -file filename
    -attrconf attr_conf_handle
    [-encoding encoding]

65



[meta] releasehandle handle

[meta] removeentries
    -handle handle
    [-tag tag]

[meta] sortindexlist -handle index_list_handle
    [-keepnames index_list_access_flag]

[meta] sortresult
    -result result_handle
    -order sort_order
    [-key sort_key]

[meta] supinfo
    -rdn attribute_type
    {-attribute attribute_value | -remove}
    [-bindid binding_id]

[meta] terminate

[meta] unescapechar string

[meta] writeindexlist
    -handle index_list_handle
    -name distinguished_name
    -entry entry_handle

[meta] writerecord
    -entry entry_handle

[meta] writetext
    -conn connection_handle
    -text string
    [-nonewline flag]

[meta] writetrace
    -text string
    [-handle handle]

Purpose
A metacp object that performs directory synchronization operations.

Arguments
handle

A meta handle to be released by the releasehandle operation. A meta handle is a handle
created by a meta operation that is associated with metacp information. The following
table describes the types of meta handles.

66



Handle Type Associated
Information

Created by Dependencies

attribute
configuration file
handle

Attribute
configuration file

meta readattrconf none

connection handle connected directory
(file, DAP or LDAP)

meta openconn attribute
configuration file
handle

result handle search results list obj search

meta appendresult

connection
handle

entry handle directory entry
directory entry
entry template

meta findentry
meta getentry
meta gethandle

result handle
result or
connection
handle
connection
handle

index list handle index list meta createindexlist connection
handle

LDIF file handle LDIF-CHANGE output meta openconn none

operation

The name of the meta operation for which to display help information.

string

The string to be processed (for example, in an escapechar operation).

Operations

meta addentry
Creates a new entry in the Identity store (a connected directory of type LDAP). The syntax is
as follows:

[meta] addentry
    -entry entry_handle
    [-updateattr attribute_list]

Options

-entry entry_handle

A required option that specifies the handle to the entry to be added. Specify the name of
an entry handle created by a meta gethandle operation called with a -conn option that
specifies a connection handle to a connected directory of type LDAP.

67



-updateattr attribute_list

An optional parameter that specifies an additional attribute list. All these attributes are
created together with the information associated with entry_handle. The attribute list
has to be specified in native LDAP syntax, e. g.

[meta] addentry entry new_entry updateattr dxmState=NEW

Using the -updateattr switch allows to handle additional attributes which normally
should not be synchronized under any circumstances. (Otherwise these attributes must
have been selected in the associated entry_handle and therefore are always subject to
synchronization. Thats not desirable in any cases.)

The addentry operation adds the entry associated with entry_handle into the Identity store
(a connected directory of type LDAP). The Tcl variable array associated with entry_handle
must contain a value for the Directory-Distinguished-Name (DDN) attribute. The add entry
operation uses this value for the entry name when it creates the entry. The attributes that
the operation creates for the entry correspond to the set of attributes present in the Tcl
variable array associated with entry_handle.

The addentry operation creates the necessary superior entries when creating the entry
provided that the required attribute information has been specified with a supinfo
operation.

If the underlying connection handle (derived from entry_handle) is an LDAP directory with
the parameter -ldifhandle set, the addentry is not applied to the LDAP directory; instead,
an LDIF-CHANGE operation is created in the LDIF-CHANGE file associated with -ldifhandle
parameter.

metacp automatically propagates a JMS message (containing the SPML add request) if at
the beginning of a synchronization scenario ats initialize has been called with the options
-topicprefix, -type, -cluster, and -resource. (See ats initialize for details.)

Return Values

Check the Tcl variable errorCode for error details. If this variable is not set or its value is
empty, the entry was successfully created. Otherwise the error is logged in the trace file
and the entry was not created.

0 The object creation succeeded, or it failed with an error that did not prevent
further processing of operations in the Tcl script logic.

1 The object creation failed with a serious error; for example, "LDAP server not
available". Examine your Tcl script logic to determine whether it makes sense to
terminate the Tcl synchronization script.

Example

meta addentry -entry en

68



See Also

gethandle, initialize, openconn, openldif, supinfo, ats initialize

meta appendresult
Appends a new search result to an already existing search result. The syntax is as follows:

[meta] appendresult
    -source source_search_result_handle
    -target target_search_result_handle

Options

-source source_search_result_handle

A required option that specifies a search result (identified by its
source_search_result_handle name) that should be appended to an already existing
search result (identified by its target search result handle name). Specify the name of a
search result handle created by a obj search operation called with a -conn option that
specifies a connection handle to a connected directory of type LDAP.

-target target_search_result_handle

A required option that specifies a search result (identified by its
target_search_result_handle name) that should be extended by another search result.
Specify the name of a search result handle created by a obj search operation called with
a -conn option that specifies a connection handle to a connected directory of type LDAP.
If the target search result handle does not exist, then it will be created and the final
search result is an exact copy of the source search result.

The appendresult operation appends a search result (identified by the
source_search_result_handle) to an already existing target search result. If the target result
does not exist as yet, the target search result handle will be created and consists of all the
entries from the source search result.

The two search results can only be merged if the following conditions are satisfied:

• Both search results are based on the same connection identified by the -openconn
connection option.

• If the search results are sorted, both of them are sorted using the same sort key.

• If the search results are sorted, both of them are sorted using the same sort order.

• If the option -exactaction was used in the obj search opration, then it must have been
used either for both the search operations or for none of them.

Only if these conditions are satisfied, the final search result is consistent again.

If the target search result was already sorted (using meta sortresult), then the final search
result will be sorted again with the same sort criterias.

69



• When using appendresult the user must guarantee that the same
object does not exist several times in the final search result. Otherwise
its not predictable, whether the operation meta addentry, meta
modifyentry and meta removeentries are correctly called by a
synchronization TCL script.

• If meta getentry has already been applied to the target search result
before calling meta appendresult and therefore the current position in
the search result is not the beginning of the search result, the current
position is of no use any longer. Therefore the current position is set to
the beginning of the search result; meta getentry will return the entries
from the beginning of the search result again.

Return Values

None.

Example

meta appendresult -source new_result -target merged_result

See Also

obj search

meta createindexlist
Creates a handle to an index list. The syntax is as follows:

[meta] createindexlist
    [-exactaction]
    -conn connection_handle
    -handle index_list_handle
    [-type distinguished_name_syntax]

Options

-exactaction

Normally DNs are defined as CaseIgnore strings which implies that leading and trailing
spaces are ignored and several spaces are reduced to one space during comparisions.
There are no problems when modifying such an object and a reduced number of spaces
is passed in the DN; the objects are still considered to be the same and the MODIFY
operation is performed successfully. There are directory systems, that want to have the
exact number of spaces when calling the MODIFY operation. Therefore, multiple spaces
must not be dropped.

Using the option -exactaction guarantees that multiple spaces in the DNs are not

70



dropped. The DNs are provided to the user the same way as they are retrieved from the
directory server.

-conn connection_handle

A required option that specifies a handle to a connected directory. Specify the name of a
connection handle created by a meta openconn operation called with the -type option
FILE.

-handle index_list_handle

A required option that specifies the name to be assigned to the index list handle
returned by the operation.

-type distinguished_name_syntax

Specifies the distinguished name syntax for entries in the index list. Specify the keyword
LDAP to create an index list for entry distinguished names in LDAP format.

The createindexlist operation initializes an empty index list template, creates a handle to it,
and assigns it the name specified with the -handle option. The index list can then be used
to sort the entries in the connected directory, rather than sorting the connected directory
(which is a file) itself. The process for using an index list to sort directory entries is as follows:

1. Create the index list with meta createindexlist

2. For each entry in the connected directory:

◦ Use the meta getentry operation to read the entry. The meta getentry operation
returns an entry handle to the entry. Obtain the entry’s distinguished name either
from the entry itself (if it is stored in the entry, it is available in a Tcl variable) or
through a Tcl mapping procedure.

◦ Use the meta writeindexlist operation to write the distinguished name of the entry
and its entry handle returned by meta getentry into the index list.

3. Use the meta sortindexlist operation to sort the entries in the index list according to
distinguished name or any other attribute, in alphabetical (ascending) order.

You can then continue the directory synchronization process using the sorted index list
rather than using the connected directory. For example, you can perform meta getentry
operations on the sorted index list by specifying its index handle rather than specifying the
connection handle to the connected directory.

The createindexlist operation stores the distinguished name syntax keyword specified in
the -type option in the index list handle. The meta sortindexlist operation uses this
information to determine how to process the distinguished names in the index list. If the
-type option is not specified, the operation uses DAP distinguished name processing.

Return Values

None.

71



Example

meta createindexlist -conn file_ch -handle ih

See Also

getentry, sortindexlist, writeindexlist

meta encryptdata
Performs data encryption for a search result handle based on the private keys and
certificates stored for the server (IdS-C) admistrator object
cn=server_admin,dxmc=DirXmetahub. There is a support of both an initial mode
(encryption of cleartext data with the public key having the highest serial number) and a
migration mode which includes

• encryption of cleartext data with the public key having the highest serial number

• data previously encrypted with a public key of older serial number is decrypted and
encrypted again with the latest public key.

The command syntax is as follows:

[meta] encryptdata
    -result result_handle
    -databindid data_bind_id
    -keybindid key_bind_id
    [-oldserialnumber old_serial_number]

Options

-result result_handle

Specifies the ldap search result handle which includes relevant objects and attributes
relevant for data encryption. The result_handle must be a handle which respresents an
ldap search result,

-databindid data_bind_id

Specifies the bind identifier required for performing the attribute modifications in the
Directory. This bind identifier must be the same as the bind identifier related to
result_handle, and a bind with protocol LDAPv3 must have been performed with bindid
data_bind_id.

-keybindid key_bind_id

Specifies the bind identifier required for reading the keys and certificates from the
Server (IDS-C) administrator object. A suitable bind with protocol LDAPv3 must have
been performed with bindid key_bind_id.

72



-oldserialnumber old_serial_number

This parameter is optional, the default is NONE. Either omit this option or specify NONE
if you intend to perform initial encryption. Specify a hexadecimal value (e.g. 6E) or the
keyword PREVIOUS, if you intend to perform data encryption in migration mode. In this
case, the environment variable _DXC_OLD_PIN must contain the PIN suitable to the
private key with _old_serial_number.

Return Values

None.

Example

An encryptdata operation for initial encryption:

meta encryptdata result resultHandle \
      -databindid dataBindId \
      -keybindid keyBindId

An encryptdata operation for migration from old serial number 6E to current serial number:

meta encryptdata result resultHandle \
      -databindid dataBindId \
      -keybindid keyBindId \
      -oldserialnumber 6E

See Also

obj bind, obj search, initialize, encryptvalue

meta encryptvalue
Performs data encryption for a string based on the certificates stored for the Server (IDS-C)
administrator object cn=server_admin,dxmc=DirXmetahub. It uses the public key
(certificate) with the highest serial number.

That function is only available when metacp runs in encryption mode.

The syntax is as follows:

[meta] encryptvalue string

Options

none

73



Return Values

The encrypted string.

In case of errors, an error message is returned and the errorCode variable is set.

Example

The encryptvalue operation

meta encryptvalue dirx

returns the encrypted value base on the currently available public key.

See Also

encryptdata

meta escapechar
Escapes one or more characters in a string. The syntax is as follows:

[meta] escapechar string
    -characters characters

Options

-characters characters

Escapes the characters specified in characters.

The escapechar operation escapes one or more characters by prefixing them with the
backslash character (\) and returns the escaped string as a result. The backslash character
itself is escaped as well.

Use the -characters option to escape only those characters specified in characters. To avoid
conflicts with the Tcl shell escape mechanism, enclose the string that contains the
characters to be escaped in curly braces (\{ }). If curly braces are to be a part of the string,
they must be escaped.

Return Values

The escaped string.

Example

The escapechar operation

74



meta escapechar f{1}=2 -characters {\{\}=}

returns the string f\{1\}\=2

See Also

unescapechar

meta findentry
Retrieves an entry from the sorted results of an obj search operation. The syntax is as
follows:

[meta] findentry
    -result result_handle
    -name distinguished_name or attribute_value
    -entry entry_handle
    [-getattr flag]
    [-tag tag]
    [-numbermatches number_variable]

Options

-result result_handle

A required option that specifies a handle to a directory search results list. Specify the
name of a result handle created by an obj search operation that has been sorted by a
meta sortresult operation.

-name distinguished_name or attribute_value

A required option that specifies the distinguished name of the entry to be retrieved if
the result list has been sorted according to DDN. Specify the complete distinguished
name in the format:

distinguished_name

For example:

cn=mueller,ou=board,o=pqr,c=de

or the attribute type and value to be retrieved if the result has been sorted according to
a sort criteria different than DDN. Specify the value in the format

attribute_type=attribute_value

For example:

employeeNumber=98765

75



-entry entry_handle

A required option that specifies a name to associate with the entry handle created by
the operation (if it finds the entry in the search results list).

-getattr flag

Controls whether the entry handle created by the operation is associated with a Tcl
variable array containing the entry’s attributes. Specify one of the following keywords:

• TRUE-associate the entry handle with a Tcl variable array

• FALSE-do not associate the entry handle with a Tcl variable array (default)

-tag tag

Specifies a marking action to be performed on the found entry in the search results list.
Specify the keyword MARK in the tag argument to this option in order to mark the
entry.

-numbermatches number_variable

If an LDAP result is sorted according to a sort criteria different than DDN, then multiple
matches could be present.

Therefore, if -numbermatches with a TCL variable name number_variable is specified,
then findentry returns the first matched entry together with the number of matched
entry that is stored in a TCL variable with the given name. In that case, findentry
internally sets the search result pointer to the matched entry. Using subsequent calls of
getentry then allow to retrieve all the matching entries one after the other.

If -numbermatches is not specified, then the matching entry that is returned is
unpredictable (as described in the current release of the document).

The findentry operation attempts to match the entry specified in the -name option to an
entry within the directory search results specified in the -result option. On success, the
operation creates an entry handle associated with the matched entry and assigns it the
name specified in the -entry option. By default, the entry handle created by meta findentry
is not associated with a Tcl variable array. Use the -getattr option to associate the handle
with a Tcl variable array.

If the result list has been sorted according to any attribute type, then that
attribute must be single-valued for all the entries of the search result.
Entries that don’t hold that specific attribute type will be listed at the end
of the sorted list (if sorting has been done in ascending order) or at the
beginning of the sorted list (if sorting has been done in descending order).
If several such entries exist, their position at the beginning or end of the
sorted list is undefined. As a consequence, it is unpredictable which entry
will be returned by a "meta findentry" operation that uses such an
ambiguous value. Therefore, it is strongly recommended to use only
attributes as sort_key (in meta sortresult) that are unique, like employee
number.

76



Return Values

0 The entry was found

1 The entry was not found

Example

meta findentry -name cn=zahn,ou=sales,o=ibis,c=us \
        -result ldap_res -entry eh

See Also

getentry, modifyentry, removeentries, obj search

meta getchangelog
Processes an LDIF change log entry as provided, for example, by iPlanet or Oracle Internet
Directory (OID). The syntax is as follows:

[meta] getchangelog
    -name distinguished_name
    -changetype operation_change_type
    -changes list of changes
    -source handle_to_pseudo_LDIF-file
    -target entry_handle

Options

-name distinguished_name

Specifies the target DN of the object that is listed in the change log entry.

-changetype operation_change_type

Specifies the kind of LDIF change operation: add, delete, modify, moddn, modrdn

-changes list_of_changes

Specifies the list of changes that have been applied to the given DN

-source handle_to_pseudo_LDIF-file

Specifies the name of a handle to a pseudo LDIF file

-target entry_handle

Specifies the name of an entry handle that is created by the operation in case of success

Both iPlanet and OID store all the changes of directory entries and attributes in the
directory itself as directory entries (changelog entries). The getchangelog operation
processes a change log entry that has been read either from an iPlanet or OID directory

77



using an obj search operation. The relevant attributes (targetDN, changetype, changes) of
such a changelog entry are passed to getchangelog; as the format of these parameters are
exactly the same as if an LDIF change file had been read, getchangelog will internally
concatenate the values of these parameters as a byte stream in memory and then use its
internal LDIF file parser. (Therefore, a handle to a pseudo LDIF file must be passed as
-source handle.)

On success, getchangelog creates a handle to the entry and associates it with the name in
the target option. The entry’s DN and its attributes become accessible as an array of Tcl
variables. For details, see the description of getentry.

Return Values

0 The entry was successfully processed

1 The entry could not be processed

Example

In this example, the change log entry has been read by obj search and its data is available
in the Tcl array named chlog:

meta getchangelog
      -name           {[lindex $chlog(targetdn) 0]}     \
      -changetype {[lindex $rh_x500(changetype) 0]}   \
      -changes       {[lindex $rh_x500(changes) 0]}      \
      -source   file_ch     \
      -target    rh"]

See Also

getentry, Chapter: Processing of ChangeLogEntries

meta getentry
Reads the next entry from a connected directory, a search results list, or an index list, reads
a specific entry from an index list, or resets a search results list or index list. The syntax is as
follows:

[meta] getentry
    -source source_handle
    {-target entry_handle [-tag tag] [-mark]
    [-name distinguished_name [-countmatches flag]] |
    -reset}

78



Options

-source source_handle

A required option that specifies a handle to a connected directory, a search results list, or
an index list.

• To operate on a connected directory, specify the name of a connection handle
created by a meta openconn operation called with the -type option FILE and the
-mode option READ.

• To operate on a search results list, specify the name of a result handle created by an
obj search operation.

• To operate on an index list, specify the name of an index list handle created by a
meta createindexlist operation. The connection handle inherited by the specified
index list handle must specify a connected directory that has been opened with the
-type option FILE and the -mode option READ.

-target entry_handle

Specifies a name to assign to the entry handle created by the operation on success.

-tag tag

Specifies whether the next marked or unmarked entry is to be read, if the operation is
reading entries from a search results list or an index list. Specify one of the following
keywords:

• MARKED-read next marked entry

• NOTMARKED-read next unmarked entry (default)

-mark

Specifies that an entry that is returned from a search result or an index list should be
marked or not.

If -mark is not given, the entry will not be marked.

The -mark option is ignored, if the source handle does not represent a search result or
an index list.

-name distinguished_name

Specifies the distinguished name of the entry to be read, if the operation is reading
entries from an index list. Specify the complete distinguished name in the format:

distinguished_name

For example:

cn=mueller,ou=board,o=pqr,c=de

-countmatches flag

Specifies whether a status code or the number of entries that match the distinguished
name specified in the -name option is to be returned, if the operation is reading entries
from an index list. Specify one of the following keywords:

79



• TRUE-return the number of matched entries found in the index list

• FALSE-return 0 on success or 1 on end of index list (default)

-reset

Specifies that the list is to be reset to its beginning, if the operation is reading entries
from a search results list or an index list.

Use the getentry operation to:

• Read entries sequentially from a connected directory (for example, an import file on
disk) or a search results list

• Read entries sequentially or randomly by distinguished name from an index list

• Reset an index list or a search results list to the beginning of the list

Specify the -reset option to reset an index list or a search results list to the beginning of the
list.

Specify the -target option to read an entry from a connected directory, a search results list,
or an index list into the metacp workspace. On success, the operation creates a handle to
the entry and associates it with the name specified in the -target option. When the
getentry operation reads an entry into the metacp workspace, the entry’s attributes to be
synchronized become accessible as an array of Tcl variables. Each Tcl variable in the array
represents a specific attribute to be synchronized; the variable is a Tcl list of the attribute’s
values. The Tcl variable array corresponds to the set of attributes to be synchronized (SSA);
the SSA is defined:

• In the connection handle specified in the -source option, when operating on a
connected directory

• In the connection handle referred to by the result handle specified in the -source
option, when operating on a search results list

• In the connection handle referred to by the index list handle specified in the -source
option, when operating on an index list

The Tcl variable array created by the getentry operation also contains two special
attributes:

• A Directory-Distinguished-Name (DDN) attribute. A value exists for this attribute when
operating on a search results list, on an index list, or on a connected directory of type
FILE that supplies the entry distinguished name as a specific attribute.

• An LDIF "changetype" (_ldif_opcode) attribute. A value exists for this attribute when
operating on a connected directory opened with the -format option LDIF-CHANGE and
indicates that the entry specifies a type of directory modification. For valid handles with
format LDIF-CHANGE, the value is one of ADD, DELETE, MODIFY or MODIFY-DN. If
metacp fails to recognize the "changetype" attribute value when it reads an LDIF
change entry, then the value will be an empty string. It is the responsibility of the user
(or the metacp script author) to take the appropriate action (or error handling)
depending on the attribute value. See the "LDIF Change Format" section in Chapter 3
(Directory Data File Formats) for more information about LDIF change file format and

80



the types of directory modifications an entry in an LDIF change file can represent.

Use the Tcl notation $*entry_handle(abbreviation)* to reference an element of the Tcl
variable array, where entry_handle is the name of the handle and abbreviation is the
attribute abbreviation for the attribute defined in the Abbreviation (Abbr) field of the
attribute configuration file. For example, suppose that:

• The set of attributes to be synchronized are the attribute types Given Name, Surname,
and Telephone Number

• The attribute abbreviations defined in the attribute configuration file are givenName,
sn, and telephoneNumber

• The attribute abbreviation for Directory-Distinguished-Name defined in the attribute
configuration file is DDN

• The attribute abbreviation defined in the attribute configuration file for the attribute
that holds an entry operation code is LCHNGTYPE

• The name supplied for the entry handle created by the getentry operation is eh

Then the indexes to the values for these attributes in the Tcl array are

$eh(DDN) - to access the attribute value(s) for Directory-Distinguished-Name

$eh(LCHNGTYPE) - to access the attribute value for the entry operation code

$eh(givenName) - to access the attribute value(s) for Given Name

$eh(sn) - to access the attribute value(s) for Surname

$eh(telephoneNumber) - to access the attribute value(s) for Telephone Number

An attribute with a single value is represented as a Tcl list with one element. A multi-valued
attribute is represented as a Tcl list of multiple elements, one for each value. Use Tcl
statements for accessing list variables to manipulate the values in the Tcl variable array; for
example, lindex.

For the "add" "delete" and "modify DN" LDIF change operations, each variable in the Tcl
array contains a list of attribute values. For "modify" operations, each variable in the Tcl
array contains a list of attribute changes. Each change is of the form:

{ changetype [ values] }

where changetype is

ADD-VALUE

DELETE-VALUE

REPLACE

to indicate the three different types of attribute value modifications. The Tcl list:

81



{ { ADD-VALUE 1111 2222 } { DELETE-VALUE 3333 } }

represents the addition of two attribute values and the removal or one attribute value for a
specific attribute. If the variable eh(telephoneNumber) has this list value, the changes
apply to the attribute telephoneNumber. The first element of eh(telephoneNumber) is:

{ ADD-VALUE 1111 2222} # Three elements. The first is the
# changetype followed by two attribute
# values to be added.
{ DELETE-VALUE 3333 } # Two elements. The first is the changetype
# and the second is the attribute value to
# be deleted

The "add" and "replace" Tcl lists must contain one or more attribute values as elements that
follow the changetype element. A "delete" Tcl list with one element (the changetype)
indicates that the attribute itself is to be removed.

The Tcl variable array for a "modify DN" LDIF operation contains three additional attributes:

• A "new RDN" attribute-Supplies the new relative distinguished name for the entry

• A "new superior" attribute-Supplies the new superior distinguished name of the entry

• A "delete old RDN" attribute-Supplies the boolean value that specifies whether or not to
delete the old relative distinguished name

The attribute abbreviations for these attributes are specified in the attribute configuration
file.

The elements of the Tcl variable array remain accessible as Tcl variables until they are unset
with the Tcl unset command or until the handle to the entry is released with meta
releasehandle.

If the -target option specifies a result handle to a search results list, use the MARKED
keyword in the -tag option to read the next entry from the Identity store (a connected
directory of type LDAP) that the meta modifyentry or meta findentry operations have
marked as "processed" in the results list. Use the NOTMARKED keyword to read the next
entry that has not been marked by meta modifyentry or meta findentry.

If the -target option specifies an index list handle to an index list, and a meta sortindexlist
operation with the -keepnames option has been performed on the index list specified in
the -source option, you can use the -name option to read an entry with a specific
distinguished name from the list. If there is more than one entry in the index list that
matches the specified distinguished name, the entry handle returned by the operation
represents the first matched entry in the index list. To retrieve the next matching entry, use
the meta getentry operation without any options. Use the mark option to mark the entry
in the index list before meta getentry is going to return that entry. Use the tag option in
order to decide which entries should be returned from the index list: use the MARKED

82



keyword, if an already marked entry should be returned once again; use the NOTMARKED
keyword, if the next unmarked entry has to be returned.

Use the -countmatches option in conjunction with the -name option to select whether the
meta getentry operation returns the number of entries that match the specified
distinguished name, or whether it returns the status codes described in Return Values. The
setting for the -countnames option affects how the operation’s return values are to be
interpreted. For example, if the operation finds one matching entry, and -countnames is
set to FALSE (or not specified at all), the operation returns 0, which represents success (and
not the number of matching entries found). If the operation finds one matching entry, and
-countnames is set to TRUE, the operation returns 1, which represents the number of
matching entries found (and not "end of list".)

The type of handle specified in the -source option affects the handle dependencies for the
handle created by getentry:

• If the -source option specifies a connection handle, the entry handle depends on this
connection handle.

• If the -source option specifies a result handle, the entry handle has no dependencies.

• If the -source option specifies an index list handle, the entry handle depends on the
connection handle to which the index list handle refers.

Note: If the meta getentry operation retrieves an entry from an LDIF change file that does
not contain an LDIF operation code (ADD, DELETE, MODIFY, or MODIFY-DN), it creates an
empty _ldif_opcode Tcl variable when it creates the Tcl variable array.

Return Values

0 The entry was read or the search results list was reset to the beginning
of the list

1 No more entries to read (end of file, end of search results list, or end of
index list)

any non-negative
number

The number of matched distinguish names, if the countnames option
is set to TRUE and an index list is used

Example

meta getentry -source LDAP_rh -target eh

See Also

addentry, createindexlist, modifydn, modifyentry, obj search, openconn, removeentries,
writerecord

Attribute Configuration File Format (Chapter 2)

83



meta gethandle
Creates a handle to an empty entry. The syntax is as follows:

[meta] gethandle
    -entry entry_handle
    -conn connection_handle

Options

-entry entry_handle

A required option that specifies a name to be assigned to the entry handle created by
the operation.

-conn connection_handle

A required option that specifies a handle to a connected directory. Specify the name of a
connection handle created by a meta openconn operation.

The gethandle operation creates an entry handle associated with a "template" directory
entry and assigns it the handle name specified in the -entry option. The "template" entry is
an array of Tcl variables initialized as empty lists in the same format as that created by the
getentry operation. Subsequent Tcl statements or meta operations (issued in the
synchronization profile) read values into the array. The elements of the Tcl variable array
remain accessible as Tcl variables until they are unset with the Tcl unset command or until
the handle to the entry is released with meta releasehandle.

Return Values

None.

Example

meta gethandle -entry eh -conn ch

See Also

addentry, getentry, modifydn, modifyentry, openconn, removeentries, writerecord

Attribute Configuration File Format (Chapter 2)

Section Synchronization Profile (DirX Identity Connectivity Administration Guide)

meta getnumentries
Returns the number of entries in a search result. The syntax is as follows:

[meta] getnumentries
    -result result_handle

84



Options

-result result_handle

A required option that specifies a handle to a search results list. Specify the name of a
result handle returned by an obj search operation.

The getnumentries operation returns the number of entries contained in the results of a
search operation.

Return Values

None.

Example

meta getnumentries -result LDAP_rh

See Also

obj search

meta getstatistic
Returns the statistic information as a (global) TCL array, if the statistic was not turned off in
meta initialize. The syntax is as follows:

[meta] getstatistic statistic_variable

Options

none

Return Values

Fills the given TCL array with the following components:

• DITEntries - Denotes the complete number of entries that were found in the DIT

• FileEntries - Denotes the complete number of entries that were read from file (in case
of an Import operation) or that were written to file (in case of an Export operation)

• AddedOk - Denotes the complete number of entries that were added successfully to
the DIT.

• ModifiedOk - Denotes the complete number of entries that were modified successfully
in the DIT.

• ModdnOk - Denotes the complete number of entries that were renamed successfully in
the DIT.

85



• DeletedOk - Denotes the complete number of entries that were deleted successfully
from the DIT.

• UpToDate - Denotes the complete number of entries that were already up to date.

• AddedFailed - Denotes the complete number of entries that could not successfully be
added to the DIT.

• ModifiedFailed - Denotes the complete number of entries that could not successfully
be modified in the DIT.

• ModdnFailed - Denotes the complete number of entries that could not successfully be
renamed in the DIT.

• DeletedFailed - Denotes the complete number of entries that could not successfully be
deleted from the DIT.

• AddedIgnored - Denotes the complete number of entries that normally should be
added to the DIT, but that actually were not added as TRIAL mode is switched on.

• ModifiedIgnored - Denotes the complete number of entries that normally should be
modified in the DIT, but that actually were not modified as TRIAL mode is switched on.

• ModdnIgnored - Denotes the complete number of entries that normally should be
renamed in the DIT, but that actually were not renamed as TRIAL mode is switched on.

• DeletedIgnored - Denotes the complete number of entries that normally should be
deleted from the DIT, but that actually were not deleted as TRIAL mode is switched on.

• AddAttrIgnored - Denotes the complete number of attribute creations that normally
should be done, but that actually were not done as TRIAL mode is switched on.

• DeleteAttrIgnored - Denotes the complete number of attribute deletions that normally
should be done, but that actually were not done as TRIAL mode is switched on.

Example

The function

meta getstatistic statInfo

sets the following TCL array:

statInfo(Processed)
statInfo(AddedOk)
statInfo(ModifiedOk)
statInfo(DeletedOk)
statInfo(AddedFailed)
statInfo(ModifiedFailed)
statInfo(DeletedFailed)
statInfo(AddedIgnored)
statInfo(ModifiedIgnored)

86



statInfo(DeletedIgnored)

See Also

Initialize

meta help
Returns help information about the meta object and its operations. The syntax is as follows:

meta help [operation | -verbose]

Options

-verbose

Displays information about the meta object.

Used without an argument or option, the help command displays a list of the meta
operations. The operations are listed in alphabetical order, except for help and operations,
which are listed last. Use the operation argument to return a brief description of an
operation and its associated options. Alternatively, you can use the -verbose option to
return a description of the meta object itself.

Return Values

None (The requested information is displayed).

Example

meta help

The output of the sample command is as follows:

The following operations are available:
addentry createindexlist encryptdata encryptvalue
escapechar findentry getchangelog getentry
gethandle getnumentries getstatistic initialize
modifyentry modifydn openconn openldif
readattrconf releasehandle removeentries sortindexlist
sortresult supinfo terminate unescapechar
writeindexlist writerecord writetext writetrace
help operations
meta help readattrconf

87



meta help readattrconf

The output of the sample command is as follows:

readattrconf - Reads an attribute configuration file and
               creates an attribute configuration file handle.

-attrconf -    Specifies the name of the handle to be created.

-file -        Specifies the name of the attribute
               configuration file.

meta initialize
Initializes the metacp workspace and opens a trace file for writing. The syntax is as follows:

[meta] initialize
    -file trace_file
    [-tracelevel level]
    [-maxtracerecords recordnumber]
    [-maxentries number]
    [-mode initialization_mode]
    [-nostatistics]

Options

-file trace_file

The name of the file to which trace information is to be written. The operation creates
the file relative to the current working directory if it is a relative pathname; otherwise,
the full pathname is used.

-tracelevel level

The level of tracing to be performed for operations invoked after meta initialize is called.
Specify one of the following values in level:

• 1-To perform error tracing (default)

• 2-To perform full tracing

• 3-To perform full tracing excluding the tracing of entries that are up-to-date

-maxtracerecords recordnumber

The maximum number of records in the tracefile.

-maxentries number

The maximum number of entries in a search results list to be processed by a meta

88



writetrace operation.

-mode initialization_mode

The mode in which metacp is to run when an import procedure from a connected
directory to the Identity store (a connected directory of type LDAP). Specify one of the
following values in initialization_mode:

• REAL-Updates the Identity store with the imported data (default)

• TRIAL-Bypasses actual update of the Identity store, and logs the update operations
that would otherwise be performed

-nostatistics

If set, the statistic information that metacp internally calculates while performing the
synchronization tasks is suppressed.

For more details about the default statistic information please refer to meta terminate.

Depending on the complex logic of the synchronization scripts, there are sometimes
good reasons to suppress the statistics, because it may be confusing, e.g.

• if a file is (for any purposes) read twice or

• several files are processed in parallel or

• searches in source and target directories are performed simultaneously or

• searches for the same objects need to be repeated because additional attribute
information is needed or

• searches with different filter conditions overlap in the objects found in the DIT

The confusion in the first two cases is the following:
The "number of file entries" is misleading because it is the sum of all records ever read
from any file.

The confusion in the remaining cases is the following:
The "number of X.500 entries" is misleading, because the number listed here is the count
of entries ever read from any directory. That number may not be the exact number that
is currently available in the DIT. Furthermore, if more than one directory is handled, that
number has no meaning, because one does not know how many entries have been
found in one directory and how many have been found in the other.

Therefore the user is advised to integrate his own statistic counters in the TCL logic itself,
if he builds complex synchronization scripts because he is the only one that knows the
information that is worth to be printed at the end of the synchronization.

The initialize operation initializes metacp data structures and creates a metacp trace file to
be used to store information about the directory synchronization process. A
synchronization profile must invoke the initialize operation before it invokes any metacp
operations that operate on meta handles.

When they are invoked in a synchronization profile, the meta addentry, meta modifydn,
meta modifyentry and meta removeentries operations automatically write information

89



about their operation into the trace file specified with the -file option. The writetrace
operation can also be used to write explicit trace information into the trace file.

Use the -tracelevel option to control the level of trace information that the meta addentry,
meta modifydn, meta modifyentry and meta removeentries operations write to the trace
file. A trace level of 1 directs the operations to perform error tracing. An error trace on an
operation traces:

• The original entry in the source

• The attempted directory operation, prefixed with the # character

• The error message, prefixed with the # character

With error tracing, if an error occurs on an entry being processed, the operation writes the
entry as it appears in the original source file into the trace file together with the associated
directory operation and error message, prefixed with the # character.

Here is a sample error trace record:

dn: cn=Filler, ou=Development, o=PQR
objectclass: person
objectclass: organizationalPerson
telephoneNumber: +44 1922 222222
facsimileTelephoneNumber: +44 1922 222223
userPassword: two
sn: Filler
description: Craftsman
postalCode: WS1 9YY
streetAddress: 17 Kelly Road
st: Walsall
# MODIFY operation: Mon Jan 4 10:19:49 1999 [Bind-ID: (default)]
# "cn=Filler,ou=Development,o=PQR " "-removeattr" "sn=Filler"
# ERROR: Object class violation.

A trace level of 2 directs the operations perform full tracing. A full trace on an operation
traces:

• The original entry in the source

• The entry handle that was input to the operation, for a meta modifyentry operation on
an entry in a connected directory of type LDAP

• The entry handle for the matched entry, for a meta modifyentry operation on an entry
in a connected directory of type LDAP

• The attempted directory operation

• No message, if the operation was successful; otherwise an informational message or an
error message

90



With full tracing, the operations write both error trace information and successful operation
information to the trace file. Entries that are successfully processed are written to the file
and delimited with # characters.

Here is an excerpt from a full trace operation:

#dn: cn=Digger T., ou=Development, o=PQR
#cn: Digger T.
#telephoneNumber: +44 1902 111111
#postalAddress: FLAT 86B$24 Dougan
Street$Fordhouses$Wolverhampton$West Midlands$WV1 9ZZ
#facsimileTelephoneNumber: +44 1902 111112
#userPassword: PASS1
#sn: Digger
#description: Salvage Clerk
#postalCode: WV1 9ZZ
#street: 24 Dougan Street
#st: Wolverhampton
#objectClass: inetOrgPerson
#objectClass: organizationalPerson
#objectClass: person
#objectClass: top
#createTimestamp: 20000308120947Z
# ADD operation: Wed Jul 12 12:34:21 2000 [Bind-ID: (default)]
# "cn=Digger T., ou=Development, o=PQR" "-attribute"
"objectClass=inetOrgPerson;organizationalPerson;person;top"
"telephoneNumber=+44 1902 111111"
"postalAddress=FLAT 86B$24 Dougan
Street$Fordhouses$Wolverhampton$West
Midlands$WV1 9ZZ"
"facsimileTelephoneNumber=+44 1902 111112"
"userPassword=PASS1"
"sn=Digger"
"description=Salvage Clerk"
"postalCode=WV1 9ZZ"
"street=24 Dougan Street"
"st=Wolverhampton"
"cn=Digger T."
#dn: cn=Smith John, ou=Sales, o=PQR
#cn: Smith John
#sn: Smith
#description: Sales Manager

91



#telephoneNumber: +12 34 567 891
#telephoneNumber: +12 34 567 890
#userPassword: jps123
#labeledURI: http://www.sni.de
#mail: John.Smith@sales.pqr.de
#objectClass: inetOrgPerson
#objectClass: organizationalPerson
#objectClass: person
#objectClass: top
#createTimestamp: 20000308120946Z
# Mapped Entry:
# "cn=Smith John, ou=Sales, o=PQR"
# "objectClass=inetOrgPerson;organizationalPerson;person;top"
# "telephoneNumber=+12 34 567 891;+12 34 567 890"
# "userPassword=jps123"
# "sn=Smith"
# "description=Sales Manager"
# "mail=John.Smith@sales.pqr.de"
# "labeledURI=http://www.sni.de"
# "cn=Smith John"
# X500 Entry:
# "cn=Smith John,ou=Sales,o=PQR"
# "objectClass=person;organizationalPerson;inetOrgPerson;top"
# "cn=Smith John"
# "sn=Smith"
# "description=Sales Manager"
# "telephoneNumber=+12 34 567 890;+12 34 567 891"
# "userPassword=jps123"
# "labeledURI=http://www.sni.de"
# "mail=John.Smith@sales.pqr.de"
# "collectiveTelephoneNumber=+12 34 567 0"
# TRIAL operation: Wed Jun 28 12:41:35 2000 [Bind-ID: (default)]
# No update necessary !

The update operations that really result in some action in the DSA, are
logged as "ADD operation:", "DELETE operation:", "MODIFY operation:" and
"MOD-DN operation:".

In case a (potential) MODIFY operation needs to be sent to the server and
metacp detects, that the object is already up to date, then such an
operation is logged as "TRIAL operation:".

92



For readability, the previous example shows the attributes added to the entry on separate
lines; in the trace file, all the attributes added to an entry appear on a single line.

A trace level of 3 directs the operation to perform full tracing except for entries that are
already up-to-date. For example, the "add" operation shown in the previous example
appears in the trace file, but the "modify" operation for which no update was necessary
does not appear in the trace file.

If the -tracelevel option is not specified, the operations by default perform level 1 (error)
tracing.

Use the -maxtracerecords option to limit the maximum number of records in a trace file.
recordnumber specifies the maximum number of records. If the option is missing or the
value is 0 only one trace file is written with an unlimited number of records.

If required several trace files are written each of them containing at least recordnumber
trace records. The maximum number of records written to the trace files may differ slightly
from the specified number because the maximum number is checked after the complete
information about a synchronization entry is written. For example the source entry, the
entry in the directory, the generated operation, and the result of the operation represent a
logical unit and is written completely to the trace file before the maximum number of
records written is checked.

If more than one trace file is written an internal sequence number in the format -number is
inserted into the filename of the next trace file when a trace file exceeds the maximum
number of records. Use the wildcard character (*) in the -file file_name option to specify the
position of this sequence number. For example you specify the following options:

...
-file trace*_file.trc
...
-maxtracerecords 50000

After writing at least the 50000th record to the trace file currently in use the file is closed. A
new trace file is created. The internal sequence number is inserted at the position of the
wildcard character into the filename of the new file. After finishing the synchronization
process you find for example the following trace files:

trace_file.trc
trace-1_file.trc
trace-2_file.trc
trace-3_file.trc

where "trace_file.trc" is the first trace file written and closed after exceeding the maximum
number of records.

93



If you do not use a wildcard character to specify the position of the sequence number this
number is appended to the filename (before its extension, if there is one), for example
"trace_file-1.trc" or "trace-1".

Use the -maxentries option to set a limit on the number of entries in a search results list
that will be processed by meta writetrace operations. When the -maxentries option is
specified, the meta writetrace operation writes only the number of entries specified in
number to the metacp trace file. If this option is not specified, the default is "no limit".

Use the -mode option to control whether or not metacp performs update operations on
the Identity store (a connected directory of type LDAP) during an import process. When
the -mode option is set to TRIAL, metacp logs update operations with the message
"operation ignored" and does not make the changes to the Identity store. When the -mode
option is set to REAL, metacp makes the updates to the Identity store.

The generated trace file contains the source entry information. Consequently, if errors
occur during an import from a connected directory of type FILE into the Identity store (a
connected directory of type LDAP), administrators can re-run the synchronization profile
using the trace file as input (after first fixing the errors reported in the trace file)

See the "Return Values" section in the metacp reference page for a description of metacp
error messages.

Return Values

None.

Example

meta initialize -file tracefile.log -tracelevel 2 -maxentries 10

See Also

addentry, modifydn, modifyentry, removeentries, terminate, writetrace

Section Synchronization Profile (Chapter 1, DirX Identity Connectivity Administration
Guide)

Chapter 2, "Synchronization Templates", DirX Identity Connectivity Administration Guide

meta modifydn
Modifies an entry’s name in the Identity store (a connected directory of type LDAP). The
syntax is as follows:

[meta] modifydn
    -entry entry_handle

94



Options

-entry entry_handle

A required option that specifies the handle to the entry whose distinguished name is to
be changed. Specify the name of an entry handle created by a meta gethandle
operation called with a -conn option that specifies a connection handle to a connected
directory of type LDAP.

The modifydn operation modifies the distinguished name of the entry associated with
entry_handle in the Identity store (a connected directory of type LDAP). The operation uses
the following attributes of the Tcl variable array associated with entry_handle:

• entry_handle(new_rdn)-the attribute that holds the new RDN for the entry. The name of
this attribute is defined in the New-RDN field in the attribute configuration file.

• entry_handle(del_old_rdn)-the attribute that represents the "delete old RDN" flag
(optionally present in the Tcl variable array). The name of this attribute is defined in the
Delete Old-RDN field in the attribute configuration file. The default value 1 means that
the old RDN is to be deleted and the value 0 means that the old RDN is to be preserved.

• entry_handle(new_sup)-the attribute that represents the new superior distinguished
name (optionally present in the Tcl variable array). The name of this attribute is defined
in the New Superior field in the attribute configuration file.

The modifydn operation changes the last RDN of an entry in the connected directory. The
entry_handle(del_old_rdn) attribute controls whether or not the old RDN value should be
preserved in the directory entry. If present, the entry_handle(new_sup) attribute directs
modifydn to move the entry (or subtree) into a different subtree of the DIT. The pseudo
attributes new_rdn, del_old_rdn, and new_sup must be selected with the -attribute option
in the openconn operation.

If the underlying connection handle (derived from entry_handle) is an LDAP directory with
the parameter -ldifhandle set, then the modifydn is not applied to the LDAP directory;
instead an LDIF-CHANGE operation is created in the LDIF-CHANGE file associated with
-ldifhandle parameter.

metacp automatically propagates a JMS message (containing the SPML add request) if at
the beginning of a synchronization scenario ats initialize has been called with the options
-topicprefix, -type, -cluster, and -resource. (See ats initialize for details.)

Return Values

Check the Tcl variable errorCode for error details. If this variable is not set or its value is
empty, the entry was successfully renamed. Otherwise, the error is logged in the trace file
and the distinguished name was not modified.

0 The distinguished name modification succeeded, or it failed with an error that
did not prevent the further processing of operations in the Tcl script logic.

1 The distinguished name modification failed with a serious error; for example, "LDAP
server not available". Examine your Tcl script logic to determine whether it makes
sense to terminate the Tcl synchronization script.

95



Example

meta modifydn -entry en

See Also

gethandle, initialize, openconn, openldif, ats initialize

Attribute Configuration File Format (Chapter 2)

meta modifyentry
Updates the contents of an entry in the Identity store (a connected directory of type LDAP).
The syntax is as follows:

[meta] modifyentry
    -newentry entry_handle
    [-oldentry entry_handle]
    [-tag tag]
    [-allowrename rename_flag]
    [-updateinfo update_flag]
    [-updateattr attribute_list]

Options

-newentry entry_handle

A required option that specifies the entry that contains the update information. Specify
an entry handle created by a meta gethandle operation called with a -conn option that
specifies a connection handle to a connected directory of type LDAP.

-oldentry entry_handle

Specifies the entry to be updated. Specify an entry handle created by a meta getentry
operation called with a -source option that specifies a result handle, or by a meta
findentry or meta gethandle operation. This option is not required if the -newentry
option specifies an entry handle that refers to an LDIF change entry with changetype
modify.

-tag tag

Specifies a marking action to be performed on the modified entry. Specify the keyword
MARK in the tag argument to this option.

-allowrename rename_flag

Controls whether the distinguished name of the entry specified in the -oldentry option
is to be renamed to the distinguished name of the entry specified in the -newentry
option. Specify one of the following keywords:

• TRUE-Rename the old entry’s distinguished name to the new entry’s distinguished

96



name

• FALSE-Do not rename old entry’s distinguished name (the default if this option is not
specified)

-updateinfo update_flag

Controls whether a modifyentry operation returns a value that indicates that no
operation was performed because the entry was already up-to-date. Specify one of the
following keywords:

• SIMPLE-Return a value that indicates when an entry is already up-to-date

• NONE-Do not return a value when an entry is already up-to-date (default)

-updateattr attribute_list

An optional parameter that specifies an additional attribute list. All these attributes are
created in case a difference in the attribute values of the old entry and the new entry has
been detected and the necessary changes have been applied. The attribute list has to be
specified in native LDAP syntax, e.g.

[meta] modifyentry newentry new_entry oldentry old_entry updateattr
dxmState=CHANGED

Using the -updateattr switch allows to handle additional attributes, which normally
should not be synchronized under any circumstances. (Otherwise, these attributes must
have been selected in the associated entry_handles and therefore are always subject to
synchronization. That is not desirable in any cases. Only in case the object has really
been modified, the additional attributes from attribute_list should be stored in the
directory entry.)

The modifyentry operation updates the contents of an entry with the contents of the entry
specified by -newentry entry_handle.

The modifyentry operation compares the new entry to the old entry, evaluates the
connection handle for any synchronization flags set on the attributes to be processed, and
generates the operations that are necessary to convert the contents of the old entry to the
contents of the new entry (adding, replacing, and deleting the entry attributes, depending
on the sync flags set with the -attribute option in the openconn operation).

Use the -oldentry option to identify the entry that is to be updated with the contents of the
entry specified with the -newentry option. You do not need to specify -oldentry if
-newentry entry_handle refers to an LDIF change file entry with the modify changetype. In
this case, the entry handle contains the information about the entry that is to be modified.
But in case you do provide an oldentry entry_handle for LDIF change files, only changes
that still can be applied to the directory entry will be processed. Changes that cant be
applied (e.g. removal of an attribute telephone number even if telephone number doesn’t
exist) will be ignored.

The Tcl variable arrays associated with both -oldentry entry_handle and -newentry
entry_handle must contain the entry’s distinguished name in the DDN attribute.

97



Use the -tag option to mark a modified entry as "processed" by a modifyentry operation.
The removeentries operation uses the tag to determine which entries to remove.

Use the -allowrename option to control whether metacp modifies the DDN attribute of an
entry when it updates its other attributes. When this option is set to FALSE (or is not used),
the distinguished name in the DDN attribute of the entry that contains the update
information must match the distinguished name in the DDN attribute of the entry to be
updated.

Use the -updateinfo option to control the modifyentry return values. Specify NONE to
return the values 0 (modification of the entry was successful) or 1 (modification of the entry
failed). Specify SIMPLE to return the values 0 (success) 1 (failure) or 2 (no operation because
the entry was already up-to-date). The extended return values (0,1,2) allow you to use the
modifyentry function in more complex ways within your synchronization profiles.

If the underlying connection handle (derived from entry_handle) is an LDAP directory with
the parameter -ldifhandle set, then the modifyentry is not applied to the LDAP directory;
instead an LDIF-CHANGE operation is created in the LDIF-CHANGE file associated with
-ldifhandle parameter.

metacp automatically propagates a JMS message (containing the SPML add request) if at
the beginning of a synchronization scenario ats initialize has been called with the options
-topicprefix, -type, -cluster, and -resource. (See ats initialize for details.)

Return Values

Check the Tcl variable errorCode for error details. If this variable is not set or its value is
empty, the entry was successfully modified and/or renamed. Otherwise, the error is logged
in the trace file and the entry was not modified.

0 The entry modification succeeded, or it failed with one or more errors that did
not prevent further processing of operations in the Tcl script logic.

1 The entry modification failed with a serious error; for example, "LDAP server not
available". Examine your Tcl script logic to determine whether it makes sense to
terminate the Tcl synchronization script.

2 (If -updateinfo specifies SIMPLE) Modification of the entry was not performed
because the entry was already up-to-date.

Example

meta modifyentry -newentry eh_LDAP -oldentry cur_entry -tag MARK

See Also

findentry, gethandle, getentry, initialize, openconn, openldif, removeentries, ats initialize

98



meta openconn
Opens a connected directory for synchronization. The syntax is as follows:

[meta] openconn
    -type directory_type
    [-file filename -mode file_open_mode
    [-format file_format] [encoding encoding]]
    [-attribute attribute_list [-processallattr]]
    -attrconf attr_conf_handle
    -conn connection_handle
    [-bindid binding_id]
    [-ldifhandle LDIF_file_handle]

Options

-type directory_type

A required option that identifies the type of connected directory. Specify one of the
following keywords:

• FILE-A data file (an import file or an export file)

• LDAP-A directory that is accessible over LDAP

-file filename

The name of the data file to be opened. This option can only be used if the -type option
is FILE and is a required option in this case.

-mode file_open_mode

Specifies the mode to use when opening filename. This option can only be used if the
-type option is FILE and is a required option in this case. Specify one of the following
keywords:

• READ-Opens the file read-only

• WRITE-Opens the file write-only (and write from beginning of file)

• APPEND-Opens the file for writing at end-of-file

-format file_format

The file format of the data file. Specify one of the following keywords:

• TAGGED - If the -type option is FILE, the data file uses a tagged file format (the
default if this option is not specified)

• NON-TAGGED - If the -type option is FILE, the data file uses a non-tagged file format

• LDIF-CHANGE - If the -type option is FILE, the data file uses LDIF change format. If
the -type option is LDAP, LDIF changes are to be imported to the directory.

• DSML or DSMLv1 - If the -type option is FILE, the data file uses Directory Services
Markup Language (DSML) format (version 1)

• DSMLv2-REQ - If the -type option is FILE and the mode option is either WRITE or

99



APPEND, the data file uses Directory Services Markup Language (DSML) request
format (version 2). In that case, the TCL variables that are used in meta writerecord
use the same format as if LDIF change format would need to be produced.

• DSMLv2-RSP If the -type option is FILE and the mode option is READ, the data file
uses Directory Services Markup Language (DSML) response format (version 2). The
only elements that will be processed are search responses.

• FLAT-XML - If the -type option is FILE, the data file uses flat XML format

-encoding encoding

Specifies the character set encoding of the data file. If the encoding parameter is
missing, then the encoding as defined in the _localcode Tcl variable is used.

Later on while reading the file (using getentry), the data read from file is internally
converted from the local encoding to the internal Tcl format UTF-8.

Tcl 8.3 supports a variety of different encodings. (see install_path\lib\tcl8.3\encoding (on
Windows) or install_path/lib/tcl8.3/encoding (on UNIX) or use the command encoding
names in metacp). The encodings listed in these encoding files can be used by dropping
the file suffix .enc.

Example:

Encoding file name: cp850.enc
encoding must be set to cp850.

-attribute attribute_list

A list of attributes to be processed.Specify attribute_list as a Tcl list in the format:

{attribute}

Each attribute in the Tcl list has the format:

abbreviation [{sync_flag}]

where abbreviation is an attribute abbreviation in the attribute configuration file
specified in the -attrconf option and each sync_flag is one or more of the following
keywords:

DONT-ADD-ATTR

DONT-ADD-REC-ATTR-VAL

DONT-DEL-ATTR

DONT-DEL-REC-ATTR-VAL

DONT-MOD-ATTR

REPLACE-ALL

Multiple sync_flag arguments are represented as a Tcl list.The sync_flag argument is

100



only valid if the -type option is LDAP.

-processallattr

Specifies that all of the attributes defined in the attribute configuration file specified in
the -attrconf option are to be processed. This option can only be used if the -type option
is LDAP.

-attrconf attr_conf_handle

A required option that specifies the handle to the attribute configuration file for the
connected directory. Specify an attribute configuration handle created by a meta
readattrconf operation.

-conn connection_handle

A required option that specifies a name to be associated with the connection handle
structure returned by the operation.

-bindid binding_id

Specifies a binding ID to be associated with the connected directory. Specify a binding
ID created by an obj bind operation. This option can only be used if the -type option is
LDAP.

-ldifhandle LDIF_file_handle

Specifies the name of an LDIF file handle (created by meta openldif) that is used when
changes should not directly be applied to the LDAP directory; instead the changes are
written as LDIF-CHANGE entries in the LDIF file associated with LDIF_file_handle. This
option can only be used if the -type option is LDAP.

The openconn operation opens a connected directory for synchronization, creates a
connection handle for it, and assigns it the name specified in the -conn option. The
connection handle points to an import file, an export file, an LDAP connection to a
directory, depending on the -type option specified in the command line. If a LDAP
connection to a directory is being opened, the synchronization profile must perform an obj
bind operation with suitable protocol (LDAPv2 or LDAPv3) before the openconn operation.
The meta controller does not check for the bind in the openconn operation itself; but it
does check in the addentry, modifyentry, modifydn, removeentries operations (which
operate on handles containing a nested connection handle) and in obj search (with
connection handle specified).

When multiple binds are open to different LDAP directories, you can use the -bindid option
to associate the connection handle with a specific bind. The binding_id argument to this
option specifies binding ID assigned to the bind during the obj bind operation. If the
-bindingid option is not used, the openconn operation associates the connection handle
with the default bind.

Use the -attribute option to select specific attributes for synchronization from the
connected directory’s attribute configuration file. The selected set becomes the set of
synchronized attributes (SSA). Use the sync_flag argument (for connected directories of
type LDAP only) to specify the operations that are allowed during synchronization on each
attribute in the subset specified in the -attribute option. The sync_flag keywords have the
following effects on the synchronization of attribute values:

101



• DONT-ADD-ATTR-Do not create an attribute in the target directory even if the
corresponding attribute in the source directory exists. If metacp is processing an LDIF
change entry and it encounters a changetype "modify" operation with an "add"
modification for a specific attribute, metacp uses this flag to verify whether or not it can
create the attribute. In this case, the Identity store may already hold the attribute; if it
does, metacp creates an additional attribute value for the attribute.

• DONT-ADD-REC-ATTR-VAL-Do not add additional attribute values in the source
directory to the attribute in the target directory

• DONT-DEL-ATTR-Do not delete the attribute in the target directory even if the
corresponding attribute in the source directory is deleted

• DONT-DEL-REC-ATTR-VAL-Do not delete a recurring attribute value in the target
directory even if the corresponding attribute in the source directory does not have the
recurring value.

• DONT-MOD-ATTR-Do not modify the attribute value(s) of the attribute in the target
directory. If this flag is set, no modification at all is performed (new attribute values
cannot be created, and existing values cannot be removed)

• REPLACE-ALL-replace the existing attribute value(s) in the target directory with the
attribute value(s) in the source directory. If the Identity store has no equality matching
rule for an attribute, this flag needs to be set for the attribute in order to permit it to be
updated. An example of an attribute for which the Identity store has no matching rule is
Facsimile-Telephone-Number. The Mrule field in the attribute configuration file
specifies whether a matching rule is defined for the attribute.

Valid combinations of sync_flag are:

• DONT-MOD-ATTR with no other flag set

• REPLACE-ALL with no other flag set

• Any combination of the flags DONT-ADD-ATTR, DONT-ADD-REC-ATTR-VAL, DONT-
DEL-ATTR and DONT-DEL-ATTR

Use the -processallattr option to synchronize all of the connected directory’s attributes
(when the -type option is LDAP). You can use this option in conjunction with the -attribute
option to select certain attributes and assign special processing to them.

When the -type option is LDAP, the -attributes option must specify all of the naming
attributes used in the connected directory, unless the -processallattr option is specified.

The connection handle created by openconn defines the set of attributes to be
synchronized (SSA). This set is either the same as the set of attributes to be synchronized
that is specified in the attribute configuration file (if the -attribute option is not specified, or
if -processallattr is specified) or it is a subset of the SSAs specified in the attribute
configuration file (if the -attribute option is specified).

Return Values

None.

102



Examples

1. Open a tagged data file for reading and allow processing of all of the attributes
associated with the attribute configuration file.

meta openconn -type FILE \
    -file msexch.data \
    -mode READ \
    -format TAGGED \
    -attrconf ah \
    -conn ch

2. Open a non-tagged data file for reading and select attributes for processing. The
selected attributes correspond to the first through sixth fields of the data file.

meta openconn -type FILE \
    -file msexch.data \
    -mode READ \
    -format NON-TAGGED \
    -attrconf ah \
    -attribute {o ou sn givenName telephoneNumber
facsimileTelephoneNumber} \
    -conn ch

3. Open a tagged data file for writing and allow processing of all attributes.

meta openconn -type FILE \
    -file notes_out.data \
    -mode WRITE \
    -format TAGGED \
    -attrconf ah \
    -conn ch

4. Open a non-tagged data file for writing and select attributes for processing. The
selected attributes correspond to the first through sixth fields of the data file.

meta openconn -type FILE \
    -file msexch.data \
    -mode WRITE \
    -format NON-TAGGED \

103



    -attribute {o ou sn givenName telephoneNumber
facsimileTelephoneNumber} \
    -attrconf ah \
     -conn ch

5. Open an LDAP connection and allow all attributes (except DDN) to be processed.

meta openconn -type LDAP \
    -attrconf ah \
     -conn ch

6. Open an LDAP connection and specify a set of attributes to be processed.

meta openconn -type LDAP \
    -attrconf ah \
    -conn ch\
    -attribute {o ou sn givenName telephoneNumber
facsimileTelephoneNumber}

7. Open an LDAP connection and allow all attributes (except DDN) to be processed. For
attribute sn, disallow attribute deletion. For attribute givenName, disallow attribute
deletion and attribute creation.

meta openconn -type LDAP \
    -attrconf ah \
    -attribute {{sn DONT-DEL-ATTR} \
    {givenName DONT-DEL-ATTR DONT-ADD-ATTR}} \
    -processallattr

See Also

getentry, gethandle, openldif, readattrconf, obj bind obj search

meta openldif
Creates an LDIF-CHANGE file. The syntax is as follows:

[meta] openldif
    -file filename
    -ldifhandle LDIF_file_handle

104



Options

-file filename

A required option that specifies the file name of the LDIF-CHANGE file.

-ldifhandle LDIF_file_handle

Specifies the name of an LDIF file handle that is used when changes should not directly
be applied to the LDAP directory; instead the changes (calculated by meta addentry,
meta modifydn, meta modifyentry, meta removeentries) are written as LDIF-CHANGE
entries in the LDIF file associated with LDIF_file_handle.

The openldif operation opens the given file (as output file containg LDIF-CHANGE records)
and associates that file with the given LDIF_file_handle. That handle can later on be used in
meta openconn.

Return Values

None.

Example

meta openldif -file /homes/metadir/data/ldif.txt \
     -ldifhandle ldif_file

See Also

addentry, modifydn, modifyentry, openconn, removeentries

meta operations
Returns a list of operations that can be performed on the meta object. The syntax is as
follows:

meta operations

The list of available operations is in alphabetical order except for help and operations,
which are listed last.

Return Values

The requested information.

Example

meta operations

105



The output of the sample command is as follows:

addentry createindexlist escapechar findentry getentry gethandle
getnumentries initialize modifydn modifyentry openconn openldif
readattrconf releasehandle removeentries sortindexlist sortresult
supinfo terminate unescapechar writeindexlist writerecord writetext
writetrace help operations

meta readattrconf
Reads an attribute configuration file. The syntax is as follows:

[meta] readattrconf
    -file filename
    -attrconf attr_conf_handle
    [-encoding encoding]

Options

-file filename

A required option that specifies the pathname of the attribute configuration file. If only a
file name is given, the file is assumed to be located the current working directory.

-encoding encoding

Specifies the character set encoding of the attribute configuration file. If the encoding
parameter is missing, then the encoding as defined in the _localcode variable is used.

The data read from the attribute configuration file is internally converted from the local
encoding to the internal Tcl format UTF-8.

Tcl 8.3 supports a variety of different encodings. (see install_path\lib\tcl8.3\encoding (on
Windows) or install_path/lib/tcl8.3/encoding (on UNIX) or use encoding names in
metacp). The encodings listed in these encoding files can be used by dropping the file
suffix .enc.

Example:

Encoding file name: cp850.enc
encoding must be set to cp850.

-attrconf attr_conf_handle

A required option that specifies the name to be associated with the attribute
configuration handle returned by the operation.

The readattrconf operation reads an attribute configuration file into the metacp

106



workspace, creates a handle to it, and assigns it the name specified in the -attrconf option.
An attribute configuration file defines the attributes that are present in a particular
connected directory and supplies formatting information that metacp is to use when
processing data files associated with the connected directory.

A synchronization profile generally contains two readattrconf operations: one to read the
attribute configuration file associated with the source directory, and one to read the
attribute configuration file of the target directory.

Return Values

None.

Example

meta readattrconf -file /homes/metadir/conf/mail/exchgattr.cfg \
-attrconf exchg_ah

See Also

openconn

Attribute Configuration File Format (Chapter 2)

meta releasehandle
Releases a meta handle. The syntax is as follows:

[meta] releasehandle handle

The releasehandle operation releases the meta handle specified in handle. See the handle
argument description in this chapter for a list of meta handle types.

A meta handle’s context can be dependent on the context of another meta handle. For
example, the entry handle context returned by a meta findentry operation is dependent on
the context of a result handle returned by an obj search operation. In the case of handles
with dependencies, you can only release a handle after you have first released all of its
dependent handles. For example, you must release an entry handle before you can release
the result handle on which it is dependent. Similarly, you must release a connection handle
before you can release the attribute configuration file handle on which the connection
handle is dependent. See the handle argument description for the list of handle
dependencies.

Return Values

None.

107



Example

meta releasehandle LDAP_results_rh

meta removeentries
Removes an entry or removes entries in a sorted search results list from the Identity store (a
connected directory of type LDAP). The syntax is as follows:

[meta] removeentries
    -handle handle
    [-tag tag]

Options

-handle handle

A required option that specifies an entry handle (for removal of a single entry) or a result
handle (for removal of entries in a sorted search results list). Specify an entry handle
created by a meta getentry, meta gethandle, or meta findentry operation or a result
handle created by an obj search operation that has been sorted by a meta sortresult
operation.

-tag tag

Specifies whether marked or unmarked entries are to be removed, if the operation is
removing entries from a results list. Specify one of the following keywords:

• MARKED-remove all marked entries

• NOTMARKED-remove all unmarked entries (default)

The removeentries operation removes an entry specified by an entry handle or the entries
in a results list specified by a result handle from the Identity store (a connected directory of
type LDAP).

If the -handle option specifies a result handle to a search results list, use the MARKED
keyword in the -tag option to remove all entries from the Identity store (a connected
directory of type LDAP) that the meta modifyentry or meta findentry operations have
marked as "processed" in the results list. Use the NOTMARKED keyword to remove all
entries that have not been marked by meta modifyentry or meta findentry.

The meta controller will not remove an entry for which it has information that the entry has
subordinates. The meta controller will have this information for an entry in two cases:

• When it has attempted to remove a subordinate entry and the operation has failed

• When is has encountered a subordinate entry that is marked as not to be deleted

If the underlying connection handle (derived from entry_handle) is an LDAP directory with
the parameter -ldifhandle set, then the removeentries is not applied to the LDAP directory;

108



instead an LDIF-CHANGE operation is created in the LDIF-CHANGE file associated with -
ldifhandle parameter.

metacp automatically propagates a JMS message (containing the SPML add request) if at
the beginning of a synchronization scenario ats initialize has been called with the options
-topicprefix, -type, -cluster, and -resource. (See ats initialize for details.)

Return Values

Check the Tcl variable errorCode for error details. If this variable is not set or its value is
empty, the entry (or all of the entries from the result list) was successfully removed.
Otherwise the error is logged in the trace file and the entry (or entries) was not removed.

0 The entry removal succeeded, or it failed with one or more errors that did not
prevent further processing of operations in the Tcl script logic.

1 The entry removal failed with serious error; for example, "LDAP server not available".
Examine your Tcl script logic to determine whether or not it makes sense to
terminate the Tcl synchronization script.

Example

meta removeentries -handle rh -tag MARKED

See Also

getentry, initialize, modifyentry, obj search, openconn, openldif, ats initialize

meta sortindexlist
Sorts the entries in an index list. The syntax is as follows:

[meta] sortindexlist -handle index_list_handle
    [-keepnames index_list_access_flag]

Options

-handle index_list_handle

A required option that specifies the name of an index list handle created by a meta
createindexlist operation.

-keepnames index_list_access_flag

Selects whether random access to index list elements by distinguished name or
sequential access to index list elements can be performed. Specify one of the following
keywords in index_list_access_flag:

• TRUE-permit random access to index list elements by distinguished name

109



• FALSE-do not permit random access to index list elements (default)

The sortindexlist operation sorts the entries in the index list specified by the -handle
option. The operation sorts the entries by distinguished name in alphabetical (ascending)
order. Use the sortindexlist operation in conjunction with the meta createindexlist, meta
getentry, and meta writeindexlist operations to create a sorted list (by distinguished
name) of entries. Note that an index list can be sorted only once.

Use the -keepnames option to control whether the distinguished names specified in the
-name option of previous meta writeindexlist operations can be used as indexes into the
sorted index list, or whether only sequential access can be performed.

Return Values

None.

Example

meta sortindexlist -handle ih

See Also

getentry, createindexlist, writeindexlist

meta sortresult
Sorts the results of a read or search operation. The syntax is as follows:

[meta] sortresult
    -result result_handle
    -order sort_order
    [-key sort_key]

Options

-result result_handle

A required option that specifies a handle to a search results list. Specify the name of a result
handle created by an obj search operation.

-order sort_order

A required option that specifies the order in which the results are to be sorted. Specify
one of the keywords:

• ASC-To sort in ascending order (a-z for alphabetic sort, 1-n for numeric sort)

• DESC-To sort in descending order (z-a for alphabetic sort n-1 for numeric sort)

110



-key sort_key

Specifies one or more attribute abbreviations that indicate a precedence of sort criteria.
(In the current release only one sort key is supported.)

Specify the keyword DDN to sort by distinguished name or any other attribute type.

The sortresult operation sorts the entries in the search result specified by the -result
option, updates the result data structure with information about how the result has been
sorted, and returns a handle to the sorted result.

Use the -key option to sort the results list by distinguished name or by any other attribute
type.

If the result list has been sorted according to any attribute type, then that
attribute must be single-valued for all the entries of the search result.
Entries that don’t hold that specific attribute type will be listed at the end
of the sorted list (if sorting has been done in ascending order) or at the
beginning of the sorted list (if sorting has been done in descending order).
If several such entries exist, their position at the beginning or end of the
sorted list is undefined. As a consequence, it is unpredictable which entry
will be returned by a "meta findentry" operation that uses such an
ambiguous value. Therefore it is strongly recommended to use only
attributes as sort_key that are unique, like employee number.

Return Values

None.

Examples

meta sortresult -result rh -order ASC -key DDN
meta sortresult -result rh -order DESC -key employeeNumber

meta supinfo
Supplies attribute information for creating a superior entry in the Identity store (a
connected directory of type LDAP). The syntax is as follows:

[meta] supinfo
    -rdn attribute_type
    {-attribute attribute_value | -remove}
    [-bindid binding_id]

Options

-rdn attribute_type

A required option that specifies the naming attribute for the superior entry. For a

111



connected directory of type LDAP, specify a valid LDAP attribute name.

-attribute attribute_list

Specifies one or more attributes to be applied to the superior entry. See the description
of the -attribute option of the obj create operation in the obj reference pages for a
description of attribute_list format. This option and the -remove option are mutually
exclusive.

-remove

Deletes the attribute information for creating a superior entry. The -attribute option and
this option are mutually exclusive.

-bindid binding_id

Specifies the binding ID to which the supinfo operation is to be applied. Specify a
binding ID created by an obj bind operation.

The supinfo operation defines attribute information for the creation of superior entries in
the Identity store. When it creates an entry in the Identity store (a connected directory of
type LDAP), the meta addentry operation uses this information to create any required
superior entries for the entry, if these superior entries do not already exist in the Identity
store (a connected directory of type LDAP).

Use the -attribute option to specify the attributes to be applied to the superior entry. You
must specify the ObjectClass (OCL for DAP connections, objectClass for LDAP connections)
attribute as an attribute_list element; specifying additional attributes depends upon the
object class (you must supply the mandatory attributes for the object class).

Use the -remove option to remove an attribute definition previously specified with supinfo.

When multiple binds are open to different LDAP directories, you can use the -bindid option
to direct the supinfo operation to be applied to a specific bind. The binding_id argument to
this option specifies the binding ID assigned to the bind during the obj bind operation. In
this way, you can establish different sets of superior information, and then apply them to
the appropriate connected directory. If the -bindid option is not used, the supinfo
operation carries out the operation on the default bind.

Since there is no syntax checking, supinfo <→ openconn or supinfo <→ bind can be
performed in any order. It is the responsibility of the user to keep supinfo/openconn/bind
consistent for each bind ID.

Example

meta supinfo -rdn C -attribute objectClass=C -bindid ldb
meta supinfo -rdn O -attribute objectClass=organization
     -bindid ldb
meta supinfo -rdn OU -attribute objectClass=organizationalUnit
     -bindid ldb

112



See Also

addentry

meta terminate
Closes the metacp trace file and cleans up the metacp workspace. The syntax is as follows:

[meta] terminate

The terminate operation writes statistics to the trace file opened with the meta initialize
operation (if -nostatistics not set) and closes it. Here is an example of the type of statistics
written to the trace file:

# Statistics:
#     Number of X.500 entries: 110
#     Number of file entries: 14

#     Successful Additions: 1
#     Unsuccessful Additions: 1
#     Ignored Additions: 0
#     Successful Modifications: 3
#     Unsuccessful Modifications: 1
#      Ignored Modifications: 0
#      Ignored Modify-Attributes: 0
#      Ignored Delete-Attributes: 0
#      Ignored Add-Attributes: 0
#     Entries already up to date: 9

#     Successful Deletions: 2
#     Unsuccessful Deletions: 0
#     Ignored Deletions: 0

#     Successful Modify-DNs: 0
#     Unsuccessful Modify-DNs: 0
#     Ignored Modify-DNs: 0

Explanations:

• Number of X.500 entries:

Lists the number of entries read from the directory.

There is only one global counter for entries read from the directory. As in

113



some Tcl-Scripts several search operations are sent to the directory, the
results can be overlapping and therefore that number can be
misleading. In such scenarios, that number is therefore not the number
of the basic search operation in the directory.

• Number of file entries:

Lists the number of entries read from a data file.

There is only one global counter for entries read from data file. As in a
synchronization template (Tcl scripts) several data files could be
handled in parallel, that number is the total number of entries of all files.

If the file is read a second time (e.g. while creating index lists), the entries are counted
twice.

Therefore, the number listed here may sometimes be misleading.

• Successful Additions:

Lists the number of successful ADD operations.

• Unsuccessful Additions:

Lists the number of unsuccessful ADD operations.

• Ignored Additions:

Lists the number of ADD operations that have been ignored, because the
synchronization runs in TRIAL mode.

• Successful Modifications:

Lists the number of successful MODIFY operations.

• Unsuccessful Modifications:

Lists the number of unsuccessful MODIFY operations.

• Ignored Modifications:

Lists the number of MODIFY operations that have been ignored, because the
synchronization runs in TRIAL mode.

• Ignored Modify-Attributes:

Lists the number of modify changes that are ignored, because the attribute flags (in the
openconn operation) forbid to perform the modification.

• Ignored Delete-Attributes:

Lists the number of delete modifications that are ignored, because the attribute flags

114



(in the openconn operation) forbid to perform the modification.

• Ignored Add-Attributes:

Lists the number of add modifications that are ignored, because the attribute flags (in
the openconn operation) forbid to perform the modification.

• Entries already up to date:

Lists the number of entries that exist in the directory and whose attributes are already
matching the attribute values read from the data file.

• Successful Deletions:

Lists the number of successful DELETE operations.

• Unsuccessful Deletions:

Lists the number of unsuccessful DELETE operations.

• Ignored Deletions:

Lists the number of DELETE operations that have been ignored, because the
synchronization runs in TRIAL mode.

• Successful Modify-DNs:

Lists the number of successful MODIFY-DN operations.

• Unsuccessful Modify-DNs:

Lists the number of unsuccessful MODIFY-DN operations.

• Ignored Modify-DNs:

Lists the number of MODIFY-DN operations that have been ignored, because the
synchronization runs in TRIAL mode.

If in meta initialize the parameter -nostatistics is set, the statistic information as listed
above is not written to the tracefile.

In that case, the user is advised to integrate statistic information in his synchronization
scripts. Before calling terminate, it’s his task to print this information using meta writetext.

Return Values

None.

Example

meta terminate

115



See Also

initialize, writetext

meta unescapechar
Unescapes one or more characters in a string. The syntax is as follows:

[meta] unescapechar string

The unescapechar operation "unescapes" one or more characters in a string by removing
the backslash (\) prefix (previously inserted with meta escapechar or returned by an obj
search operation). and returns the unescaped string as a result.

Return Values

The unescaped string.

Example

The unescapechar operation

meta unescapechar f\{1\}\=2

returns the string f{1}=2

See Also

escapechar

meta writeindexlist
Writes information about an entry into an index list. The syntax is as follows:

[meta] writeindexlist
    -handle index_list_handle
    -name distinguished_name
    -entry entry_handle

Options

-handle index_list_handle

A required option that specifies the name of an index list handle created by a meta
createindex operation.

-name distinguished_name

A required option that specifies the distinguished name of the entry to be written to the

116



index list.

-entry entry_handle

A required option that specifies the name of the entry handle for the entry to be written
to the index list. Specify an entry handle created by a meta getentry operation.

The writeindexlist operation writes an entry’s distinguished name and the entry handle
into the index list specified in the -handle option. Obtain the distinguished name either
from the Tcl variable created by meta getentry (if the distinguished name is stored in the
entry) or from a Tcl mapping operation. Use the writeindexlist operation in conjunction
with the meta createindexlist, meta getentry, and meta sortindexlist operations to create
a sorted list (by distinguished name) of entries from a connected directory of type FILE for
directory synchronization processing.

A writeindexlist operation cannot be performed on an index list that has already been
sorted with the sortindexlist operation.

Example

meta writeindexlist -handle ih \
    -name cn=fou,ou=mfg,o=pqr,c=de \
    -entry eh

See Also

getentry, createindexlist, sortindexlist

meta writerecord
Writes the contents of an entry into a connected directory. The syntax is as follows:

[meta] writerecord
    -entry entry_handle

Options

-entry entry_handle

The handle to the entry to be written. Specify the name of a handle created by a meta
gethandle operation called with a -conn option that specifies a connection handle to a
directory of type FILE (opened with openconn -type option FILE) that has been opened
in WRITE or APPEND mode (opened with openconn -mode option WRITE or APPEND).

The writerecord operation writes the contents of the entry associated with entry_handle
into the connected directory of type FILE inherited by entry_handle. The data format
generated depends on the -format option specified in the openconn operation (TAGGED
or NON-TAGGED) and the syntax specified in the attribute configuration file.

117



Example

meta writerecord -entry eh

See Also

gethandle, openconn, writetext

Attribute Configuration File Format (Chapter 2)

meta writetext
Writes text to a connected directory of type FILE that has been opened for WRITE or
APPEND. The syntax is as follows:

[meta] writetext
    -conn connection_handle
    -text string
    [-nonewline flag]

Options

-conn connection_handle

A required option that specifies the name of a connection handle created by a meta
openconn operation called with the -type FILE and the -mode WRITE or APPEND
options.

-text string

The text to be written to the data file, enclosed in double quotation marks ("").

-nonewline flag

Controls whether a newline character is appended to string. Specify one of the
keywords:

• TRUE- Do not append a newline character

• FALSE-Append a newline character (default)

The writetext operation writes the text string specified in the -text option to the output
data file represented by the connection handle specified in the -conn option. Use the
writetext operation to write headers, trailers and other text into a data file that contains
entry information.

Example

meta writetext -conn conn_ch -text "Start of deleted entries"

118



See Also

gethandle, openconn

meta writetrace
Writes a trace message into the metacp trace file. The syntax is as follows:

[meta] writetrace
    -text string
    [-handle handle]

Options

-text string

The message to be written to the trace file, enclosed in double quotation marks ("").

-handle handle The name of an entry handle or a result handle that holds additional
information to be traced. To trace an entry handle, specify the name of an entry handle
created by a meta getentry or a meta gethandle operation. To trace a result handle,
specify the name of a result handle created by an obj search operation.

The writetrace operation writes the message specified in the -text option into the trace file
created and opened by the meta initialize operation. Use the -handle option to trace the
current entry in a connected directory or to trace the contents of a search results list. Use
the meta initialize -maxentries option to set a limit on the number of entries to trace in a
search results list.

Example

meta writetrace -text "Base object 'O=pqr' does not exist"

See Also

getentry, gethandle, initialize, obj search

1.1.4. obj (metacp)

Synopsis
[obj] bind
    [-bindid bid]
    [-authentication auth_method]
    [-password password]
    [-user username]
    [-protocol protocol]
    [-server ldap_server_name | -address ldap_server_address]

119



    [-ssl]
    [-sasl]
    [-cert7path cert8_pathname]
    [-key3path key3_pathname]
    [-certsubject nickname]
    [-key3password key3_password]
    [-mechanism mechanism]
    [-status [-bindid bid1 [bid2 …]]]

[obj] compare distinguished_name
    -attribute attribute
    [-bindid bid]

[obj] create distinguished_name
    -attribute attribute_list
    [-bindid bid]

[obj] delete distinguished_name
    [-bindid bid]

[obj] help [operation | -verbose]

[obj] list distinguished_name
    [-bindid bid]
    [-pretty]

[obj] moddn distinguished_name
    [-bindid bid]
    -rdn name_part
    [-dontdeleteoldrdn]
    [-newsuperior new_superior]

[obj] modify distinguished_name
    [-bindid bid]
    {-addattr attribute_list |
    -changeattr old_attribute new_attribute |
    -removeattr attribute_list |
    -replaceattr attribute_list}

[obj] nextpage
    [-bindid bid]
    [-conn connection_handle]
    [-exactaction]
    [-pretty]
    [-result result_handle]
    [-terminate]
    [-vafter after_count]
    [-vbefore before_count]
    [-vcontentcount content_count]
    [-voffset offset]
    [-vpagesize page_size]

120



    [-vvalue attribute_value]

[obj] operations

[obj] search distinguished_name
    [-bindid bid]
    [-conn connection_handle]
    [-exactaction]
    [-result result_handle]
    [-allattr |
    -alluserattr |
    -attribute abbreviation …]
    {-baseobject |
    -onelevel |
    -subtree}
    [-filter filter]
    [-matchedvaluesonly]
    [-pretty]
    [-types]
    [-vafter after_count]
    [-vbefore before_count]
    [-vcontentcount content_count]
    [-voffset offset]
    [-vpagesize page_size]
    [-vsortkey sort_keys]
    [-vtype {SUBENTRY | SIMPLE | VLV}]
    [-vvalue attribute_value]

[obj] show distinguished_name
    [-bindid bid]
    [-allattr |
    -alluserattr |
    -attribute abbreviation …]
    [-pretty]
    [-types]

[obj] unbind
    [-bindid bid]

Purpose
A metacp object that manages entries in the directory information tree (DIT) of a Identity
store via the Lightweight Directory Access Protocol (LDAP) protocol.

Arguments
distinguished_name

The name of an entry to act on. Supply the complete distinguished name as follows:

121



distinguished_name

For example:

{cn=mueller peter,ou=board,o=pqr ag,c=de}

See the String Representation for LDAP Binds chapter for complete information on
distinguished name format.

operation

The name of the obj operation for which to display help information.

Operations

obj bind
Establishes a binding between metacp and an Identity store. The syntax depends upon the
protocol type (-protocol option) and the security level to be used.

For LDAPv2 binds (-protocol LDAPv2) the following syntax must be used:

[obj] bind
    [-bindid bid]
    [-authentication auth_method]
    [-password password]
    [-user username]
    -protocol LDAPv2
    [-server ldap_server_name | -address ldap_server_address]
    [-ssl]

For LDAPv3 binds (-protocol LDAPv3) the following syntax must be used:

• Anonymous bind over plain LDAPv3 protocol:

[obj] bind
    [-bindid bid]
    -protocol LDAPv3
    [-server ldap_server_name | -address ldap_server_address]

• Simple authenticated bind over plain LDAPv3 protocol:

[obj] bind
    [-bindid bid]
    -authentication simple
    -password password
    -user username
    -protocol LDAPv3
    [-server ldap_server_name | -address ldap_server_address]

122



• Anonymous bind over SSL-protected LDAPv3 protocol (encrypted data transfer):

[obj] bind
    [-bindid bid]
    -protocol LDAPv3
    [-server ldap_server_name | -address ldap_server_address]
    [-ssl]

• Simple authenticated bind over SSL-protected LDAPv3 protocol (encrypted data
transfer):

[obj] bind
    [-bindid bid]
    -authentication simple
    -password password]
    -user username
    -protocol LDAPv3
    [-server ldap_server_name | -address ldap_server_address]
    [-ssl]

• SASL-authenticated bind over SSL-protected LDAPv3 protocol (encrypted data transfer
and certificate-based client authentication):

[obj] bind
    [-bindid bid]
    -protocol LDAPv3
    [-server ldap_server_name | -address ldap_server_address]
    -sasl
    [-cert7path cert8_pathname]
    [-key3path key3_pathname]
    -certsubject nickname
    -key3password key3_password
    -mechanism EXTERNAL

To display the status of currently established binds the following syntax must be used:

[obj] bind -status [-bindid bid1 [bid2 …]]

Options

-address ldap_server_address

The real address of a Identity store. Specify ldap_server_address in one of the following
formats:

• host[:_port_]

• host1[:port1],host2[:port2][,…]

where host or hostn is either an IP address or a DNS (domain name server) name and
port or portn is a port number (<32767). 389 is used as the default port number unless
the -ssl option or the -sasl option and the -mechanism EXTERNAL options are specified;

123



in this case, the default port number is 636.

If more than one real address is specified, an attempt is made to establish a connection
using real addresses from left to right.

-authentication auth_method

The authentication method to be applied. Supply the simple keyword to use simple
unprotected authentication.

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

-cert7path cert8_pathname

The full pathname of the cert8.db file that contains the certificate database used by the
Mozilla ldapssl library. A certificate database typically contains Root certificates, server
and user certificates. (See SSL/TLS Certificate Database in the DirX Identity Program Files
chapter for details.)

The default value is install_path/client/conf/cert8.db.

-certsubject nickname

The nickname that the Mozilla ldapssl library uses to select the correct certificate and
key from the cert8.db file and the key3.db file. Use the Mozilla certutil tool to view the
contents of a cert8.db file to obtain the nicknames of the client certificates.

This option is mandatory when the -sasl option is specified and the value of the
-mechanism option is EXTERNAL.

-key3password key3_password

The password that protects the key3.db file. Use the Mozilla certutil tool to change the
value of this password. The password protects the private keys stored in the key3.db file.

This option is mandatory when the -sasl option is specified and the value of the
-mechanism option is EXTERNAL.

-key3path key3_pathname

The full pathname of the key3.db file that contains the keys. (See SSL/TLS Key Database
in the DirX Identity Program Files chapter for details.)

The default value is install_path/client/conf/key3.db.

-mechanism mechanism

The SASL mechanism to use for client authentication and for the security layer. Supply
the EXTERNAL keyword (case-sensitive) to use SSL/TLS certificate-based client
authentication as the client authentication mechanism and SSL/TLS as the security
layer. If a client uses this authentication mechanism, the Identity store authenticates the
subject name of the certificate that is specified by the -certsubject option.

This option is mandatory when the -sasl option is specified.

124



-password password

The password associated with the user on whose behalf the bind request is being made.

-protocol protocol

The LDAP protocol to be used for the bind. Supply one of the following keywords (case-
insensitive):

• LDAPv2 - LDAPv2 bind

• LDAPv3 - LDAPv3 bind

Specifying this option overrides the protocol specification field in the directory client
configuration file dirxcl.cfg.

-sasl

The bind is to be performed using SASL protocol. This option is only supported for LDAP
v3 protocol (-protocol option is LDAPv3).

-ssl

The bind is to be performed using SSL/TLS protocol.

-server ldap_server_name

The symbolic name of a Identity store. metacp uses ldap_server_name to search the
client configuration file dirxcl.cfg for an entry that specifies the Identity store´s real
address and protocol type.

-status [-bindid bid1 [bid2 …]]

Reports status of specified bind IDs bidn or all bind IDs currently in use (including the
default bind).This option is mutually exclusive to all other options.

-user username

The name of the user on whose behalf the bind request is being made. Specify the
complete distinguished name of the user. See the String Representation for LDAP Binds
chapter for a description of distinguished name syntax.

Multiple binds are supported using bind IDs and the concept of a default bind. A bind ID is
a string specified in the option -bindid associated with an LDAP bind. A bind ID can be
used in other metacp commands to refer to a specific LDAP bind.

A bind operation (or any other obj operation) that does not specify a bind ID opens (or
refers to) a default bind. There is only one default bind at a time.

Use the -server or -address options to bind to a specific Identity store. If a Identity store is
not specified with the -server or -address options, the obj bind operation searches the
directory client configuration file dirxcl.cfg for the first line that matches the protocol type
specified in the -protocol option. The address from this line is used to establish a bind. If the
directory client configuration file dirxcl.cfg does not contain a Identity store address line,
the operation performs a bind to the local Identity store.

Use the -authentication option to establish a specific authentication method. If you specify
simple authentication, you must supply the -user option and the -password option. The

125



password you supply for simple authentication is sent as clear text.

Use the -ssl option to establish Secure Socket Layer (SSL)/Transport Layer Security (TLS) for
the bind operation when the -protocol option specifies LDAPv2 or LDAPv3. When you
specify this option, the obj bind operation authenticates the Identity store using the
certificate information in the file specified in the DIRX_TRUSTED_CA environment variable
or in the install_path*/client/conf/cert8.db* certificate database, if the environment variable
is not set. See SSL/TLS Certificate Database in the DirX Identity Program Files chapter for
more information about SSL/TLS certificate authentication.

Use the -sasl option to establish Simple Authentication and Security Layer (SASL) client
authentication and SSL/TLS for the bind operation when the -protocol option specifies
LDAPv3. See the recommendations made in the document Authentication Methods for
LDAP (RFC 2829) and Lightweight Directory Access Protocol (v3): Extensions for Transport
Layer Security (RFC 2830) for details. The -sasl option includes the -ssl option.

When an obj bind operation is called with a specific bind ID, the operation sets the service
controls for the bind to the default values; see the ldapargs modify operation for a list of
default values. When an obj bind operation is called without a bind ID (a default bind), the
operation sets the service controls to the default values when the LDAP protocol to be used
changes. For example, the operation sets the service controls to their default values when
the last default bind used LDAPv2 protocol and the default bind to be performed uses
LDAPv3 protocol.

Example

bind -user cn=admin,o=my-company -password dirx \
     -auth simple -protocol LDAPv3 \
     -address hawk.virt.de.com -bindid hawkL3
bind -sasl -mech EXTERNAL -certsubject Admin-Nickname \
     -key3password zorro99 -prot LDAPv3
bind -status

The command output is as follows:

1) Connection:
Bind-ID: : hawkL3
Protocol: : LDAPv3
Address: : hawk.virt.de.com
User-Name: : cn=admin,o=pqr
Authentication Type: : simple
Status: : bound
2) Connection:
Bind-ID: : (default)
Protocol: : LDAP

126



Status: : unbound

obj compare
Compares an attribute name and value with the attribute names and values of an entry in
the DIT. The syntax is as follows:

[obj] compare distinguished_name
    -attribute attribute
    [-bindid bid]

Options

-attribute attribute A required option that specifies the attribute and attribute value to
compare. See the String Representation for LDAP Binds chapter for a description of
attribute type and value syntax.

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

Use the obj compare operation to determine whether an attribute in the entry specified by
distinguished_name contains a specific value. If the specified attribute contains the
specified value, the operation returns the text M=TRUE (meaning Matched=TRUE); if the
value is not present, it returns M=FALSE.

Example

obj compare cn=zapf,ou=asw,o=sni,c=de \
      -attr TN=55029

obj create
Creates a new entry in the DIT. The syntax is as follows:

[obj] create distinguished_name
    -attribute attribute_list
    [-bindid bid]

Options

-attribute attribute_list

A required option that specifies one or more attributes to be applied to the entry. See
the String Representation for LDAP Binds chapter for a complete description of
directory service attribute, attribute types, and attribute list formats.

127



-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

The create operation creates a new entry in the directory information tree. The
distinguished_name argument is the name of the entry to be created and must be
specified as a complete distinguished name. See the String Representation for LDAP Binds
chapter for a description of distinguished name syntax.

Use the -attribute option to specify the attributes to be applied to the newly created entry.
You must specify the ObjectClass (objectClass) attribute as an attribute_list element;
specifying additional attributes is optional. See the String Representation for LDAP Binds
chapter for a complete list of the supported attribute types and attribute list formats. By
default, the metacp program creates the operational attributes creation-time, creators-
name, structural-object-class, and governing-structure-rule.

Examples

1. The following sample command creates the organization "myCompany".

create {o=myCompany,c=us} \
     -attribute objectClass=organization {description=sni usa}

2. The following sample command creates the organizational-unit "engineering"
underneath the "myCompany" organization with the telephone-number attribute
telephoneNumber=+1 964 123.

create {ou=engeneering,o=myCompany,c=us} \
     -attribute objectClass=organizationalUnit \
     {description=engineering department} \
     {telephoneNumber=+1 964 123}

3. The following sample command creates the organizational-person "hughes" whose
telephone number is "423423" within the engineering organization and whose surname
is "hughes" and whose given name is "peter".

create {cn=hughes,ou=engineering,o=myCompany,c=de} \
     -attribute {objectClass=organizationalPerson;person} \
     {description=software-engineer} \
     {telephoneNumber=+1 964 123 423423} \
     sn=hughes givenName=peter

128



obj delete
Deletes entries from the DIT. The syntax is as follows:

[obj] delete distinguished_name
    [-bindid bid]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.) The delete
operation deletes entries from the directory information tree.

You cannot delete entries that still have subordinate entries.

Example

The following example deletes the entry cn=Miller,ou=engineering,o=sni,c=us

delete cn=miller,ou=engineering,o=sni,c=us

obj help
Returns help information about the obj object and its operations. The syntax is as follows:

[obj] help [operation | -verbose]

Options

-verbose

Displays information about the obj object.

Used without an argument or option, the help command returns brief information
about each obj operation. Use the operation argument to return a description of the
options associated with the operation you specify. Alternatively, you can use the
-verbose option to return a description of the obj object itself.

Example

help

The output of the sample command is as follows:

bind Binds to the specified directory server.

129



compare Checks if the object has the specified attribute value.

create Creates the specified object in the directory.

delete Removes the specified object from the directory.

list Lists the children of the specified object.

modify Modifies the attribute values of an object in the directory.

moddn Modifies the DN of an object in the directory.

search Searches for objects in the directory.

show Reads attributes of an object in the directory.

unbind Unbinds from the directory server.

help Displays help text for the 'obj' object and its operations.

operations Lists the operations that can be performed on the 'obj'
object.

obj list
Lists the distinguished names of the children of an entry. The syntax is as follows:

[obj] list distinguished_name
    [-bindid bid]
    [-pretty]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

-pretty

Displays the results of the operation in a tabular format.

The obj list operation returns a Tcl list that contains the complete distinguished names of
the immediate subordinates of the entry specified in distinguished_name. Use the -pretty
option to return the results of the operation in a tabular, more readable format.

Example

The following sample command lists the distinguished names of the object
ou=ap11,o=sni,c=de:

list ou=ap11,o=sni,c=de -pretty

The output of the sample command as follows:

130



1) cn=mueller,ou=ap11,o=sni,c=de
2) cn=hughes,ou=ap11,o=sni,c=de
3) cn=zahn,ou=ap11,o=sni,c=de
4) cn=schmid,ou=ap11,o=sni,c=de

obj moddn
Changes the last RDN of an entry or a subtree or moves an entry or subtree to a new
superior. The syntax is as follows:

[obj] moddn distinguished_name
    [-bindid bid]
    -rdn name_part
    [-dontdeleteoldrdn]
    [-newsuperior new_superior]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the "Bind Types and Bind IDs" section in this chapter for details.)

-dontdeleteoldrdn

Saves the attribute values of the old RDN that are not present in the new RDN.

-rdn name_part

A required option that specifies the new RDN. If the operation moves an object or
subtree to a new superior without changing its RDN, the old RDN is supplied for this
option. When the last RDN of the object is to be changed grantRename permission is
required. See the String Representation for LDAP Binds chapter for a description of
relative distinguished name syntax.

-newsuperior new_superior

Specifies the distinguished name of the new superior of the entry. The new superior
must already exist. The new superior must not be the entry to be moved, or the root of
the subtree to be moved, or one of its subordinates, or such that the moved object
violates any DIT structure rules. If objects subordinate to the moved object violate the
active subschema subsequent adjustments must be done to make these objects
consistent with the subschema. grantExport permission is required for the object being
considered with its original name, and grantImport permission is required for the object
being considered with its new name. See the String Representation for LDAP Binds
chapter for a description of distinguished name syntax.

The moddn operation changes the last relative distinguished name of an object or subtree
or moves an object or subtree to a new superior. The distinguished_name argument
specifies the entry or subtree to modify. See the String Representation for LDAP Binds
chapter for a description of distinguished name syntax. By default, the operation removes

131



the attributes and attribute values that do not exist in the new RDN.

When the obj moddn operation modifies a distinguished name, it automatically updates all
references to the complete name that exist within a single Identity store.

Example

In the following sample command, the entry is renamed but the old name (zahn) is kept in
the new entry. The resulting cn attribute has two values: zahn and soeder, where soeder is
the naming value of cn.

obj moddn cn=zahn,ou=staff,o=ibis,c=us -rdn cn=soeder \
     -dontdeleteoldrdn

obj modify
Changes the attribute values of an entry. The syntax is as follows:

[obj] modify distinguished_name
    [-bindid bid]
    {-addattr attribute_list |
    -changeattr old_attribute new_attribute |
    -removeattr attribute_list |
    -replaceattr attribute_list}

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

-addattr attribute_list

Adds the attributes and attribute values specified in the attribute_list argument to an
object. See the String Representation for LDAP Binds chapter for a description of
attribute type and value syntax.

-changeattr old_attribute new_attribute

Changes the specified existing attribute and attribute values to the specified new
attribute and attribute values. See the String Representation for LDAP Binds chapter for
a description of attribute type and value syntax.

-removeattr attribute_list

Removes the attributes and attribute values specified in the attribute_list argument
from an object. See the String Representation for LDAP Binds chapter for a description
of attribute type and value syntax

132



-replaceattr attribute_list

Replaces the attributes and attribute values specified in the attribute_list argument
from an object. See String Representation for LDAP Binds for a description of attribute
type and value syntax

The modify operation changes attributes and attribute values of entries. The
distinguished_name argument specifies the entry to modify. See the String Representation
for LDAP Binds chapter for a description of distinguished name syntax.

Use the -addattr option to add new attributes and their attribute values to an entry or add
new attribute values to an existing attribute.

Use the -changeattr option to modify values of an existing attribute. You must specify the
option name and the desired values for each attribute you want to change. For example, to
modify attr1 and attr2 for an entry, enter the -changeattr option twice as follows:
-changeattr attr1_old attr1_new -changeattr attr2_old attr2_new

Use the -removeattr option to remove existing attribute values or remove existing
attributes.

Use the -replaceattr option to replace all existing attribute values by the new attribute
values.

You may combine the options addattr, changeattr, removeattr and replaceattr in any
order as often as you like.

Examples

In the following sample commands, the modify operation performs the following tasks on
the entry represented by the distinguished name
cn=miller,ou=sales,o=ins CO,c=us:

1. Adds the telephone-number attribute type and value:

modify {cn=miller,ou=sales,o=ins CO,c=us} \
     -addattr {telephoneNumber=+1 964 123 5678}

2. Changes the telephoneNumber attribute value:

modify {cn=miller,ou=sales,o=ins CO,c=us} \
     -changeattr {telephoneNumber=+1 964 123 5678} \
     {telephoneNumber=+1 964 123 9999}

3. Deletes the instance of the telephoneNumber attribute assigned the value +1 964 123
9999:

133



modify {cn=miller,ou=sales,o=ins CO,c=us} \
     -removeattr {telephoneNumber=+1 964 123 9999}

In the following sample commands, the modify command performs the following tasks on
the entry represented by the distinguished name

1. Adds two telephone numbers to the object represented by the distinguished name
cn=gunther,ou=sales,o=acme,c=us:

modify cn=gunther,ou=sales,o=acme,c=us \
     -addattr {telephoneNumber=+1 919 555 4545;+1 431 223 4457}

2. Changes the initial values of both telephone numbers:

modify cn=gunther,ou=sales,o=acme,c=us \
     -changeattr {telephoneNumber=+1 919 555 4545} \
     {telephoneNumber=+1 508 693 9130} \
     -changeattr {telephoneNumber=+1 431 223 4457} \
     {telephoneNumber=+1 508 477 7300}

obj nextpage
Returns the next page of a search result if Simple Paging or Virual List View (VLV) is used.
The syntax is as follows:

[obj] nextpage
    [-bindid bid]
    [-conn connection_handle]
    [-exactaction]
    [-pretty]
    [-result result_handle]
    [-terminate]
    [-vafter after_count]
    [-vbefore before_count]
    [-vcontentcount content_count]
    [-voffset offset]
    [-vpagesize page_size]
    [-vvalue attribute_value]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.

134



(See the Bind Types and Bind IDs section in this chapter for details.)

-conn connection_handle

A handle to the connected directory to search. Specify the name of a connection handle
created by a meta openconn operation. This is a required option when using this
operation to search a connected directory. The connection handle must specify a
connected directory of type LDAP (a connected directory opened with the meta
openconn -type option LDAP) and it must not specify a format of LDIF-CHANGE (a
connected directory opened with the meta openconn -format option LDIF-CHANGE).

-exactaction

Usually distinguished names are defined as CaseIgnore strings that implies that leading
and trailing spaces are ignored and several spaces are reduced to one space when
comparing distinguished names. There are no problems when modifying such an object
and a reduced number of spaces is passed in the DN; the objects are still considered to
be the same and the modify operation is performed successfully.

There are directory systems that want to have the exact number of spaces when calling
the modify operation. Therefore multiple spaces must not be dropped.

Using the option -exactaction guarantees that multiple spaces in DNs of the search
result are not dropped. The DNs are provided the same way as they are retrieved from
the directory server.

-pretty

Displays the results of the operation in a tabular format.

-result result_handle

A name to assign to the result handle returned by the operation.

-terminate

Notifies the directory server that that search result can be discarded because no more
pages will be requested by the client any more.

-vafter after_count

Specifies the maximum number of objects in the page that should be returned after the
target object.

-vbefore before_count

Specifies the maximum number of objects in the page that should be returned before
the target object.

-vcontentcount content_count

Together with -voffset -vcontentcount is used to specify the target object in a virtual list
view in terms of an offset relative to the beginning of the list and the expected number
of entries of the list.

-voffset offset

Specifies the target object in a virtual list view in terms of an offset relative to the

135



beginning of the list.

-vpagesize page_size

Specifies the maximum number of objects that should be returned in a page. This
option is required for Simple Paging.

-vvalue attribute_value

Specifies the way the target object in the virtual list view is calculated. The target object
is defined to be first object in the list where the attribute identified by the first attribute
type of the sort keys is greater than or equal to attribute_value.

In order to avoid huge search results you can either use the Simple Paging or the Virtual
List View (VLV) mechanism. VLV allows a client to specify that the server returns a
contiguous subset of the search result for a given LDAP search with associated sort keys.
The subset is defined in terms of offsets into the ordered list or in terms of a greater than or
equal comparison value.

obj nextpage is used to return the next page of a search result once the initial search with
paging has already been performed.

By default, the obj nextpage operation returns results as Tcl lists. Use the -pretty option to
return formatted results.

When searching a connected directory the operation creates a result handle associated
with the results list and assigns the name specified in the -result option to the handle. If the
-result option is not specified the results list is output to the display as a Tcl list (unless the
-pretty option has been specified). The -result option cannot be combined with the -pretty
option.

If the -result option is specified the -conn option is required.

Supplying the -conn option causes the obj nextpage operation to return in the search
results list the set of attributes to be synchronized (SSA) specified in the connection handle.

Use the option -vpagesize to specify the maximum number of objects that should be
returned in a page.

The remaining options -vbefore, -vafter, -vvalue, -voffset, and -vcontentcount are only
relevant for VLV.

The options -vbefore and -vafter are required if -vpagesize is absent. The option -vbefore
specifies the maximum number of objects before a target object in the page and the
option -vafter specifies the maximum number of objects after that object in the page.

If the options -vbefore and -vafter are used additionally one of the following options must
be used:

-vvalue attribute_value

or

-voffset offset [-vcontentcount content_count]

136



Use -vvalue option if the target object is defined to be the first object in the list where the
attribute type is greater or equal to attribute_value. The attribute type is taken from the
first element of the sort keys. The -vvalue option can be used too if -vpagesize option is set
(instead of -vbefore and -vafter).

Alternatively, the parameters -voffset and optionally -vcontentcount can be used for
specifying a target object that should be contained in the page. If -vcontentcount is absent
then its default value 0 is used. Because an LDAP server may not have an accurate estimate
of the number of entries in the list and to take into account the cases where the list size
changes during the time the user browses through the list, and because the client needs a
way to indicate specific list targets beginning and end, offsets within the list are
transmitted between the client and the LDAP server as ratios, offset to content count. The
LDAP server sends its latest estimate of the number of entries in the list (content count) to
the client. Using -vcontentcount metacp sends its assumed value of the content count to
the server. The LDAP server examines the content count and offset that it receives and
computes the corresponding offset within the list, based on its own idea of the content
count.

Example:

offset = 60, content_count = 100

Suppose that the LDAP servers view of the complete search result conatians 300
objects, then the target object is at position 180.

There are the following special cases when using the -voffset and -vcontentcount option:

• offset is one and content_count is non-one: The target object is the first entry in the list.

• Equivalent values of offset and content_count: The target object is the last entry in the
list.

Use the option -terminate if you are no longer receiving search pages from the server. That
option cannot be combined with any other option. The result of this command is that the
LDAP server discards the search result.

1. If the parameters -conn and -result are not used and the number of
result entries is greater than the page size (specified in -vpagesize),
then the search returns an indication for an incomplete operation as
the last element of the search result. For Simple Paging, this is a query
reference (cookie) that internally is used for subsequent calls of obj
nextpage. For VLV, additionally Target-Position and Content-Count are
provided. When processing the real entries of the search result an
application (TCL script) must take care of that last element and should
ignore it.

Simple Paging:

137



metacp> nextpage -p -vpagesize 3

The sample output is as follows:

1) o=PQR
2) cn=admin,o=PQR
3) ou=Sales,o=PQR
Incomplete operation:
    Partial-Outcome-Qualifier
        Query-Reference         : \x0b\x00\x00\x00

VLV:

metacp> nextpage -p -vpagesize 3 -voffset 1

The sample output is as follows:

1) cn=Abele,ou=Sales,o=PQR
2) cn=admin,o=PQR
3) cn=Tinker,ou=Sales,o=PQR
Incomplete operation:
    Partial-Outcome-Qualifier
        Query-Reference         : \x0c\x00\x00\x00
        Virtual-List-View-Spec.
              Target-Position       : 1
              Content-Count         : 18

2. If the parameters -conn and -result are used then the “incomplete
operation” indication is not returned in the search result; it is already
dropped.

3. Only one search with simple paging or VLV can be done for a bind
connection because the cookie is internally stored for each connection.
If another search (with simple paging, VLV, or without paging) is
required simultaneously an additional bind connection for that
additional search is required.

4. If the last page has been received when using simple paging and you
keep on calling the obj nextpage operation then an appropriate error
code is returned that no more pages are available. (METACP 4515)

138



Example

1. Terminate paging:

nextpage -terminate

2. Simple paging with page size 3:

nextpage -pretty -vpagesize 3

3. VLV with page size 3 starting with the first entry:

nextpage -pretty -vpagesize 3 -voffset 1

4. VLV with page size 3 and the common name of the first object displayed starts with a D:

nextpage -pretty -vvalue D -vpagesize 3

5. VLV, the common name of the target object starts with a D. Three objects before and
five objects after this object should be displayed:

nextpage -pretty -vvalue D -vbefore 3 -vafter 5

obj operations
Returns a list of operations that can be performed on the obj object. The syntax is as
follows:

[obj] operations

The list of available operations is in alphabetical order except for help and operations,
which are listed last.

Example

obj operations

The output of the sample command is as follows:

bind compare create delete list modify moddn search show unbind help operations

139



obj search
Searches for entries. The syntax is as follows:

[obj] search distinguished_name
    [-bindid bid]
    [-conn connection_handle]
    [-exactaction]
    [-result result_handle]
    [-allattr |
    -alluserattr |
    -attribute abbreviation …]
    {-baseobject |
    -onelevel |
    -subtree}
    [-filter filter]
    [-matchedvaluesonly]
    [-pretty]
    [-types]
    [-vafter after_count]
    [-vbefore before_count]
    [-vcontentcount content_count]
    [-voffset offset]
    [-vpagesize page_size]
    [-vsortkey sort_keys]
    [-vtype {SUBENTRY | SIMPLE | VLV}]
    [-vvalue attribute_value]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

-conn connection_handle

A handle to the connected directory to search. Specify the name of a connection handle
created by a meta openconn operation. This is a required option when using this
operation to search a connected directory. The connection handle must specify a
connected directory of type LDAP (a connected directory opened with the meta
openconn -type option LDAP) and it must not specify a format of LDIF-CHANGE (a
connected directory opened with the meta openconn -format option LDIF-CHANGE).

Usually all attributes that are defined in the connection handle are passed in the search
operation as list of requested attributes. As this list may be very huge (namely when the
meta openconn operation uses the -processallattr option) it makes sense to use the
-allattr option instead. Therefore the Tcl variable _md_req_attr_limit (defined in
init.metacp with the default value 64) is used. If the attribute list of the connection
handle is beyond that limit then for optimization purposes a search request with the
-allattr option is generated internally. In that case metacp makes sure that later on in

140



the synchronization cycle, only the relevant attributes are processed; attributes returned
by search but which are not defined in the connection handle are ignored. But you
should be aware that operational attributes are not returned with the -allattr option.
Futhermore the directory server may return an attribute with an alternate LDAP
attribute name (if configured). So therefore if you miss an attribute during
synchronization keep in mind to change _md_req_attr_limit to -1 so that the list of
requested attributes is passed to the server as is.

-exactaction

Usually distinguished names are defined as CaseIgnore strings that implies that leading
and trailing spaces are ignored and several spaces are reduced to one space when
comparing distinguished names. There are no problems when modifying such an object
and a reduced number of spaces is passed in the DN; the objects are still considered to
be the same and the modify operation is performed successfully.

There are directory systems that want to have the exact number of spaces when calling
the modify operation. Therefore multiple spaces must not be dropped.

Using the option -exactaction guarantees that multiple spaces in DNs of the search
result are not dropped. The DNs are provided the same way as they are retrieved from
the directory server.

-result result_handle

A name to assign to the result handle returned by the operation.

-allattr

Shows information about all the attributes of an entry.

-alluserattr

Returns the object’s user attributes. For LDAP binds, this option returns the same
attributes as the option -allattr.

-attribute abbreviation

Returns the attributes that correspond to the specified LDAP names or OIDs.

-baseobject

Limits the search scope to the base object; that is, the entry represented by the specified
distinguished name.

-filter filter

Specifies the filter condition for the search. See the String Representation for LDAP
Binds chapter for a description of search filters.

-matchedvaluesonly

Specifies that attribute values not matched by the filter are not to be returned.

-onelevel

Limits the search scope to the children of the base object.

141



-pretty

Displays the results of the operation in a tabular format.

-subtree

Limits the search scope to the subtree below the base object.

-types

Specifies that the results are to contain attribute types but not attribute values.

-vafter after_count

Specifies the maximum number of objects in the page that should be returned after the
target object.

-vbefore before_count

Specifies the maximum number of objects in the page that should be returned before
the target object.

-vcontentcount content_count

Together with -voffset -vcontentcount is used to specify the target object in a virtual list
view in terms of an offset relative to the beginning of the list and the expected number
of entries of the list.

-voffset offset

Specifies the target object in a virtual list view in terms of an offset relative to the
beginning of the list.

-vpagesize page_size

Specifies the maximum number of objects that should be returned in a page. This
option is required for Simple Paging.

-vsortkey sort_keys

Specifies a list of attribute types (sort keys) that should be used for paging or virtual list
view. This option is required for VLV. Specify sort_keys in the following format:

• For simple pageing
-vsortkey attr_type [attr_type …]

• For VLV:
-vsortkey attr_type attr_type …]

where attr_type is the LDAP name of the attribute. For simple paging the first attr_type
can be prefixed by an exclamation mark (!) to specify reverse sort order. For VLV all
attr_types can be prefixed by an exclamation mark (!). For attr_type only indexed
attribute types can be specified.

-vtype {SUBENTRY | SIMPLE | VLV}

Specifies the result type. Specify one of the following keywords:

• SUBENTRY - Specifies that the search operation returns subentries. This option is
only supported for LDAP binds based on DirX Directory.

142



• SIMPLE - Specifies that the search operation uses simple paging mechanism. This
option is only supported for LDAP binds not based on DirX Directory.

• VLV - Specifies that the search operation uses virtual list view mechanism.

-vvalue attribute_value

Specifies how the target object in the virtual list view is calculated. The target object is
defined to be first object in the list where the attribute identified by the first attribute
type of the sort keys is greater than or equal to attribute_value.

The search operation searches for entries starting from the specified distinguished name.
You must specify one of the search scope options *
-baseobject*, -onelevel, or -subtree.

By default, the operation does not search for attribute information. Use the *
-attribute* or -alluserattr options to return selected attribute information, or use the -allattr
option to return information about all attributes.

By default, the search operation returns results as Tcl lists. Use the -pretty option to return
formatted results.

When searching a connected directory the operation creates a result handle associated
with the results list and assigns the name specified in the -result option to the handle. If the
-result option is not specified the results list is output to the display as a Tcl list (unless the
-pretty option has been specified). The -result option cannot be combined with the -pretty
option.

If the -result option is specified the -conn option is required. If the -conn option is specified
the obj search attribute selection options (-allattr, -alluserattr, -attribute) cannot be
specified.

If the -result option is specified then the search operation usually expects a complete result
returned by the directory server (unless paging or virtual list view mode is turned on). If the
directory server returns an incomplete result the synchronization TCL script’s behavior is
not predictable; for example due to missing entries in the search result, objects are deleted
from the directory database. The directory server however may return incomplete results if
a size limit or time limit has been encountered (see ldapargs command for details) or if
referrals to other servers are returned. In the event of an incomplete result the search
operation returns an error “Incomplete search result returned.” (errCode: METACP 6142). If
you want to process such incomplete results you must specify the TCL variable
_allowpartialresult to prevent the search operation from returning an error. Then the TCL
variable _partialresulttype is returned and specifies the reason why the partial result has
been received. (See the introduction to metacp for details about the TCL variables
_allowpartialresult and _partialresulttype.)

Supplying the -conn option causes the obj search operation to return in the search results
list the set of attributes to be synchronized (SSA) specified in the connection handle. To
prevent obj search from returning SSA attributes you must create a connection handle
that specifies only DDN in the -attribute option, and specify this handle in the -conn option.
The obj search operation then returns only entry names. In this case, you must maintain
two connection handles for the connected directory: one for the directory synchronization
process, and one for returning entry names without attributes in obj search operations.

143



In order to avoid huge search results you can either use the Simple Paging or the Virtual
List View (VLV) mechanism. VLV allows a client to specify that the server returns a
contiguous subset of the search result for a given LDAP search with associated sort keys.
The subset is defined in terms of offsets into the ordered list or in terms or in terms of a
greater than or equal comparison value.

The following sections describe how to work with these two mechanisms:

Use the option -vpagesize to specify the maximum number of objects that should be
returned in a page. (If -vpagesize is not used for VLV, alternatively -vbefore and -vafter
must be used.)

Use the option -vsortkey to specify the sort criterias.

The remaining options -vbefore, -vafter, -vvalue, -voffset, and -vcontentcount are only
relevant for VLV.

The options -vbefore and -vafter are required if -vpagesize is absent. The option -vbefore
specifies the maximum number of objects before a target object in the page and the
option -vafter specifies the maximum number of objects after that object in the page.

If the options -vbefore and -vafter are used additionally one of the following options must
be used:

-vvalue attribute_value

or

-voffset offset [-vcontentcount content_count]

Use -vvalue option if the target object is defined to be the first object in the list where the
attribute type is greater or equal to attribute_value. The attribute type is taken from the
first element of the sort keys. The -vvalue option can be used too if -vpagesize option is set
(instead of -vbefore and -vafter).

Alternatively, the parameters -voffset and optionally -vcontentcount can be used for
specifying a target object that should be contained in the page. If -vcontentcount is absent
then its default value 0 is used. Because an LDAP server may not have an accurate estimate
of the number of entries in the list, and to take into account the cases where the list size
changes during the time the user browses through the list, and because the client needs a
way to indicate specific list targets beginning and end, offsets within the list are
transmitted between the client and the LDAP server as ratios, offset to content count. The
LDAP server sends its latest estimate of the number of entries in the list (content count) to
the client. Using -vcontentcount metacp sends its assumed value of the content count to
the server. The LDAP server examines the content count and offset that it receives and
computes the corresponding offset within the list, based on its own idea of the content
count.

Example:

offset = 60, content_count = 100

144



Suppose that the LDAP servers view of the complete search result conatians 300
objects, then the target object is at position 180.

There are the following special cases when using the -voffset and -vcontentcount option:

• offset is one and content_count is non-one: The target object is the first entry in the list.

• Equivalent values of offset and content_count: The target object is the last entry in the
list.

1. If the parameters -conn and -result are not used and the number of
result entries is greater than the pagesize (specified in -vpagesize), then
the search returns an indication for an incomplete operation as the last
element of the search result. For Simple Paging, this is a query
reference (cookie) that internally is used for subsequent calls of obj
nextpage. For VLV, additionally Target-Position and Content-Count are
provided. When processing the real entries of the search result an
application (TCL script) must take care of that last element and should
ignore it.

Simple Paging:

metacp> search o=pqr -subtree -pretty -vtype SIMPLE
-vpagesize 3

The sample output is as follows:

1) o=PQR
2) cn=admin,o=PQR
3) ou=Sales,o=PQR
Incomplete operation:
    Partial-Outcome-Qualifier
        Query-Reference         : \x0b\x00\x00\x00

VLV:

metacp> search o=pqr -subtree -pretty -vtype VLV
-vpagesize 3 -vsortkey cn -voffset 1

The sample output is as follows:

1) cn=Abele,ou=Sales,o=PQR
2) cn=admin,o=PQR

145



3) cn=Tinker,ou=Sales,o=PQR
Incomplete operation:
    Partial-Outcome-Qualifier
        Query-Reference         : \x0c\x00\x00\x00
        Virtual-List-View-Spec.
              Target-Position       : 1
              Content-Count         : 18

1. If the parameters -conn and -result are used then the “incomplete
operation” indication is not returned in the search result; it is already
dropped.

2. Only one search with simple paging or VLV can be done for a bind
connection, because the cookie is internally stored for each connection.
If another search (with simple paging, VLV, or without paging) is
required simultaneously an additional bind connection for that
additional search is required.

Examples

1. Search without paging

obj search o=pqr -subtree -conn ch -result LDAP_rh

2. Search with simple paging with page size 3:

search o=pqr -subtree -pretty -vtype SIMPLE -vpagesize 3

3. Search with VLV with page size 3 starting with the first entry:

search o=pqr -subtree -pretty -vtype VLV -vpagesize 3 -vsortkey cn
-voffset 1

4. Search with VLV with page size 3 starting with the first entry that common name starts
with the letter D:

search o=pqr -subtree -pretty -vtype VLV -vsortkey cn -vvalue D
-vpagesize 3

5. Search with VLV with starting with the first entry (target object) that common name
starts with the letter D, displaying 3 entries before and 5 entries after the target object:

146



search o=pqr -subtree -pretty -vtype VLV -vsortkey cn -vvalue D
-vbefore 3 –vafter 5

obj show
Shows an entry’s contents. The syntax is as follows:

[obj] show distinguished_name
    [-bindid bid]
    [-allattr |
    -alluserattr |
    -attribute abbreviation …]
    [-pretty]
    [-types]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
(See the Bind Types and Bind IDs section in this chapter for details.)

-allattr

Shows information about all the attributes of an entry.

-alluserattr

Returns the object’s user attributes. For LDAP binds, this option returns the same
attributes as the option -allattr.

-attribute abbreviation

Returns the attributes that correspond to the specified LDAP names or OIDs.

-pretty

Displays the results of the operation in a tabular format.

-types

Specifies that the results are to contain attribute types, but not attribute values.

Use the distinguished_name argument to specify an object to show.

By default, the operation does not return attribute information. Use the -attribute
or -alluserattr options to return selected attribute information, or use the -allattr option to
return information about all attributes. If you have selected to return attribute information,
the obj show operation returns attribute types and values by default. Use the -types option
to limit the results returned to attribute types only.

By default, the results of the obj show operation are displayed as a Tcl list. Use the -pretty
option to return the results in a tabular, more readable format.

147



Examples

The following sample command shows all attributes associated with the object
represented by the distinguished name cn=Miller,ou=engeneering,o=myCompany,c=de.

show {cn=Miller,ou=engeneering,o=myCompany,c=de} \
    -allattr \
      -pretty

The output of the sample command is as follows:

1) cn=Miller,ou=engeneering,o=myCompany,c=de
objectClass     : top
: person
: organizationalPerson
commonName : Miller
surname           : Tom
description       : Software-Engineer

The following sample command displays a Tcl list that contains all attributes associated
with the object represented by the distinguished name
cn=Miller,ou=engeneering,o=myCompany,c=de.

show {cn=Miller,ou=engeneering,o=myCompany,c=de}
     -allattr

The output of the sample command is as follows:

cn=Miller,ou=engeneering,o=myCompany,c=de
{objectClass=top;person;organizationalPerson} cn=Miller sn=Tom
description=Software-Engineer

The following sample command displays the telephone-number attribute associated with
the object represented by the distinguished name
cn=Miller,ou=engeneering,o=myCompany,c=de.

show {cn=Miller,ou=engeneering,o=myCompany,c=de}
     -attribute TN -pretty

The output of the sample command is as follows:

148



1) cn=Miller,ou=engeneering,o=myCompany,c=de
telephoneNumber : +1 964 123 5678

obj unbind
Terminates a binding between metacp and a Identity store. The syntax is as follows:

[obj] unbind
    [-bindid bid]

Options

-bindid bid

The name (bid) of the bind to be used. If this option is omitted, the default bind is used.
See the Bind Types and Bind IDs section in this chapter for details.

1.1.5. util (metacp)

Synopsis
delete_subtree base_object

faddattr filename

fcreate filename

Purpose
Utilities for metacp.

Arguments
base_object

The distinguished name of an entry in the DIT. See the String Representation for LDAP
Binds chapter for a description of distinguished name syntax.

filename

The name of the data file.

Operations

delete_subtree
Deletes the subtree under the specified base object. The base object itself is also deleted.

149



This utility can only be performed for a default bind id. (See the obj bind operation for
details.) The syntax is as follows:

delete_subtree base_object

Example

delete_subtree {ou=sales,o=pqr,c=de}

faddattr
Adds attributes and attribute values to existing entries in the DIT in batch mode. The syntax
is as follows:

faddattr filename

where filename is a data file that contains the names and attributes of the entries in the
following format:

• Blank lines and lines starting with the # character are ignored.

• All information for an entry must be contained in a single line. Each line is divided into
fields separated by the SPACE character. If the SPACE character is part of an attribute,
the field should be enclosed in curly braces ({ }).

• The first field in a line contains the distinguished name of the entry and subsequent
fields contain attribute information. If recurring values are specified for an attribute, the
values must be separated by a semicolon (;) and the field must be enclosed in curly
braces \{ }).

Here are some examples of the file format:

# Add description
{cn=Smith John,ou=sales,o=pqr,c=de} {description=Sales Manager}
# Add telephone number
cn=Mayer,ou=sales,o=pqr,c=de {telephoneNumber=+49(89)235-42356}

Example

faddattr datafile

fcreate
Creates entries in the DIT in a batch mode. The syntax is as follows:

150



fcreate filename

where filename is a data file that contains the names and attributes of the entries in the
following format:

• Blank lines and lines starting with the # character are ignored.

• All information for an entry must be contained in a single line. Each line is divided into
fields separated by the SPACE character. If the SPACE character is part of an attribute,
the field should be enclosed in curly braces (\{ }).

• The first field in a line contains the distinguished name of the entry and subsequent
fields contain attribute information. If recurring values are specified for an attribute, the
values must be separated by a semicolon (;) and the field must be enclosed in curly
braces (\{ }).

Here are some examples of the file format:

# Organizational Unit
ou=Services,o=pqr,c=de objectClass=organizationalUnit
# Organizational Persons
{cn=Smith James,ou=Services,o=pqr,c=de} \
{objectClass=organizationalPerson;person;mhsUser} sn=Smith \
telephoneNumber=+49(89)123-456 {facsimileTelephoneNumber=+49(89)123-
789} \
{postalAddress=Services Dpt$Einstein-Ring 4$D-81789 Munich,$Germany}
\
{mhsOraddresses=/G=James/S=Smith/OU2=S41/OU1=MCH1/PRMD=PQR/ADMD=DBP/C
=DE}
cn=Mayer,ou=services,o=pqr,c=de \
{objectClass=organizationalPerson;person;mhsUser} sn==Mayer \
telephoneNumber=+49(89)123-567 {facsimileTelephoneNumber=+49(89)123-
789} \
{postalAddress =Services Dpt$Einstein-Ring 4$D-81789 Munich$Germany}
\
{mhsOraddresses=/G=Erna/S=Mayer/OU2=S41/OU1=MCH1/PRMD=PQR/ADMD=DBP/C=
DE}
cn=Richter,ou=services,o=pqr,c=de \
{objectClass=organizationalPerson;person;mhsUser} sn=Richter \
telephoneNumbe=+49(89)234-678 {facsimileTelephoneNumber=+49(89)234-
6789} \
{postalAddress =Services Dpt$Albert-Ring 6$D-81789 Munich$Germany} \
{mhsOraddresses=/G=Franz/S=Richter/OU2=S12/OU1=MCH1/PRMD=PQR/ADMD=DBP
/C=DE}

151



Example

fcreate datafile

1.2. metacpdump

Synopsis
metacpdump [-a]
    [-c [!] ComponentNameList]
    [-h]
    [-l NoOfLookAheadEntries ]
    [-m]
    [-p]
    [-s [!] SubComponentNameList]
    [-t [!] ThreadIdentificationList ]
    ClientLogFileName …

Purpose
Displays the contents of a binary DirX Identity client trace log file that are written by
metacp.

Arguments
ClientLogFileName

A string that represents the name of a serviceability log file on which to operate.

Options
-a

Suppresses display of additional information available in a directory log file entry, for
example, the contents of structured function arguments. (To enable the logging of
additional information, set debug level 9 for one or more components in the routing
specification file.)

-c [!] ComponentNameList

If the ! character is specified, displays the directory log file entries that are not associated
with the components specified in ComponentNameList, otherwise, displays the
directory log file entries associated with the components in ComponentNameList.
ComponentNameList is a string that contains one or more component names
associated with the log file entries. All directory log file entries are currently associated
with the dir component name. All DirX Identity log file entries are currently associated
with the mdi component name.

152



-h

Prints a command usage message.

-l NoOfLookAheadEntries

Is an integer that represents the number of log file entries to look ahead when searching
for function entry/exit log file pairs. Merging between a function entry/exit log file entry
is not performed if the corresponding entry cannot be found in the specified range. If
this option is not specified, metacpdump uses the value 512 as its search range.

-m

Suppresses merging of function entry log file entries and function exit log file entries.
Invalid or non-existent function input/output and result parameters of a log file entry are
represented as a ??? sequence. If this option is specified, metacpdump ignores the -l
option.

-p

Suppresses display of the prolog information for each log file entry.

-s [!] SubComponentNameList

If the ! character is specified, displays the directory log file entries that are not associated
with the subcomponents specified in SubComponentNameList, otherwise, displays the
log file entries associated with the subcomponents in SubComponentNameList.
SubComponentNameList is a string that contains a single subcomponent name or a
comma-separated list of subcomponent names associated with the log file entries.

The metacpdump command recognizes the following directory service subcomponent
names for the component mdi:

Keyword Meaning

meta DirX Identity client interface

The metacpdump command recognizes the following directory service subcomponent
names for the component dir:

Keyword Meaning

adm Administration

api Application interface

bth Bind table handling

icom Internal thread communication interface

osi OSI communication

ros Remote operation service

rpc RPC interface

sock Socket interface

sys System call interface

153



Keyword Meaning

util Utility functions

vthr Virtual thread interface

-t [!] ThreadIdentificationList

If the ! character is specified, displays the log file entries not associated with the threads
specified in ThreadIdentificationList. Otherwise, displays log file entries associated with
the threads specified in ThreadIdentificationList. ThreadIdentificationList is a single
integer or a comma-separated list of integers that represent one or more thread Ids.
Alternately, it is a single keyword or a comma-separated list of keywords representing
thread types. The metacpdump command recognizes the following thread types:

Keyword Meaning

"abort thread" Handles aborted connections.

MainThread Initial (main) thread

OsiThread OSI communication handling thread

OsiIComThread OSI communication handling thread (supports the primary OSI
thread during internal event handling)

Description
The DirX Identity client (metacp) subcomponents log important information about their
activities and state through an internal serviceability interface. You specify how client trace
log messages are to be routed with the file install_path/client/conf/dirxlog.cfg. Each log
entry is written as a machine-independent binary record of data defined as the contents of
a serviceability prolog structure. The metacpdump command displays the contents of this
binary file in readable text format. The default location of the client trace log files is
install_path/client/log.

Example
The following example is based on a log file LOG20861.01. The logging level has been set to
1 for the meta subcomponents.

Create a readable log file log.all of the whole content:

metacpdump LOG20861.01 > log.all

The following output is written to the file log.all. (For readability a few lines were removed
from the result):

---------------------------------------------------------------------
-----------

154



MainThread 0x00000001 METACP mdi Wed 06/14/00 15:25:15
---------------------------------------------------------------------
-----------
DEBUG1 meta gcimeta.c 1899 25:15:655[2:410]
0 md_t_initialize
(info_block : IN: NULL OUT: 0x2a51d0,
gc_t_in_vect : 0xefffc5a4,
local_strings : TRUE,
out_vect : efffc5b8) = SUCCESSFUL

 DEBUG1 meta gcimeta.c 598 25:18:510[5:461]
1 md_t_readattrconf
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc5a4,
local_strings : TRUE,
out_vect : efffc5b8) = SUCCESSFUL
DEBUG1 meta mdt_readattr.c 267 25:19:196[4:705]
2 md_read_attr_config_file
(file_name: "./../../conf/ldifattr.cfg",
ctx_id: 0x2eaaa0,
attr_tab: 0x2eaaf8,
global_info:0x2eab00,
error_line: 2601975) = SUCCESSFUL
DEBUG1 meta mdGetAttrConf.c 803 25:19:735[450]
DEBUG1 meta mdGetAttrConf.c 831 25:22:663[067]
3 md_get_attr_info
(attr_tab: 0x2eaaf8,
abbr: "NEW_RDN") = 0x2ed45c
DEBUG1 meta mdGetAttrConf.c 838 25:22:816[124]
...
...
1 md_t_readattrconf
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc5a4,
local_strings : TRUE,
out_vect : efffc5b8) = SUCCESSFUL
DEBUG1 meta mdt_readattr.c 267 25:24:273[1:965]
2 md_read_attr_config_file
(file_name: "./../../conf/x500attr.cfg",
ctx_id: 0x2eeaa8,
attr_tab: 0x2eeb00,

155



global_info:0x2eeb08,
error_line: 2601975) = SUCCESSFUL
DEBUG1 meta mdGetAttrConf.c 831 25:24:483[424]
3 md_get_attr_info
(attr_tab: 0x2eeb00,
abbr: "NEW_RDN") = 0x2f0974
DEBUG1 meta mdGetAttrConf.c 838 25:25:132[130]

...

...
4 md_t_supinfo
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffbdbc,
local_strings : TRUE,
out_vect : efffbdd0) = SUCCESSFUL
DEBUG1 meta gcimeta.c 1247 25:27:784[298]
1 md_t_openconn
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc5a4,
local_strings : TRUE,
out_vect : efffc5b8) = SUCCESSFUL
DEBUG1 meta mdt_openconn.c 719 25:29:323[130]
2 md_get_attr_info
(attr_tab: 0x2eaaf8,
abbr: "AR") = 0x2ec74c
DEBUG1 meta mdt_openconn.c 719 25:29:545[168]

...

...
1 md_t_openconn
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc5a4,
local_strings : TRUE,
out_vect : efffc5b8) = SUCCESSFUL
DEBUG1 meta mdt_openconn.c 854 25:35:344[032]
2 md_get_attr_info
(attr_tab: 0x2eeb00,
abbr: "DDN") = 0x2f0160

DEBUG1 meta mdt_openconn.c 854 25:35:473[083]
...

156



...
2 md_t_search
(info_block: 0x2a51d0,
session: 0x2c3188,
gc_t_in_vect: 0xefffc5a0,
abbrv_result: TRUE,
local_strings: TRUE,
out_vect: efffc5b8) = SUCCESSFUL
DEBUG1 meta gcimeta.c 670 25:39:791[165]
3 md_t_sortresult
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc1b4,
local_strings : TRUE,
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta gcimeta.c 2192 25:40:067[1:672]
3 md_t_getentry
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc1b4,
local_strings : TRUE,
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta mdt_getentry.c 1378 25:40:161[1:415]
4 md__getentry_generic
(info_block : 0x2a51d0,
source_handle : 0x2e23e8,
handle_name : "rh",
tag_val : "",
search_key : "",
count_matches : FALSE,
ret_tcl : "0",
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta mdt_getentry.c 407 25:40:379[900]
5 md__getrecord_from_handle
(info_block : 0x2a51d0,
source_handle : 0x2e23e8,
handle_name : "rh",
search_key : "",
count_matches : FALSE,
ret_tcl : "0",
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta mdGetEntry.c 1311 25:40:523[171]
6 md_read_entry

157



(fp: 0xeefa6ee8,
ctx_id: 0x315128,
global_info: 0x2eab00,
mem_len: 0,
entry: "dn: o=PQR
o: PQR
description: PQR Company
postalAddress: PQR Company$ABC Street 123$D-01234 City$Germany
telephoneNumber: +49 12 345 67 890
objectClass: organization
objectClass: top
createTimestamp: 20000308120944Z
") = SUCCESSFUL
DEBUG1 meta mdGetEntry.c 1343 25:40:976[177]
6 md_split_attr
(entry: "dn: o=PQR
o: PQR
description: PQR Company
postalAddress: PQR Company$ABC Street 123$D-01234 City$Germany
telephoneNumber: +49 12 345 67 890
objectClass: organization
objectClass: top
createTimestamp: 20000308120944Z
",
global_info: ",
attr_s"eq: 0x2f2d44,
is_tagged: TRUE,
attr_table: 0x2eaaf8,
ctx_id: 0x315128,
rec_info: 0x31518c,
last_byte: "") = SUCCESSFUL
DEBUG1 meta gcimeta.c 2046 25:41:860[096]
3 md_t_gethandle
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc1b4,
local_strings : TRUE,
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta gcimeta.c 742 25:42:073[052]
3 md_t_findentry
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc1b4,

158



local_strings : TRUE,
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta gcimeta.c 1682 25:42:336[1:095]
4 md_t_modifyentry
(info_block : 0x2a51d0,
session : 0x2c3188,
gc_t_in_vect : 0xefffc1b4,
local_strings : TRUE,
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta mdUtil.c 3586 25:42:430[179]
5 md_get_attr_info
(attr_tab: 0x2eeb00,
abbr: "DDN") = 0x2f0160

DEBUG1 meta mdt_modifyentry. 553 25:42:790[480]
5 md_x500_modify
(fp_trace: 0xeefa6ed8,
comment_sign: "#",
trace_level: 2,
entry: "dn: o=PQR
o: PQR
description: PQR Company
postalAddress: PQR Company$ABC Street 123$D-01234 City$Germany
telephoneNumber: +49 12 345 67 890
objectClass: organization
objectClass: top
createTimestamp: 20000308120944Z
",
x500_attrconf: 0x2eeb00,
flags: 0x30d17c,
rec_info: 0xefffc0bc,
x500_entry: 0x2a1740,
ctx_id: 0x2e4a88,
sup_info: 0x2e1bbc,
info_block: 0x2a51d0,
session: 0x2c3188,
local_strings: TRUE,
ignore_mod: FALSE,
allow_rename: FALSE,
stat_info: 0x2a51e8,
success: TRUE) = SUCCESSFUL

159



DEBUG1 meta gcimeta.c 2192 26:14:309[604]
3 md_t_getentry
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffc1b4,
local_strings : TRUE,
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta mdt_getentry.c 1378 26:14:438[389]
4 md__getentry_generic
(info_block : 0x2a51d0,
source_handle : 0x2e23e8,
handle_name : "rh",
tag_val : "",
search_key : "",
count_matches : FALSE,
ret_tcl : "1",
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta mdt_getentry.c 407 26:14:532[185]
5 md__getrecord_from_handle
(info_block : 0x2a51d0,
source_handle : 0x2e23e8,
handle_name : "rh",
search_key : "",
count_matches : FALSE,
ret_tcl : "1",
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta mdGetEntry.c 1311 26:14:621[068]
6 md_read_entry
(fp: 0xeefa6ee8,
ctx_id: 0x3247e8,
global_info: 0x2eab00,
mem_len: 0,
entry: "") = MD_EOF
DEBUG1 meta gcimeta.c 742 26:14:969[074]
7 md_t_findentry
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffbc3c,
local_strings : TRUE,
out_vect : efffbc50) = SUCCESSFUL
DEBUG1 meta gcimeta.c 1320 26:15:130[089]
4 md_t_removeentries
(info_block : 0x2a51d0,

160



session : 0x2c3188,
gc_t_in_vect : 0xefffc1b4,
local_strings : TRUE,
out_vect : efffc1c8) = SUCCESSFUL
DEBUG1 meta gcimeta.c 1827 26:15:273[049]
99 md_t_unset
(info_block : 0x2a51d0,
gc_t_in_vect : 0xefffcdcc,
local_strings : TRUE,
out_vect : efffcde0) = SUCCESSFUL
DEBUG1 meta gcimeta.c 1827 26:15:394[108]

...

...
DEBUG1 meta gcimeta.c 1974 26:16:985[224]
99 md_t_shutdown
(info_block : IN: 0x2a51d0 OUT: NULL,
gc_t_in_vect : 0xefffd21c,
local_strings : TRUE,
out_vect : efffd230) = SUCCESSFUL

Exit Codes
The metacpdump command returns an exit code of 0 on success or a 1 if it encountered an
error. The text of the error message is displayed on stderr.

See Also
dirxlog.cfg (in DirX Identity Program Files)

1.3. metahubdump

Synopsis
metahubdump [-a]
    [-c [!] ComponentNameList]
    [-h]
    [-l NoOfLookAheadEntries]
    [-m]
    [-p]
    [-s [!] SubComponentNameList]
    [-t [!] ThreadIdentificationList]
    ServerLogFileName …

161



Purpose
Displays the contents of a binary Server (IDS-C) trace log file. Server trace log files are
written by the Server (IDS-C) (dxmmsssvr.exe and dxmsvr.exe).

Use metacpdump to display client log files that are written by metacp. The
command dxmdumplog is deprecated because its behaviour depends on
the environment variable DIRX_SVC_EXTINFO. Use the command
metahubdump instead.

Refer to the DirX Directory documentation for preparation of log files
written by DirX processes.

Arguments
ServerLogFileName

A string that represents the name of a serviceability log file on which to operate.

Options
-a

Suppresses display of additional information available in a directory log file entry, for
example, the contents of structured function arguments. (To enable the logging of
additional information, set debug level 9 for one or more components in the routing
specification file.)

-c [!] ComponentNameList

If the ! character is specified, displays the directory log file entries that are not associated
with the components specified in ComponentNameList, otherwise, displays the
directory log file entries associated with the components in ComponentNameList.
ComponentNameList is a string that contains one or more component names
associated with the log file entries. All directory log file entries are currently associated
with the dir component name. All Server (IDS-C) log file entries are currently associated
with the dxm component name.

-h

Prints a command usage message.

-l NoOfLookAheadEntries

Is an integer that represents the number of log file entries to look ahead when searching
for function entry/exit log file pairs. Merging between a function entry/exit log file entry
is not performed if the corresponding entry cannot be found in the specified range. If
this option is not specified, metahubdump uses the value 512 as its search range.

-m

Suppresses merging of function entry log file entries and function exit log file entries.
Invalid or non-existent function input/output and result parameters of a log file entry are

162



represented as a ??? sequence. If this option is specified, metahubdump ignores the -l
option.

-p

Suppresses display of the prolog information for each log file entry.

-s [!] SubComponentNameList

If the ! character is specified, displays the directory log file entries that are not associated
with the subcomponents specified in SubComponentNameList, otherwise, displays the
log file entries associated with the subcomponents in SubComponentNameList.
SubComponentNameList is a string that contains a single subcomponent name or a
comma-separated list of subcomponent names associated with the log file entries.

The metahubdump command recognizes the following directory service subcomponent
names for the component dxm:

Keyword Meaning

agtcl Agent controller client interface (the interface that the workflow engine
uses to start activities)

agtfe Agent controller front end

agtwr Agent controller back end

ats Messaging interface

cdbrt ConfDB API

ldap LDAP interactions of ConfDB API with LDAP directory

mss Server (IDS-C) core

sched Scheduler

sttcl Client interface to status tracker (used by agent controller front end and
workflow engine for communication with the status tracker)

stt Status tracker

wfc Workflow client interface (used by the scheduler to start and control
workflows)

wfe Workflow engine

util Server (IDS-C) internal utility functions

The metahubdump command recognizes the following directory service subcomponent
names for the component dir:

Keyword Meaning

icom Internal thread communication interface

sys System call interface

vthr Virtual thread interface

163



-t [!] ThreadIdentificationList

If the ! character is specified, displays the log file entries not associated with the threads
specified in ThreadIdentificationList. Otherwise, displays log file entries associated with
the threads specified in ThreadIdentificationList. ThreadIdentificationList is a single
integer or a comma-separated list of integers that represent one or more thread Ids.
Alternately, it is a single keyword or a comma-separated list of keywords representing
thread types. The metahubdump command recognizes the following thread types:

Keyword Meaning

"abort thread" Handles aborted connections.

MainThread Initial (main) thread

Description
The Server (IDS-C) (dxmmsssvr.exe and dxmsvr.exe) subcomponents log important
information about their activities and state through an internal serviceability interface. You
specify how server trace log messages are to be routed with the file
install_path/server/conf/dirxlog.cfg. Each log entry is written as a machine-independent
binary record of data defined as the contents of a serviceability prolog structure. The
metahubdump command displays the contents of this binary file in readable text format.
The default location of the server trace log files is install_path/server/log.

Example
The following example is based on a log file LOG20861.01. The logging level has been set to
1 for the dxm subcomponents util, agtwr, wfe.

Create a readable log file log.all of the whole content:

metahubdump LOG20861.01 > log.all

The following output is written to the file log.all. (For readability a few lines were removed
from the result):

---------------------------------------------------------------------
-----------
MainThread 0x0000005a dxmmsssvr.exe dxm Tue 03/20/01 12:57:19
---------------------------------------------------------------------
-----------
-- NOTICE mss dxmmssmain.cpp 244 57:19:70
0 "Dir.X MetaHub Synchronization Server V 6.0A 00 Tue Mar 20 7:03:56
2001 build 18"

-- NOTICE_V mss dxmmssmain.cpp 273 57:19:710

164



0 "Cmd line:
Environment:
DIRXMETAHUB_INST_PATH=C:\Program Files\Atos/DirX Identity
DIRXMETAHUB_QUEUE_MGR=QM_kellner01.asw.mchp.owncompany.de
DIRX_LOGCFG_FILE=<not set>"

-- NOTICE util cbasics.cpp 1287 57:19:710
1 loading '"server\conf\dxmmsssvr.ini"' (mode "rt").

-- NOTICE ldap dxmldap.cpp 256 57:19:731
99 Successfully connected to LDAP server "localhost":1389.
-- NOTICE ldap dxmldap.cpp 327 57:19:811
99 Disconnected from LDAP server "localhost":1389.
-- NOTICE ldap dxmldap.cpp 256 57:19:831
99 Successfully connected to LDAP server "localhost":1389.
-- NOTICE mss dxmcmsssvr.cpp 1031 57:19:941
99 registered server "main" ("main", "127.0.0.1")

-- NOTICE ldap dxmldap.cpp 327 57:19:941
99 Disconnected from LDAP server "localhost":1389.
-- NOTICE mss dxmmsssession.cp 816 57:20:031
99 "durable" subscriber initialized (session id: "main", topic:
"Dxm.command.main").

-- NOTICE mss dxmmsssession.cp 816 57:20:111
99 "durable" subscriber initialized (session id: "main", topic:
"Dxm.statusTracker").

-- NOTICE util cthread.cpp 234 57:20:161
99 thread "w_ID:STATUSTRACKER" started.

---------------------------------------------------------------------
-----------
w_ID:STATUSTRACKER 0x00000141 dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- NOTICE mss dxmcmssworker.cp 132 57:20:161
0 "CmssWorker" started.

---------------------------------------------------------------------
-----------
MainThread 0x0000005a dxmmsssvr.exe dxm Tue 03/20/01 12:57:20

165



---------------------------------------------------------------------
-----------
-- NOTICE util cthread.cpp 234 57:20:161
99 thread "w_ID:SCHEDULER" started.

---------------------------------------------------------------------
-----------
w_ID:STATUSTRACKER 0x00000141 dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- DEBUG1 util cmodule.cpp 191 57:20:171
1 dlopen("C:\Program Files\Atos/DirX Identity\bin\libdxmstt.dll") =
0x1c30000.

---------------------------------------------------------------------
-----------
w_ID:SCHEDULER 0x000000cc dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- NOTICE mss dxmcmssworker.cp 132 57:20:171
0 "CmssWorker" started.

---------------------------------------------------------------------
-----------
MainThread 0x0000005a dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- NOTICE util cthread.cpp 234 57:20:171
99 thread "cleaner thread" started.

-- NOTICE mss dxmcmsssvr.cpp 762 57:20:181
99 starting subscriptions ...

---------------------------------------------------------------------
-----------
w_ID:SCHEDULER 0x000000cc dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- DEBUG1 util cmodule.cpp 191 57:20:181
1 dlopen("C:\Program Files\Atos/DirX Identity\bin\libdxmsdr.dll") =
0x1d60000.

166



-- DEBUG1 sched dxmsdrimpl.cpp 782 57:20:181
2 Function parameter:
"InitiatorType:" 0
---------------------------------------------------------------------
-----------
cleaner thread 0x000000bb dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- NOTICE mss dxmcmsscleaner.c 177 57:20:191
0 "CmssCleaner" started.

---------------------------------------------------------------------
-----------
w_ID:STATUSTRACKER 0x00000141 dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- NOTICE ldap dxmldap.cpp 256 57:20:201
2 Successfully connected to LDAP server "localhost":1389.
---------------------------------------------------------------------
-----------
w_ID:SCHEDULER 0x000000cc dxmmsssvr.exe dxm Tue 03/20/01 12:57:20
---------------------------------------------------------------------
-----------
-- NOTICE ldap dxmldap.cpp 256 57:20:211
3 Successfully connected to LDAP server "localhost":1389.
-- NOTICE ldap dxmldap.cpp 327 57:20:241
3 Disconnected from LDAP server "localhost":1389.
-- NOTICE sched dxmsdrimpl.cpp 1721 57:20:241
3 New start time of status tracker cleanup computed.
Scheduled next at : "20010320120000Z"
Current Time : "20010320115720Z"
-- NOTICE sched dxmsdrimpl.cpp 1825 57:20:241
3 New start time for synchronizing schedules computed.
Scheduled next at : "20010321000000Z"
Current Time : "20010320115720Z"
-- NOTICE_V sched dxmsdrimpl.cpp 817 57:20:241
2 Scheduler is running.
---------------------------------------------------------------------
-----------
SUB_7f2570 0x00000129 dxmmsssvr.exe dxm Tue 03/20/01 12:58:17
---------------------------------------------------------------------

167



-----------
-- NOTICE util cthread.cpp 234 58:17:904
0 thread "w_c0671bb1-5ccfb1-e55be8dae0--8000" started.

---------------------------------------------------------------------
-----------
w_c0671bb1-5ccfb1-e5 0x0000014f dxmmsssvr.exe dxm Tue 03/20/01
12:58:17
---------------------------------------------------------------------
-----------
-- NOTICE mss dxmcmssworker.cp 132 58:17:904
0 "CmssWorker" started.

-- DEBUG1 util cmodule.cpp 191 58:17:914
1 dlopen("C:\Program Files\Atos/DirX Identity\bin\libdxmwfe.dll") =
0x1ee0000.

-- DEBUG1 wfe dxmwfeimpl.cpp 154 58:17:914
2 Function parameter:
"Workflow Name:"
"cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub"
-- DEBUG1 wfe dxmwfeimpl.cpp 155 58:17:914
2 Function parameter:
"InitiatorType:" 1
-- DEBUG1 wfe dxmwfeimpl.cpp 171 58:17:914
2 Function parameter:
"Workflow Start Time defaults to:" "20010320115817Z"
-- NOTICE ldap dxmldap.cpp 256 58:17:934
3 Successfully connected to LDAP server "localhost":1389.
-- NOTICE ldap dxmldap.cpp 327 58:18:064
3 Disconnected from LDAP server "localhost":1389.
-- DEBUG1 wfe dxmwfeimpl.cpp 220 58:18:064
2 Function parameter:
"Polling Time (in ms):" 120000
-- DEBUG1 wfe dxmwfeimpl.cpp 273 58:18:064
2 Constructor for "CWorkflowStub": setting return value 0
("SUCCESSFUL") for acknowledge.
-- DEBUG1 wfe dxmwfeimpl.cpp 299 58:18:064
2 Constructor of class "CWorkflowStub" called,
address of new object is 0x7f7720,
Instance ID is "c0671bb1-5ccfb1-e55be8dae0--8000".

168



-- DEBUG1 wfe dxmwfeimpl.cpp 358 58:19:016
2 ENTRY Object (0x7f7720), Function"CworkflowStub::execute".
-- NOTICE wfe dxmwfeimpl.cpp 360 58:19:016
2 START Workflow
Workflow instance ID: "c0671bb1-5ccfb1-e55be8dae0--8000"
Workflow DN:
"cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub"
Workflow Name: "BA_PABX2MetaStore_Full"
Workflow Start Time: "20010320115817Z"
-- DEBUG1 wfe dxmwfeimpl.cpp 376 58:19:026
2              Workflow instance ID: "c0671bb1-5ccfb1-e55be8dae0--
8000"
Workflow DN:
"cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub"
Workflow Name: "BA_PABX2MetaStore_Full"
Workflow Start Time: "20010320115817Z"
WorkflowState: "open.notRunning.notStarted"
-- DEBUG1 wfe dxmwfeimpl.cpp 401 58:19:036
2 Function parameter:
"Workflow Name:"
"cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub"
-- DEBUG1 wfe dxmwfeimpl.cpp 403 58:19:036
2 Function parameter:
"Workflow Activity Context:" "BA_PABX2MetaStore_Full"
-- DEBUG1 wfe dxmwfeimpl.cpp 404 58:19:036
2 Function parameter:
"Operation:" 10
---------------------------------------------------------------------
-----------
SUB_7f2570 0x00000129 dxmmsssvr.exe dxm Tue 03/20/01 12:58:19
---------------------------------------------------------------------
-----------
-- NOTICE util cthread.cpp 234 58:19:066
0 thread "w_127.0.0.1_1541987280_335_3" started.

---------------------------------------------------------------------
-----------
w_127.0.0.1_15419872 0x00000152 dxmmsssvr.exe dxm Tue 03/20/01
12:58:19
---------------------------------------------------------------------
-----------

169



-- NOTICE mss dxmcmssworker.cp 132 58:19:066
0 "CmssWorker" started.

-- DEBUG1 util cmodule.cpp 191 58:19:076
1 dlopen("C:\Program Files\Atos/DirX Identity\bin\libdxmagtfe.dll") =
0x2030000.

-- DEBUG1 agtfe dxmfrontend.cpp 360 58:19:076
2 Function: "CFrontEnd::CFrontEnd", Parameters: "MsgIn: JMSType: 1
JMSReplyTo: Dxm.command.main
JMSDestination: Dxm.command.main
DXMVersion: 1.00
DXMObjectType: 2
DXMInitiatorType: 2
DXMInstId: 127.0.0.1_1541987280_335_3
DXMWorkflowName: BA_PABX2MetaStore_Full
DXMWorkflowStartTime: 20010320115817Z
DXMActivityName: BA_HR2MetaStore_Full_ODBCExport
DXMActivityStartTime: 20010320115819Z
DXMWorkflowDN:
cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub
DXMActivityDN:
cn=BA_HR2MetaStore_Full_ODBCExport,cn=BA_HR2MetaStore_Full,dxmC=Workf
lows,dxmC=DirXmetahub
DXMJobDN:
cn=BA_HR2MetaStore_Full_ODBCExport,dxmC=Jobs,dxmC=DirXmetahub
"
-- NOTICE ldap dxmldap.cpp 256 58:19:086
3 Successfully connected to LDAP server "localhost":1389.
-- NOTICE ldap dxmldap.cpp 327 58:19:316
3 Disconnected from LDAP server "localhost":1389.
-- DEBUG1 agtfe dxmfrontend.cpp 636 58:19:326
2 Function: "CFrontEnd::CFrontEnd" returns "SUCCESSFUL"
---------------------------------------------------------------------
-----------
w_c0671bb1-5ccfb1-e5 0x0000014f dxmmsssvr.exe dxm Tue 03/20/01
12:58:19
---------------------------------------------------------------------
-----------
-- NOTICE wfe dxmwfeimpl.cpp 996 58:19:416
3 "createInstance"-message acknowledged with return code 0

170



("SUCCESSFUL").
Message ID: "127.0.0.1_1541987280_338_4",
Instance ID: "127.0.0.1_1541987280_335_3",
Run Object Name:
"cn=BA_HR2MetaStore_Full_ODBCExport,dxmC=Jobs,dxmC=DirXmetahub"
---------------------------------------------------------------------
-----------
w_127.0.0.1_15419872 0x00000152 dxmmsssvr.exe dxm Tue 03/20/01
12:58:19
---------------------------------------------------------------------
-----------
-- DEBUG1 agtfe dxmfrontend.cpp 736 58:19:456
2 Function: "CFrontEnd::execute", Parameters: "MsgIn: JMSType: 8
JMSReplyTo: Dxm.command.main
JMSDestination: Dxm.command.main
DXMVersion: 1.00
DXMObjectType: 2
DXMOperation: 7
DXMInstId: 127.0.0.1_1541987280_335_3
"
-- DEBUG1 agtwr dxmagtwr.cpp 107 58:19:456
3 Function: "Initialize" called.

-- DEBUG1 agtwr dxmagtwr.cpp 115 58:19:456
3 Pointer of Wrapper: 0x806330
-- DEBUG1 agtwr dxmagtwr.cpp 128 58:19:456
3 Function: "Initialize" returns "SUCCESSFUL".

-- DEBUG1 agtwr dxmagtwr.cpp 155 58:19:456
3 Function: "SetControlData" called.

-- DEBUG1 agtwr dxmagtwr.cpp 158 58:19:456
3 Function parameter:
"Pointer of CWrapper: " 0x806330
-- DEBUG1 agtwr dxmagtwr.cpp 161 58:19:456
3 Function parameter:
"Agent type: " 7
-- DEBUG1 agtwr dxmagtwr.cpp 164 58:19:456
3 Function parameter:
"Job path: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport"

171



-- DEBUG1 agtwr dxmagtwr.cpp 167 58:19:456
3 Function parameter:
"Executable name: " "ODBCAgentExp"
-- DEBUG1 agtwr dxmagtwr.cpp 171 58:19:456
3 Function parameter:
"Agent delta type: " 1529900236
-- DEBUG1 agtwr dxmagtwr.cpp 174 58:19:456
3 Function parameter:
"Process user name: " ""
-- DEBUG1 agtwr dxmagtwr.cpp 177 58:19:456
3 Function parameter:
"Process domain: " ""
-- DEBUG1 agtwr dxmagtwr.cpp 180 58:19:456
3 Function parameter:
"Expiration time: " 600
-- DEBUG1 agtwr dxmagtwr.cpp 188 58:19:456
3 Function: "SetControlData" returns 0.

-- DEBUG1 agtwr dxmagtwr.cpp 225 58:19:456
4 Function: "Command" called.

-- DEBUG1 agtwr dxmagtwr.cpp 228 58:19:456
4 Function parameter:
"Pointer of CWrapper: " 0x806330
-- DEBUG1 agtwr dxmagtwr.cpp 231 58:19:456
4 Function parameter:
"Control function: " 0x20310eb
-- DEBUG1 agtwr dxmagtwr.cpp 234 58:19:456
4 Function parameter:
"Control function parameter: " 33899544
-- DEBUG1 agtwr dxmagtwr.cpp 237 58:19:456
4 Function parameter:
"Command line: " "-f "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
personal.ini" -o "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
ODBC-HR-export.txt""
-- DEBUG1 agtwr dxmagtwr.cpp 240 58:19:456
4 Function parameter:
"Config data: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\

172



personal.ini"
-- DEBUG1 agtwr dxmagtwr.cpp 246 58:19:456
4 Function parameter:
"In delta data: " ""
-- DEBUG1 agtwr dxmagtwr.cpp 249 58:19:456
4 Function parameter:
"Output data: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
ODBC-HR-export.txt"
-- DEBUG1 agtwr dxmagtwr.cpp 255 58:19:456
4 Function parameter:
"Trace data: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
ODBC-HR-trc.txt"
-- NOTICE util cbasics.cpp 1287 58:19:466
5 loading '"C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
personal.ini"' (mode "r+t").

-- DEBUG1 agtwr dxmwrapper.cpp 1284 58:19:466
6 Function: "CWrapper::ProcessAgentODBC()" called.

-- NOTICE util cbasics.cpp 1670 58:19:466
7 save "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
personal.ini" ...

-- DEBUG1 agtwr dxmwrapper.cpp 1616 58:19:486
8 Function: "CWrapper::RunAgentWinNT()" called.

-- DEBUG1 agtwr dxmwrapper.cpp 1764 58:19:486
8 Agent call parameter:
"Executable and CmdLine: " "ODBCAgentExp -f "C:/Program
Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
personal.ini" -o "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
ODBC-HR-export.txt""
-- DEBUG1 agtwr dxmwrapper.cpp 1766 58:19:486
8 Agent call parameter:
"Current dir: " "C:/Program Files/Atos/DirX

173



Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport"
-- DEBUG1 agtwr dxmwrapper.cpp 2009 58:19:557
8 Function: "CWrapper::RunAgentWinNT()" returns "SUCCESSFUL".

-- NOTICE util cbasics.cpp 1287 58:19:557
8 loading '"C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
personal.ini"' (mode "r+t").

-- NOTICE util cbasics.cpp 1670 58:19:557
5 save "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport/
ProcessInfo.txt" ...

-- NOTICE util cbasics.cpp 1670 58:19:587
5 save "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_ODBCExport\
personal.ini" ...

-- DEBUG1 agtwr dxmagtwr.cpp 277 58:19:637
4 Function: "Command" returns 0.

-- DEBUG1 agtfe dxmfrontend.cpp 1094 58:19:647
2 Function: "CFrontEnd::execute" returns "SUCCESSFUL"
---------------------------------------------------------------------
-----------
w_c0671bb1-5ccfb1-e5 0x0000014f dxmmsssvr.exe dxm Tue 03/20/01
12:58:19
---------------------------------------------------------------------
-----------
-- NOTICE wfe dxmwfeimpl.cpp 959 58:19:747
3 "execute"-message acknowledged with return code 0 ("SUCCESSFUL").
Message ID: "127.0.0.1_1541987280_338_7",
Instance ID: "127.0.0.1_1541987280_335_3",
Run Object Name:
"cn=BA_HR2MetaStore_Full_ODBCExport,dxmC=Jobs,dxmC=DirXmetahub"
---------------------------------------------------------------------
-----------
SUB_7f2570 0x00000129 dxmmsssvr.exe dxm Tue 03/20/01 12:58:19
---------------------------------------------------------------------
-----------
-- NOTICE util cthread.cpp 234 58:19:867

174



0 thread "w_127.0.0.1_1541987280_335_10" started.

---------------------------------------------------------------------
-----------
w_127.0.0.1_15419872 0x00000151 dxmmsssvr.exe dxm Tue 03/20/01
12:58:19
---------------------------------------------------------------------
-----------
-- NOTICE mss dxmcmssworker.cp 132 58:19:867
0 "CmssWorker" started.

-- DEBUG1 agtfe dxmfrontend.cpp 360 58:19:877
1 Function: "CFrontEnd::CFrontEnd", Parameters: "MsgIn: JMSType: 1
JMSReplyTo: Dxm.command.main
JMSDestination: Dxm.command.main
DXMVersion: 1.00
DXMObjectType: 2
DXMInitiatorType: 2
DXMInstId: 127.0.0.1_1541987280_335_10
DXMWorkflowName: BA_PABX2MetaStore_Full
DXMWorkflowStartTime: 20010320115817Z
DXMActivityName: BA_HR2MetaStore_Full_metacp
DXMActivityStartTime: 20010320115819Z
DXMWorkflowDN:
cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub
DXMActivityDN:
cn=BA_HR2MetaStore_Full_metacp,cn=BA_HR2MetaStore_Full,dxmC=Workflows
,dxmC=DirXmetahub
DXMJobDN: cn=BA_HR2MetaStore_Full_metacp,dxmC=Jobs,dxmC=DirXmetahub
"
-- NOTICE ldap dxmldap.cpp 256 58:19:887
2 Successfully connected to LDAP server "localhost":1389.
-- NOTICE ldap dxmldap.cpp 327 58:20:508
2 Disconnected from LDAP server "localhost":1389.
-- DEBUG1 agtfe dxmfrontend.cpp 636 58:20:508
1 Function: "CFrontEnd::CFrontEnd" returns "SUCCESSFUL"
---------------------------------------------------------------------
-----------
w_c0671bb1-5ccfb1-e5 0x0000014f dxmmsssvr.exe dxm Tue 03/20/01
12:58:20
---------------------------------------------------------------------

175



-----------
-- NOTICE wfe dxmwfeimpl.cpp 996 58:20:538
3 "createInstance"-message acknowledged with return code 0
("SUCCESSFUL").
Message ID: "127.0.0.1_1541987280_337_11",
Instance ID: "127.0.0.1_1541987280_335_10",
Run Object Name:
"cn=BA_HR2MetaStore_Full_metacp,dxmC=Jobs,dxmC=DirXmetahub"
---------------------------------------------------------------------
-----------
w_127.0.0.1_15419872 0x00000151 dxmmsssvr.exe dxm Tue 03/20/01
12:58:20
---------------------------------------------------------------------
-----------
-- DEBUG1 agtfe dxmfrontend.cpp 736 58:20:578
1 Function: "CFrontEnd::execute", Parameters: "MsgIn: JMSType: 8
JMSReplyTo: Dxm.command.main
JMSDestination: Dxm.command.main
DXMVersion: 1.00
DXMObjectType: 2
DXMOperation: 7
DXMInstId: 127.0.0.1_1541987280_335_10
"
-- DEBUG1 agtwr dxmagtwr.cpp 107 58:20:578
2 Function: "Initialize" called.

-- DEBUG1 agtwr dxmagtwr.cpp 115 58:20:578
2 Pointer of Wrapper: 0x81ba90
-- DEBUG1 agtwr dxmagtwr.cpp 128 58:20:578
2 Function: "Initialize" returns "SUCCESSFUL".

-- DEBUG1 agtwr dxmagtwr.cpp 155 58:20:578
2 Function: "SetControlData" called.

-- DEBUG1 agtwr dxmagtwr.cpp 158 58:20:578
2 Function parameter:
"Pointer of CWrapper: " 0x81ba90
-- DEBUG1 agtwr dxmagtwr.cpp 161 58:20:578
2 Function parameter:
"Agent type: " 8
-- DEBUG1 agtwr dxmagtwr.cpp 164 58:20:578

176



2 Function parameter:
"Job path: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp"
-- DEBUG1 agtwr dxmagtwr.cpp 167 58:20:578
2 Function parameter:
"Executable name: " "metacp"
-- DEBUG1 agtwr dxmagtwr.cpp 171 58:20:578
2 Function parameter:
"Agent delta type: " 18208056
-- DEBUG1 agtwr dxmagtwr.cpp 174 58:20:578
2 Function parameter:
"Process user name: " ""
-- DEBUG1 agtwr dxmagtwr.cpp 177 58:20:578
2 Function parameter:
"Process domain: " ""
-- DEBUG1 agtwr dxmagtwr.cpp 180 58:20:578
2 Function parameter:
"Expiration time: " 600
-- DEBUG1 agtwr dxmagtwr.cpp 188 58:20:578
2 Function: "SetControlData" returns 0.

-- DEBUG1 agtwr dxmagtwr.cpp 225 58:20:578
3 Function: "Command" called.

-- DEBUG1 agtwr dxmagtwr.cpp 228 58:20:578
3 Function parameter:
"Pointer of CWrapper: " 0x81ba90
-- DEBUG1 agtwr dxmagtwr.cpp 231 58:20:578
3 Function parameter:
"Control function: " 0x20310eb
-- DEBUG1 agtwr dxmagtwr.cpp 234 58:20:578
3 Function parameter:
"Control function parameter: " 33899544
-- DEBUG1 agtwr dxmagtwr.cpp 237 58:20:578
3 Function parameter:
"Command line: " ""C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp\impo
rt.odbc.delta.tcl""
-- DEBUG1 agtwr dxmagtwr.cpp 240 58:20:578
3 Function parameter:
"Config data: " "C:/Program Files/Atos/DirX

177



Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp\odbc
attr.cfg"
-- DEBUG1 agtwr dxmagtwr.cpp 243 58:20:578
3 Function parameter:
"Input data: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp\ODBC
-HR-export.txt"
-- DEBUG1 agtwr dxmagtwr.cpp 246 58:20:578
3 Function parameter:
"In delta data: " "20010320124807Z="
-- DEBUG1 agtwr dxmagtwr.cpp 255 58:20:578
3 Function parameter:
"Trace data: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp\meta
dir-import-from-ODBC-HR-trc.txt"
-- DEBUG1 agtwr dxmwrapper.cpp 1459 58:20:578
4 Function: "CWrapper::ProcessAgentMetacp()" called.

-- DEBUG1 agtwr dxmwrapper.cpp 1616 58:20:578
5 Function: "CWrapper::RunAgentWinNT()" called.

-- DEBUG1 agtwr dxmwrapper.cpp 1764 58:20:578
5 Agent call parameter:
"Executable and CmdLine: " "metacp "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp\impo
rt.odbc.delta.tcl""
-- DEBUG1 agtwr dxmwrapper.cpp 1766 58:20:578
5 Agent call parameter:
"Current dir: " "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp"
-- DEBUG1 agtwr dxmwrapper.cpp 2009 58:21:579
5 Function: "CWrapper::RunAgentWinNT()" returns "SUCCESSFUL".

-- DEBUG1 agtwr dxmwrapper.cpp 179 58:21:579
5 Function: "CWrapper::writeOutDeltaDataFromFile()" called.

-- WARNING sys dxmwrapper.cpp 197 58:21:579
5 stat (path: "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp/Delt
aOutputData.txt", buf: 0x215f004) = -1 - errno = ENOENT
buf:

178



???
-- NOTICE util cbasics.cpp 1670 58:21:579
5 save "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp/Proc
essInfo.txt" ...

-- DEBUG1 agtwr dxmagtwr.cpp 277 58:21:630
3 Function: "Command" returns 0.

-- DEBUG1 agtfe dxmfrontend.cpp 1094 58:21:630
1 Function: "CFrontEnd::execute" returns "SUCCESSFUL"
---------------------------------------------------------------------
-----------
w_c0671bb1-5ccfb1-e5 0x0000014f dxmmsssvr.exe dxm Tue 03/20/01
12:58:21
---------------------------------------------------------------------
-----------
-- NOTICE wfe dxmwfeimpl.cpp 959 58:21:710
3 "execute"-message acknowledged with return code 0 ("SUCCESSFUL").
Message ID: "127.0.0.1_1541987280_337_14",
Instance ID: "127.0.0.1_1541987280_335_10",
Run Object Name:
"cn=BA_HR2MetaStore_Full_metacp,dxmC=Jobs,dxmC=DirXmetahub"
-- DEBUG1 wfe dxmwfeimpl.cpp 424 58:21:720
2 Object 0x7f7720, Function "CworkflowStub::execute": setting return
value 0 ("SUCCESSFUL") for acknowledge.
-- NOTICE wfe dxmwfeimpl.cpp 449 58:21:720
2 END Workflow
Workflow instance ID: "c0671bb1-5ccfb1-e55be8dae0--8000"
Workflow DN:
"cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub"
Workflow Name: "BA_PABX2MetaStore_Full"
Workflow Start Time: "20010320115817Z"
WorkflowState: "closed.completed.ok"
Return code: 0
-- DEBUG1 wfe dxmwfeimpl.cpp 457 58:21:720
2 EXIT Object 0x7f7720, Function "CworkflowStub::execute", return
value is 0 ("SUCCESSFUL").
-- DEBUG1 wfe dxmwfeimpl.cpp 327 58:22:601
3 Destructor of class "CWorkflowStub" called, address is 0x7f7720.
-- DEBUG1 wfe dxmwfeimpl.cpp 330 58:22:601

179



3               Workflow instance ID: "c0671bb1-5ccfb1-e55be8dae0--
8000"
Workflow DN:
"cn=BA_PABX2MetaStore_Full,dxmC=Workflows,dxmC=DirXmetahub"
Workflow Name: "BA_PABX2MetaStore_Full"
Workflow Start Time: "20010320115817Z"
WorkflowState: "closed.completed.ok"
-- NOTICE mss dxmcmssworker.cp 190 58:22:601
0 "CmssWorker" terminated.

---------------------------------------------------------------------
-----------
w_127.0.0.1_15419872 0x00000151 dxmmsssvr.exe dxm Tue 03/20/01
12:58:22
---------------------------------------------------------------------
-----------
-- NOTICE ldap dxmldap.cpp 256 58:22:711
2 Successfully connected to LDAP server "localhost":1389.
---------------------------------------------------------------------
-----------
w_127.0.0.1_15419872 0x00000152 dxmmsssvr.exe dir Tue 03/20/01
12:58:22
---------------------------------------------------------------------
-----------
-- WARNING sys dxmfrontend.cpp 1353 58:22:731
3 stat (path: "C:/Program Files/Atos/DirX
Identity/status\BA_PABX2MetaStore_Full.20010320115817Z", buf:
0x202f958) = -1 - errno = ENOENT
buf:
???
-- WARNING sys dxmfrontend.cpp 1375 58:22:731
3 stat (path: "C:/Program Files/Atos/DirX
Identity/status\BA_PABX2MetaStore_Full.20010320115817Z\BA_HR2MetaStor
e_Full_ODBCExport.20010320115819Z", buf: 0x202f958) = -1 - errno =
ENOENT
buf:
???
-- DEBUG1 agtfe dxmfrontend.cpp 708 58:22:741
3 Function: "CFrontEnd::~CFrontEnd", Parameters: "-"
-- NOTICE mss dxmcmssworker.cp 190 58:22:741
0 "CmssWorker" terminated.

180



---------------------------------------------------------------------
-----------
w_127.0.0.1_15419872 0x00000151 dxmmsssvr.exe dxm Tue 03/20/01
12:58:22
---------------------------------------------------------------------
-----------
-- NOTICE ldap dxmldap.cpp 327 58:22:751
2 Disconnected from LDAP server "localhost":1389.
-- WARNING sys dxmfrontend.cpp 1375 58:22:761
2 stat (path: "C:/Program Files/Atos/DirX
Identity/status\BA_PABX2MetaStore_Full.20010320115817Z\BA_HR2MetaStor
e_Full_metacp.20010320115819Z", buf: 0x215f958) = -1 - errno = ENOENT
buf:
???
-- WARNING sys cbasics.cpp 2109 58:22:761
3 fopen (filename: "C:/Program Files/Atos/DirX
Identity/work\BA_PABX2MetaStore_Full\BA_HR2MetaStore_Full_metacp\ODBC
-HR-export.txt", type: "rt") = NULL - errno = ENOENT
-- ERROR util cbasics.cpp 2143 58:22:761
3 file open failed: "dxmCopyFile"
-- DEBUG1 agtfe dxmfrontend.cpp 708 58:22:781
2 Function: "CFrontEnd::~CFrontEnd", Parameters: "-"
-- NOTICE mss dxmcmssworker.cp 190 58:22:781
0 "CmssWorker" terminated.

Exit Codes
The metahubdump command returns an exit code of 0 on success or a 1 if it encountered
an error. The text of the error message is displayed on stderr.

See Also
dirxlog.cfg (in DirX Identity Program Files)

181



2. Attribute Configuration File Format
An attribute configuration file defines the attributes that are present in a particular
connected directory and supplies formatting information that the meta controller (
metacp) is to use when processing data files associated with the connected directory. The
attribute configuration file contains one record for each attribute in the connected
directory. An attribute configuration file must exist for each DirX Identity agent that is
present in DirX Identity. Additional attribute configuration files may exist to process export
and import data files with formats that are different from the formats that the DirX Identity
agents handle.

This section describes the format of an attribute configuration file. An attribute
configuration file consists of the following fields:

• Attribute definition fields

• Global information fields for parsing connected directory data files

2.1. Attribute Definition Fields
Each attribute defined in an attribute configuration file has a set of attribute definition
fields associated with it.The Identity controller uses the information in these fields to:

• Parse the data files provided by the DirX Identity agents, when importing data into the
Identity store (a connected directory of type LDAP)

• Generate LDAP-style attribute type-and-value syntax when importing data files into the
Identity store (a connected directory of type LDAP)

• Generate the data files for the DirX Identity agents, when exporting data from Identity
store (a connected directory of type LDAP)

This section describes the attribute definition fields that can be specified for an
attribute.Except the Attribute Length field, all of these fields must be specified for each
attribute.

2.1.1. Abbreviation

The abbreviation field specifies the attribute type abbreviation to be used for the attribute.
The meta controller uses the specified abbreviation in its attribute mapping operations. The
field syntax is:

Abbr:abbreviation

For example:

Abbr:SN

For attribute configuration files that are to be used with LDAP connections to the Identity
store, abbreviation must be a valid LDAP attribute name. For example,

182



Abbr:objectClass

See the String Representation for LDAP Binds chapter for more details about valid LDAP
attribute names.

2.1.2. Name

The name field specifies a descriptive name for the attribute. The field syntax is:

Name:name

For example:

Name:Surname

The purpose of this field is to make the attribute configuration file records easier to read;
the meta controller does not use this field in its operations.

2.1.3. Prefix

The prefix field specifies the start tag, if any, that is used in the connected directory data file
to identify the start of the attribute’s definition. Prefix tags are generally used in directory
data files that use a tagged format. The field syntax is:

Prefix: '[prefix]'

where prefix is one or more characters enclosed in single quotation marks.

For attribute configuration files that are to be used with LDAP connections to the Identity
store, prefix is the attribute abbreviation followed by an equal sign: abbreviation*=*. For
example,

Prefix:'surname='

If the value of prefix is a non-printing character, supply the octal representation that
corresponds to the character. For example, to represent a line feed, define the field as:

Prefix:'\012'

If a prefix is undefined for the attribute (because the associated data file is untagged),
specify only the single quotation marks ('') in prefix. For example:

Prefix:''

The following example defines attributes for a connected directory that uses LDAP prefixes:

Abbr:givenName     Name:Given-Name    Prefix:'givenName='
                   Suffix:''          Rec-Sep:';'
                   MRule:CIM
Abbr:initials      Name:Initials      Prefix:'initials='

183



                   Suffix:''          Rec-Sep:';'
                   MRule:CIM
Abbr:postalCode    Name:Postal-Code   Prefix:'postalCode='
                   Suffix:''          Rec-Sep:';'
                   MRule:CIM

2.1.4. Suffix

The suffix field specifies the end tag, if any, that is used in the connected directory data file
to identify the end of the attribute’s definition. Suffix tags are generally used in directory
data files that use a tagged or an untagged format. For a CSV data file the suffix fields
define the separator (e. g. comma or pipe character) and they must be identical for all
attributes. The field syntax is:

Suffix: '[suffix]'

where suffix is one or more characters enclosed in single quotation marks.

If the attribute configuration file is to be used with LDAP connections to the Identity store,
specify an empty value for suffix ('').

If the value of suffix is a non-printing character, supply the octal representation that
corresponds to the character. For example, to represent a line feed, define the field as:

Suffix:'\012'

The following example defines attributes in a connected directory data file that uses a CSV
format:

Abbr:EXCN   Name:Common-Name          Prefix:''
            Suffix:','                Rec-Sep:''
            Mrule:-
Abbr:EXDSNM Name:Display-Name         Prefix:''
            Suffix:','                Rec-Sep:''
            Mrule:-
Abbr:EXADR  Name:Internet-Address     Prefix:''
            Suffix:','                Rec-Sep:''
            Mrule:-

2.1.5. Attribute Length

The attribute length field is an optional field used to process connected directory data files
that are formatted as fixed-width tables. The field syntax is:

Attrlen:max_data_length

184



where max_data_length is the maximum number of columns occupied by the attribute
definition in the table. For example:

Attrlen:15

The following example defines attributes in a data file with a fixed-width table format that
uses no delimiters between attribute records:

Abbr:SN   Name:Surname                Prefix:''
          Suffix:''                   Attrlen:15
          Rec-Sep:''                  Mrule:-
Abbr:GN   Name:Given Name             Prefix:''
          Suffix:''                   Attrlen:10
          Rec-Sep:''                  Mrule:-
Abbr:TN   Name:Telephone Number       Prefix:''
          Suffix:''                   Attrlen:8
          Rec-Sep:''                  Mrule:-

2.1.6. Multi-Valued Attribute Separator

The multivalued attribute separator specifies the string, if any, that is used in the connected
directory data file to separate multiple attribute values for the attribute. The field syntax is:

Rec-Sep:'[separator]'

where separator is one or more characters enclosed in single quotation marks (' ').

If the value of separator is a non-printing character, supply the octal representation that
corresponds to the character. For example, to represent a line feed, define the field as:

Rec-Sep:'\012'

If a multivalued attribute separator is undefined for the attribute, specify only the single
quotation marks (' ') in separator. For example:

Rec-Sep:''

The semicolon (;) is used as multivalued attribute value separator in an LDAP attribute
configuration file.

2.1.7. Matching Rule

The matching rule field defines the matching rule that the metacp program is to apply
when attempting to detect modifications to the attribute. The field syntax is:

Mrule:rule-keyword

Supply one of the following keywords in rule-keyword:

185



• CIM - Use Case-Ignore-String matching. With this matching rule, differences in case
between source and target attribute values are ignored, for example, GATES is the same
as Gates.

• CEM - Use Case-Exact-String matching. With this matching rule, differences in case
between source and target attribute values are significant. For example, GATES is
different than Gates.

• DN - Use Distinguished Name matching. With this matching rule, differences in case
between source and target attribute values in distinguished names are ignored.

• OCTET - Use Octet String matching. With this matching rule, the byte sequences of the
source and target attribute values must match.

• B64 - Use base64 matching. With this matching rule, enclosing apostrophes and
padding characters are ignored. For example, 'BAV0aHJlZQ==' is the same as
BAV0aHJlZQ.

• The dash character (-) - Use to specify that no matching rule is defined.

The metacp program uses the matching rule field to determine how to identify differences
between the attribute in the connected directory and the attribute in the Identity store. If
no matching rule is defined for the attribute, the meta modifyentry operation compares
the two attributes using CIM. If it detects differences, it sends an obj modify operation that
specifies -removeattr attribute_type, -addattr attribute_values to the Identity store
because the server has no matching rule for the attribute. If a matching rule exists, meta
modifyentry compares the two attributes, and sends an obj modify operation that
specifies -removeattr old_value -addattr new_value to the Identity store if it detects
differences.

The matching rule field is only relevant to attribute configuration files that define LDAP
attributes.

The following example illustrates the use of the matching rule field for a set of attributes:

Abbr:postalCode    Name:Postal-Code   Prefix:'postalCode='
                   Suffix:''          Rec-Sep:';'
                   MRule:CIM
Abbr:owner         Name:Owner         Prefix:'owner='
                   Suffix:''          Rec-Sep:';'
                   MRule:DN
Abbr:title         Name:Title         Prefix:'title='
                   Suffix:''          Rec-Sep:';'
                   MRule:CIM
Abbr:telexNumber   Name:Telex-Number  Prefix:'telexNumber='
                   Suffix:''          Rec-Sep:';'
                   MRule:-

186



2.1.8. Encryption

The encryption field is optional and used to define whether an attribute value needs to be
decrypted before the value is sent to the LDAP server. That field is only used in the attribute
configuration file describing the attributes of the LDAP directory, e.g. “ldapattr.cfg”.

If set to Y, then the attribute value will be decrypted; if set to N, the attribute value will be
taken as it is.

The following example illustrates the use of the encryption field for a set of attributes:

Abbr:postalCode Name:Postal-Code Prefix:'postalCode=' Suffix:'' Rec-Sep:';' MRule:CIM
Encryption:N
Abbr:title Name:Title Prefix:'title=' Suffix:'' Rec-Sep:';' MRule:CIM Encryption:Y

Note: This feature is only available, if the meta controller is invoked by the Server (IDS-C)
and the Server (IDS-C) provided the environment for performing decryption tasks.

2.2. Global Information Fields
Global information fields for parsing connected directory data files include:

• Record separators

• Field separators

• Continuation line and comment indicators

• Entry and attribute operation code names for LDIF-formatted data files

All global information fields are optional.Specify global information fields at the top of the
attribute configuration file, before the attribute definitions.The next sections describe these
fields.

Note: Note: LDIF files can contain the string version:1 at the beginning. DirX Identity
determines LDIF files when all these fields are set to these values:

Op-Code-ADD:add
Op-Code-DEL:delete
Op-Code-MOD:modify
Op-Code-MODDN:moddn
Op-Code-MODRDN:modrdn

When all fields are set correctly, the string version:1 is generated as first line into the LDIF
file.

2.2.1. Record Separator

The record separator field defines information that the meta controller is to use to
distinguish between entries in a connected directory data file. The field syntax is:

Record-Sep:'separator'

187



where separator is one or more characters (or the octal representation of one or more
characters) enclosed in single quotation marks (' ')

The record separator provides the meta controller with a global indicator that it can use to
detect the start of the next entry in a data file. The purpose of the indicator is to permit the
meta controller to go to the next entry if it is unable to process the current one. If the
record separator field is not specified in the attribute configuration file, the meta controller
uses '\n' to distinguish between entries.

The following example defines the line feed as the record separator for a data file:

Record-Sep:'\012'

For XML file format, the record separator must be set to the value entry.

2.2.2. Field Separator

The field separator field defines information that the meta controller is to use to distinguish
between attribute values in entries within a connected directory data file that uses a
tagged format. The field syntax is:

Field-Sep:'separator'

where separator is one or more characters (or the octal representation of one or more
characters) enclosed in single quotation marks (' ').

The field separator is used only in tagged data files to skip attributes in the data file that
have not been defined in the attribute configuration file. The field separator permits the
meta controller to go to the next attribute if it is unable to process the current one. The field
separator is not used as an attribute value separator in an untagged (CSV) data file.

The following example defines the comma as the field separator for a data file:

Field-Sep:','

For XML file format, the field separator must be set to the value newline (\012).

2.2.3. Prefix (Base-64)

The prefix Base 64 field defines information that the meta controller is to use to identify a
base64-encoded LDIF attribute using the attribute’s private prefix followed by this global
prefix information. The field syntax is:

Prefix (Base-64):'separator'

where separator is one or more characters (or the octal representation of one or more
characters) enclosed in single quotation marks (' '). If this field is not set, the meta controller
uses only each attribute’s private prefix when it parses the data file.

The following example defines the colon (:) as the character sequence that is combined
with an attribute’s private prefix:

188



Prefix (Base-64):':'

2.2.4. Comment

The comment field defines information that the meta controller is to use to identify
comment lines in an LDIF-formatted connected directory data file or any other connected
directory data file. The field syntax is:

Comment:'marker'

where marker is one or more characters (or the octal representation of one or more
characters) enclosed in single quotation marks (' '). The following example defines the #
character as a comment marker:

Comment:'#'

2.2.5. Continuation Line

The continuation line field defines information that the Identity controller is to use to
identify continued lines in an LDIF-formatted connected directory data file or any other
data file with continuation lines. The field syntax is:

Continuation-Line:'marker'

where marker is one or more characters (or the octal representation of one or more
characters) enclosed in single quotation marks (' '). The continuation line marker is only
recognized at the beginning of a line. Consequently, the marker is the indication in a line
that this line is a continuation of the preceding line. The following example defines the
space as a continuation line marker:

Continuation-Line:' '

2.2.6. Enclosing Sequence

The enclosing sequence field defines a marker that the meta controller is to use identify the
start and end of an entry in a connected directory data file. The field syntax is:

Enclosing-Sequence:'marker'

where marker is one or more characters (or the octal representation of one or more
characters) enclosed in single quotation marks (''). When the meta controller encounters
the enclosing sequence marker during its parsing of the data file, it searches for the next
occurrence of the enclosing sequence marker and treats everything between the two
markers as one entry. The definition of an enclosing sequence marker is useful for parsing
untagged data files, especially CSV-formatted files such as Microsoft Exchange data files,
where the comma (,) is used as an entry separator but can also be part of an attribute value
in an entry.

The following example defines the double-quote (") as an entry boundary marker:

Enclosing-Sequence:'"'

189



When it encounters two subsequent occurrences of the enclosing sequence marker, the
meta controller treats the marker as part of the attribute value. For example, the meta
controller parses "data""data" as the value data"data

2.2.7. Operation Code Field

The operation code field specifies the attribute within an LDIF change file that holds the
LDIF change file operation code for an entry in the change file. The field syntax is:

Op-Code Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

In the following example, the attribute LCHNGTYPE is defined as the LDIF change file
operation code attribute:

Op-Code Field:LCHNGTYPE
          .
          .
          .
Abbr:LCHNGTYPE     Name:ChangeType    Prefix:'changetype:'
                   Suffix:'\012'      Rec-Sep:''
                   Mrule:-

2.2.8. Add Modification Field

The add modification field specifies the attribute in an LDIF change file that represents the
"add" attribute modification operation of an LDIF "modify object" change operation. The
field syntax is:

ADD-Modification Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

In the following example, the attribute LADD_OP is defined as the LDIF "modify object, add
attribute value" attribute:

ADD-Modification Field:LADD_OP
          .
          .
          .
Abbr:LADD_OP       Name:ADD-modification        Prefix:'add:'
                   Suffix:'\012'                Rec-Sep:''
                   Mrule:-

190



2.2.9. Skip Lines

The skip lines field defines information that the meta controller is to use if a data file
contains a certain number of lines at the beginning of the file that it should not process; for
example, the header line with the attribute names generated by the Microsoft Exchange
admin program. The number of lines as indicated in Skip Lines is ignored while processing
an import data file. The field syntax is:

Skip Lines:integer

where integer is a value that is greater than or equal to 0 and specifies the number of lines
from the beginning of the file that the meta controller is to ignore when processing an
import file. For example:

Skip Lines:1

directs the meta controller to ignore the first line of the import data file.

2.2.10. Replace Modification Field

The replace modification field specifies the attribute in an LDIF change file that represents
the "replace" attribute modification operation of an LDIF "modify object" change operation.
The field syntax is:

REPLACE-Modification Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

In the following example, the attribute LMOD_OP is defined as the LDIF "modify object,
replace attribute value" attribute:

REPLACE-Modification Field:LMOD_OP
         .
         .
         .
Abbr:LMOD_OP  Name:REPLACE-modification   Prefix:'replace:'
              Suffix:'\012'               Rec-Sep:''
              Mrule:-

2.2.11. Delete Modification Field

The delete modification field specifies the attribute within an LDIF change file that
represents the "delete" attribute modification operation of an "LDIF "modify object" change
operation. The field syntax is:

DELETE-Modification Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

191



In the following example, the attribute LDEL_OP is defined as the LDIF "modify object,
delete attribute or attribute value" attribute:

DELETE-Modification Field:LDEL_OP
          .
          .
          .
Abbr:LDEL_OP  Name:DELETE-modification   Prefix:'delete:'
              Suffix:'\012'              Rec-Sep:''
              Mrule:-

2.2.12. New RDN Field

The new RDN field specifies the attribute within an LDIF change file that represents the
"new RDN" parameter in an LDIF "modify DN" change operation. The field syntax is:

New-RDN Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

In the following example, the attribute NEW_RDN is defined as the attribute that holds the
new RDN in an LDIF "modify DN" change operation:

New-RDN Field:NEW_RDN
          .
          .
          .
Abbr:NEW_RDN       Name:New-RDN       Prefix:'newrdn:'
                   Suffix:'\012'      Rec-Sep:''
                   Mrule:-

2.2.13. Delete Old RDN Field

The delete old RDN field specifies the attribute within an LDIF change file that represents
the "delete old RDN" parameter in an LDIF "modify DN" change operation. The field syntax
is:

Delete Old-RDN Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

In the following example, the attribute DEL_OLD_RDN is defined as the attribute in an LDIF
"modify DN" change entry that holds the boolean value that specifies whether to delete the
old RDN:

192



Delete Old-RDN Field:DEL_OLD_RDN
          .
          .
          .
Abbr:DEL_OLD_RDN  Name:Delete-Old-RDN  Prefix:'deleteoldrdn:'
                  Suffix:'\012'        Rec-Sep:''
                  Mrule:-

2.2.14. New Superior Field

The new superior field specifies the attribute within an LDIF change file that represents the
"new superior" parameter in an LDIF "modify DN" change operation. The field syntax is:

New Superior Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

In the following example, the attribute NEW_SUP is defined as the attribute that holds a
new superior in an LDIF "modify DN" change operation.

New Superior Field:NEW_SUP
          .
          .
          .
Abbr:NEW_SUP   Name:New-Superior     Prefix:'newsuperior:'
               Suffix:'\012'         Rec-Sep:''
               Mrule:DN

2.2.15. Modification Separator

The modification separator field specifies the attribute in an LDIF change file that identifies
the end of an attribute modification in an LDIF "modify object" change operation. The field
syntax is:

Modification-Sep Field:abbreviation

where abbreviation is the attribute type abbreviation for the attribute.

In the following example, the attribute EOA is defined as the attribute that holds the "end-
of-attribute-modification" marker in an LDIF "modify object" change operation.

Modification-Sep Field:EOA
          .

193



          .
          .
Abbr:EOA   Name:End-of-Attribute     Prefix:'-'
           Suffix:'\012'             Rec-Sep:''
           Mrule:-

2.2.16. Add Op Code

The add op code field specifies the keyword in an LDIF change file that represents an "add
object" LDIF change operation. The field syntax is:

Op-Code-ADD:keyword

where keyword is a string. For example:

Op-Code-ADD:add

The keyword supplied in the attribute configuration files corresponds to the keyword that is
applied as a value to the LDIF Operation Code attribute in the LDIF change file to indicate
an "add object" operation. The definition of this keyword in the attribute configuration file
permits the meta controller to recognize an LDIF "add object" operation in an LDIF change
file.

2.2.17. Delete Op Code

The delete op code field specifies the keyword in an LDIF change file that represents the
LDIF "delete object" operation code. The field syntax is:

Op-Code-DEL:keyword

where keyword is a string. For example:

Op-Code-DEL:delete

The keyword supplied in the attribute configuration files corresponds to the keyword that is
applied as a value to the LDIF Operation Code attribute in the LDIF change file to indicate a
"delete object" operation. The definition of this keyword in the attribute configuration file
permits the meta controller to recognize an LDIF "delete object" operation in an LDIF
change file.

2.2.18. Modify Op Code

The modify op code field specifies the keyword in an LDIF change file that represents the
LDIF "modify object" operation code. The field syntax is:

Op-Code-MOD:keyword

where keyword is a string. For example:

194



Op-Code-MOD:modify

The keyword supplied in the attribute configuration files corresponds to the keyword that is
applied as a value to the LDIF Operation Code attribute in the LDIF change file to indicate
an LDIF "modify object" operation. The definition of this keyword in the attribute
configuration file permits the meta controller to recognize an LDIF "modify object"
operation in an LDIF change file.

2.2.19. Modify DN Op Code

The modify DN op code field specifies the keyword in an LDIF change file that represents
the LDIF "modify DN" operation. The field syntax is:

Op-Code-MODDN:keyword

where keyword is a string. For example:

Op-Code-MODDN:moddn

The keyword supplied in the attribute configuration files corresponds to the keyword that is
applied as a value to the LDIF Operation Code attribute in the LDIF change file to indicate a
"modify DN" operation. The definition of this keyword in the attribute configuration file
permits the meta controller to recognize an LDIF "modify DN" operation in an LDIF change
file.

2.2.20. Modify RDN Op Code

The modify RDN op code field specifies the keyword in an LDIF change file that represents
the LDIF "modify RDN" operation. The field syntax is:

Op-Code-MODRDN:keyword

where keyword is a string. For example:

Op-Code-MODRDN:modrdn

The keyword supplied in the attribute configuration files corresponds to the keyword that is
applied as a value to the LDIF Operation Code attribute in the LDIF change file to indicate a
"modify RDN" operation. The definition of this keyword in the attribute configuration file
permits the meta controller to recognize an LDIF "modify RDN" operation in an LDIF
change file.

2.2.21. Ignore Empty Value

The ignore empty value field controls whether the meta controller returns empty attributes
(attributes with no value) in the results of an obj search operation on a connected directory.
The field syntax is:

IgnEmptyVal:n

where n is Y to ignore empty attribute values and N to return empty attributes.

195



Set the IgnEmptyVal field to N when exporting the contents of the Identity store to a
connected directory that is a data file with a position-driven (untagged) file format, such as
table format or CSV. In this type of data file, the absence of attributes needs to be handled.
For example, suppose you are exporting the attributes surname, given-name, and
telephone-number to a CSV-formatted data file. Surname and telephone-number have the
values Schmid and 41496, and given-name is empty. When IgnEmptyVal is set to N, the
meta controller generates the following data on export:

Schmid,,41496

When exporting to a connected directory that is a data file with a tagged format, you can
choose to list the empty attributes with the prefix and no attribute value (IgnEmptyVal:N),
or to drop empty attributes entirely (IgnEmptyVal:Y). For example, if IgnEmptyVal is set to
N, the result is:

SN:Schmid
GN:
TN:41496

If IgnEmptyVal is set to Y, the result is:

SN:Schmid
TN:41496

If you want the meta controller to write only special attributes as empty to the datafile and
not all attributes you can do it the following way:

Setting for example the attribute mail to empty (in dependence of whatever, mostly in case
of it is empty after mapping) write in your post join mapping:

set tgt(mail) [llist ""]
instead of
set tgt(mail) ""

196



3. Directory Data File Formats
Different directories use different data file formats to represent the entries and attributes
within them. The meta controller needs to be able to recognize the different directory data
file formats so that it can:

• Interpret the source data generated from different connected directories

• Process the source data into different target directory formats

In general, an individual directory’s data file format is either:

• Tagged, where each attribute in an entry is tagged by a prefix and optionally by a suffix.
Directories that use tagged file formats include X.500 DAP directories, LDAP directories,
and Lotus Notes directories.

• Untagged (or "position-driven"), where each attribute in an entry is identified based on
its position in the entry. Microsoft Exchange is an example of a directory that uses an
untagged data file format.

The meta controller supports both untagged and tagged data file formats, including the
LDAP Data Interchange Format (LDIF) tagged file format. This chapter describes the
characteristics of tagged and untagged data file formats. It also provides a general
discussion of LDIF file format.

3.1. Tagged Data File Format
In a tagged data file, each entry and its attributes are tagged by a prefix and a suffix.The
presence of these tags allows the entry to contain an unordered list of attributes.A
multiple-value separator can be defined to separate the attribute values of a multivalued
attribute.

Each entry can be limited to a single line or split over several lines.If the entry is split over
several lines, the description of the data file (that is, the relevant fields in the attribute
configuration file) must contain global information that determines the end of an entry.

Here is an example of a tagged file in which:

• The prefixes are "SN=", "GN=", and so on

• The suffixes used include the semicolon (;) and the pipe character (|)

• The record (entry) separator is the line feed (<LF>).

The fields in the attribute configuration file that define this data format are:

Record-Sep:'\012'
Abbr:SN  Name:Surname     Prefix:'SN='
         Suffix:';'       Rec-Sep:''
         MRule:-

197



Abbr:GN  Name:Given-Name  Prefix:'GN='
         Suffix:'|'       Rec-Sep:''
         MRule:-
Abbr:TN  Name:Telephone-Number  Prefix:'TN='
         Suffix:'|'             Rec-Sep: ''
         MRule:-
Abbr:FTN Name:Fax-Telephone-Number  Prefix:'FAX='
         Suffix:';'                 Rec-Sep: ''
         Mrule:-
Abbr:UP  Name:User-Password     Prefix:'UP='
         Suffix:';'             Rec-Sep: ''
         Mrule:-

The data file format looks like:

SN=Serling;GN=Rod|TN=44597|FAX=44598;UP=twyl8t;<LF>
SN=Stefano;FAX=44232;UP=xante;<LF>
SN=Fontana;<LF>

Here is an example of a tagged file in which:

• The prefixes are "SN=", "GN=", and so on.

• The suffixes used include ";<LF>" and "|<LF>"

• The record (entry) separator is the double line feed (<LF><LF>).

The fields in the attribute configuration file that define this data format are:

Record-Sep:'\012\012'
Abbr:SN  Name:Surname        Prefix:'SN='
         Suffix:';\012'      Rec-Sep: ''
         MRule:-
Abbr:GN  Name:Given-Name     Prefix:'GN='
         Suffix:'|\012'      Rec-Sep: ''
         MRule:-
Abbr:TN  Name:Telephone-Number  Prefix:'TN='
         Suffix:'|\012'         Rec-Sep: ''
         MRule:-
Abbr:FTN Name:Fax-Telephone-Number  Prefix:'FAX='
         Suffix:';\012'             Rec-Sep: ''
         MRule:-
Abbr:UP  Name:User-Password   Prefix:'UP='

198



         Suffix:';\012'       Rec-Sep: ''
         MRule:-

The data file format looks like:

SN=Serling;<LF>
GN=Rod|<LF>
TN=44597|<LF>
FAX=44598;<LF>
UP=twyl8t;<LF>
<LF>
SN=Stefano;<LF>
FAX=44232;<LF>
UP=xante;<LF>
<LF>
SN=Fontana;<LF>
<LF>

3.2. Untagged Data File Format
In an untagged data file, an individual attribute is identified based on its position in an
entry.Attributes are separated by an attribute separator or a field width for the attribute can
be defined.The attribute delimiter can differ for each attribute, but typically it is the same
for all attributes in the file.A multiple-value separator can be defined to separate the
attribute values of a multivalued attribute.Because the attributes are identified by their
positions in the entry, attribute separators follow each other for attributes with no value.

The meta controller supports the following untagged file formats:

• Comma-separated value (CSV) format

• Fixed-width table format

CSV format is a special format (the comma is the delimiter between attributes) of a more
generic "character-separated" format, in which attributes are delimited by any combination
of characters.Here is an example of a character-separated format for the attribute types
Surname, Given Name, Telephone Number, Department.The fields in the attribute
configuration file that define this format are:

Record-Sep:'\012'
Abbr:SN  Name:Surname        Prefix:''
         Suffix:'|'          Rec-Sep:''
         MRule:-
Abbr:GN  Name:Given-Name     Prefix:''

199



         Suffix:'|'          Rec-Sep:''
         MRule:-
Abbr:TN  Name:Telephone-Number   Prefix:''
         Suffix:'|'              Rec-Sep:''
         MRule:-
Abbr:DEP  Name:Department     Prefix:''
          Suffix:'|'          Rec-Sep:''
          MRule:-

The data format looks like:

Fontana|Frank|301-555-2223|NR 1 FE|<LF>
Brown|Murphy||NR 1 AC|<LF>

Here is an example of a fixed-width table format for the attribute types Surname, Given
Name, Telephone Number, Department. The fields in the attribute configuration file that
define this format are:

Record-Sep:'\012'
Abbr:SN  Name:Surname        Prefix:''
         Suffix:''           Attrlen:15
         Rec-Sep:''          MRule:-
Abbr:GN  Name:Given-Name     Prefix:''
         Suffix:''           Attrlen:15
         Rec-Sep:''          MRule:-
Abbr:TN  Name:Telephone-Number  Prefix:''
         Suffix:''              Attrlen:12
         Rec-Sep:''             MRule:-
Abbr:DEP Name:Department     Prefix:''
         Suffix:''           Attrlen:10
         Rec-Sep:''          MRule:-

The data format looks like:

Fontana    Frank      301-555-2223   NR 1 FE      <LF>
Brown      Murphy                    NR 1 AC      <LF>

When using the table format, the output of each field is limited by the AttrLen component
where AttrLen defines the maximum length of the field.The field value is composed of the
prefix, attribute value(s), optionally multi-value separators, and finally the suffix.In tables

200



Prefix, Suffix and Rec-Sep are usually empty (as shown in the example above).If the
composed field value exceeds the length specified in AttrLen the field value is truncated; a
truncated value is indicated by the string “…” at the end of the field.

3.3. LDIF Format
LDIF format is a kind of tagged data file format.There are two types of LDIF format:

• LDIF content format

• LDIF change format

LDIF format supports the following features:

• Base-64 encoding

• UTF-8 encoding

• References to external files, in URL format; for example, an attribute type/value pair
such as:

jpegphoto:< file://usr/local/photos/monroe.jpeg

• Alternate record terminators, such as <CR>, <LF>, or <CR><LF>

• Comment lines and continuation lines

• Multiple separators between entries

The next sections briefly describe the LDIF content and change file formats. For a complete
description of LDIF formats, see the document entitled "G. Good, The LDAP Data
Interchange Format (LDIF) - Technical Specification, RFC 2849".

3.3.1. LDIF Content Format

A data file in LDIF content format contains a list of directory entries and their attributes.
Each entry consists of a distinguished name and a list of attributes. Each attribute has a
prefix and one or more values. For example:

dn: cn=George Costanza, ou=sales, o=NY Yankees, c=us
objectclass: top
objectclass: person
objectclass: organizationalPerson
cn: George Costanza
cn: G. Costanza
cn: Georgie
sn: Costanza

201

file://usr/local/photos/monroe.jpeg


3.3.2. LDIF Change Format

A data file in LDIF change format contains a list of directory modifications. Each entry in the
change file contains a special LDIF "changetype" attribute that indicates the type of
directory modification to be made. There are four types of modification specified in an LDIF
change file:

• Add a directory entry

• Delete a directory entry

• Modify one or more attributes of a directory entry

• Modify the distinguished name of a directory entry

These modifications correspond to the set of LDAP operations that modify a directory. The
number and type of attributes present in each entry in the change file differs depending
upon the value of the changetype attribute for the entry. The next sections describe the
types of change file entry structures.

3.3.2.1. Add Directory Entry Format

If the value of the "changetype" attribute is "add", the entry contains the distinguished
name of the entry to be created and the attribute type and value pairs to be created for the
entry. For example:

dn: cn=Joe Isuzu, ou=sales, o=Isuzu, c=us
changetype: add
objectclass: top
objectclass: person
objectclass: organizationalPerson
surname: Isuzu

3.3.3. Delete Directory Entry Format

If the value of the "changetype" attribute is "delete", the entry contains the distinguished
name of the entry to be deleted. For example:

dn: cn=Joe Isuzu, ou=sales, o=Isuzu, c=us
changetype: delete

3.3.4. Modify Entry Format

If the value of the "changetype" attribute is "modify", the entry contains the distinguished
name of the entry to be modified and a list of attributes that represent one or more
modifications to be made to attributes of the entry. There are three types of modification
operations that can be recorded in an entry of "changetype" modify":

202



• Add an attribute value (including multiple attribute values)

• Delete an attribute or an attribute value (including multiple attribute values)

• Replace an attribute with other values (including multiple attribute values)

An attribute in the entry identifies the type of modification operation to be performed; its
value is the name of the attribute on which to perform the operation. The attribute
structure used to represent the modification to be made to the attribute differs depending
on the type of modification. The dash (-) is the "end-of-modification" suffix and terminates
each modification structure. For example:

dn: cn=S. Beckhardt, ou=iris o=lotus c=us
changetype: modify
add: telephonenumber
telephonenumber: 603 222 4344
-
delete: description
description: CFO
-
replace: surname
surname: S. Beckhardt
surname: Beckhardt
-

The next sections describe the "add" "delete" and "replace" modification structures.

3.3.4.1. Add Attribute Value Structure

The "add attribute value" structure consists of:

• The "add" modification identifier attribute

• One or more attribute type/value pairs that specify the new values to apply.

For example:

add: telephonenumber
telephonenumber: 617 235 4764
telephonenumber: 508 546 6645
-

3.3.4.2. Delete Attribute and Delete Attribute Value Structure

The "delete attribute value" consists of:

203



• The "delete" modification identifier attribute

• One or more attribute type/value pairs that specify the values to be deleted.

For example:

delete:description
description:engineer
description:software engineering
-

The "delete attribute" operation consists of the "delete" modification identifier whose value
is the attribute to be deleted. For example:

delete: description
-

3.3.4.3. Replace Attribute Value Structure

The "replace attribute value" operation contains:

• The "replace" modification identifier attribute

• A list of attribute values that replace the attribute

For example:

replace: surname
surname: Soeder
surname: C. Soeder
-

3.3.5. Modify Distinguished Name/Modify Relative Distinguished Name
Format

If the value of the "changetype" attribute is "moddn" or "modrdn", the entry consists of:

• The distinguished name of the entry whose name is to be modified

• Information that specifies the new RDN to be applied to the entry

• Information that specifies whether to delete the old RDN; the value of this attribute is
either "0" (do not delete) or "1" (delete) (only relevant if "changetype" is "moddn")

• Information that specifies the distinguished name of the entry’s new superior (only
relevant if "changetype" is "moddn")

204



For example:

dn: cn=richard hustvedt, ou=engr-ma, o=digital, c=us
changetype: moddn
newrdn: cn=r. hustvedt
deleteoldrdn: 0
newsuperior: ou=engr-nh, o=compaq, c=us

3.4. Extensible Markup Language (XML) Format
Extensible Markup Language (XML) is a flexible file format.It is described in the XML
standard and in various documents.DirX Identity supports two XML formats:

• Directory Services Markup Language (DSML) V1.0

• Flat XML, which is a simple structured format that is similar to LDIF

The next sections briefly describe the XML file formats.

3.4.1. Directory Service Markup Language (DSML V1) Format

A data file in DSML V1 format contains a sections of directory entries and their attributes.
Each entry consists of sections of attributes, included into the <entry> and </entry> tags.
The attributes are described in <attr> and <objectclass>sections. For example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE dsml SYSTEM 'dsml.dtd'>
<dsml>
    <!-- status error-code="0" msg="Ok" entry-count="1" -->
    <directory-entries>
        <entry>
            <attr name="cn">
                <value>James R. Doran</value>
                <value>Jimmy Doran</value>
            </attr>
            <attr name="telephoneNumber">
                <value>1-914-656-2650</value>
            </attr>
            <attr name="mail">
                <value>jrdoran@us.othercompany.com</value>
            </attr>
            <objectClass>
                <oc-value>person</oc-value>

205



                <oc-value>organizationalPerson</oc-value>
                <oc-value>othercompanyPerson</oc-value>
                <oc-value>ePerson</oc-value>
            </objectClass>
        </entry>
        <entry>
            <attr name="cn">
                <value>Harry Hirsch</value>
            </attr>
...
            <attr name="mail">
                <value>hhirsch@owncompany.com</value>
            </attr>
            <objectClass>
                <oc-value>person</oc-value>
                <oc-value>organizationalPerson</oc-value>
                <oc-value>owncompanyPerson</oc-value>
                <oc-value>ePerson</oc-value>
            </objectClass>
        </entry>
    </directory-entries>
</dsml>

DirX Identity does not currently support DTDs or DTD sections.

You can find more information about DSML at http://www.dsml.org.

3.4.2. Flat XML Format

A data file in flat XML format contains sections of directory entries and lists of their
attributes. Each entry consists of a begin tag <entry>, the list of attributes and the end tag
</entry>. Each attribute is described by a begin tag <attribute_name>, the attribute value
and an end tag </attribute_name>. For example:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE address SYSTEM "C:\address.dtd">
<address>
    <entry>
        <dn>o=PQR</dn>
        <o>PQR</o>
        <description>PQR Company</description>
        <telephoneNumber>+49 12 345 67 890</telephoneNumber>

206

http://www.dsml.org


        <objectClass>organization</objectClass>
        <objectClass>top</objectClass>
        <createTimestamp>20000308120944Z</createTimestamp>
    </entry>
    <entry>
        <dn>cn=admin, o=PQR</dn>
...
        <createTimestamp>20000308120947Z</createTimestamp>
    </entry>
</address>

207



4. ChangeLog Data Handling
All directories provide some kind of change log information. Nevertheless, the format is
different depending on the vendor. DirX Identity can handle change logs from:

• DirX

• iPlanet

• OID

If any other directory provides the same change log formats as one of these, DirX Identity
can handle it.

The next topics describe the data formats and examples of how to handle change log
information.

4.1. DirX ChangeLog Format
DirX provides the LDIF agreement mechanism to produce changeLog information in the
form of LDIF content and LDIF change files.Compared with the iPlanet and OID
mechanism the handling of deletions is more powerful (they keep only the distinguished
name of the deleted entry, DirX can keep a configurable amount of additional information).

Please refer to the DirX documentation for any details.

4.2. iPlanet and OID Formats
The directories of iPlanet and OID support the same changeLog format.The following
formats are supported:

• Add object

• Delete object

• Modify object

• Modify DN

4.2.1. Add Object Format

Example of a iPlanet or OID add object format:

Changenumber=207, cn=changelogentry
objectclass=top
objectclass=changelog
targetdn=cn=Shrivastava Saurabh,ou=metadirectory,o=oracle,dc=com
changetype=Add
operationtime=19991029153546z
servername=lisa

208



orclguid=
orclparentguid=0003968768547206753582316869442
changenumber=207
orclchangeretrycount=0
changes=objectclass:inetOrgPerson
objectclass:OrganizationalPerson
objectclass:Person
objectclass:Top
cn:Shrivastava Saurabh
cn:Shrivastava
cn:Saurabh
cn:Saurabh Shrivastava
cn:sshrivas
employeenumber:22
givenname:Saurabh
sn:Shrivastava
title:Mr.X
mail:sshrivas@us.oracle.com.X
telephonenumber:650-574-9107
postaladdress:1067 Foster city Blvd $Apt B$Foster city CA=94404-X
l:Foster city
orclguid:0003968769422514087583716869442
creatorsname:cn=orcladmin
createtimestamp:19991029153546z

4.2.2. Delete Object Format

Example of a iPlanet or OID delete object format:

Changenumber=208, cn=changelogentry
objectclass=top
objectclass=changelog
targetdn=cn=tinker,ou=development,o=pqr,c=us
changetype=Delete
operationtime=20000210133720z
servername=lisa
orclguid=0003968768107540635577316869442
orclparentguid=
changenumber=208
orclchangeretrycount=0

209



changes

4.2.3. Modify Object Formats

Example of a iPlanet or OID modify object format to modify an existing value of an
attribute:

Changenumber=209, cn=changelogentry
objectclass=top
objectclass=changelog
targetdn=CN=Morton, OU=Development, O=PQR, C=US
changetype=Modify
operationtime=20000210133841z
servername=lisa
orclguid=0003968768107540227577216869442
orclparentguid=
changenumber=209
orclchangeretrycount=0
changes=Replace:description^1^20000210133841z^lisa
description:Deep Sea Diver-NEW

Example of a iPlanet or OID modify object format to delete an attribute:

Changenumber=212, cn=changelogentry
objectclass=top
objectclass=changelog
targetdn=cn=digger,ou=sales,o=pqr,c=us
changetype=Modify
operationtime=20000210140635z
servername=lisa
orclguid=0003968768123436474582116869442
orclparentguid=
changenumber=212
orclchangeretrycount=0
changes=delete:description^2^20000210140635z^lisa

Example of a iPlanet or OID modify object format to add another recurring value to a
multi value attribute:

Changenumber=210, cn=changelogentry

210



objectclass=top
objectclass=changelog
targetdn=CN=Morton, OU=Development, O=PQR, C=US
changetype=Modify
operationtime=20000210133841z
servername=lisa
orclguid=0003968768107540227577216869442
orclparentguid=
changenumber=210
orclchangeretrycount=0
changes=Replace:postalcode^1^20000210133841z^lisa
postalcode:WV1 9QY
postalcode:second-value

Example of a iPlanet or OID modify object format to delete a value of a multi value
attribute:

Changenumber=211, cn=changelogentry
objectclass=top
objectclass=changelog
targetdn=CN=Morton, OU=Development, O=PQR, C=US
changetype=Modify
operationtime=20000210133842z
servername=lisa
orclguid=0003968768107540227577216869442
orclparentguid=
changenumber=211
orclchangeretrycount=0
changes=Replace:telephonenumber^1^20000210133842z^lisa
telephonenumber:+44 1902 777777
telephonenumber:+44 1902 999999

4.2.4. Modify DN Format

Example of a iPlanet or OID modify DN format with new parent:

Changenumber=214, cn=changelogentry
objectclass=top
objectclass=changelog
targetdn=cn=new-digger,ou=sales,o=pqr,c=us

211



changetype=moddn
operationtime=20000210140914z
servername=lisa
orclguid=0003968768123436474582116869442
orclparentguid=0003968768098195444576516869442
changenumber=214
orclchangeretrycount=0
changes=newrdn:cn=digger
deleteoldrdn:4294967295
newSupDN:ou=development,o=pqr,c=us

212



5. String Representation for LDAP Binds
This chapter describes the LDAP-style string representations of simple and structured
attributes, search filters and distinguished names. The meta controller (metacp) uses these
string representations in LDAP binds to enter and display directory information. (See Bind
Types and Bind IDs in the metacp section for details.)

This chapter provides:

• An overview of the elements and format of simple and structured attributes

• An overview of the elements and format of distinguished names

• An overview of the elements and format of search filters

• A table of reserved characters for attributes

• A description of attribute syntax

Refer to the following documents for additional information about LDAP:

• Wahl, M., Howes, T., and S. Kille, "Lightweight Directory Access Protocol (v3)", RFC 2251,
December 1997.

• Wahl, M., Coulbeck, A., Howes, T., and S. Kille, "Lightweight Directory Access Protocol
(v3): Attribute Syntax Definitions", RFC 2252, December 1997.

• Kille, S., Wahl, M., and T. Howes, "Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names", RFC 2253, December 1997.

• Howes, T., "A String Representation of LDAP Search Filters", RFC 2254, December 1997.

• Yergeau, F., "UTF-8, a transformation format of Unicode and ISO 10646", RFC 2279,
January 1998.

5.1. Simple and Structured Attributes
Simple attributes are in the form:

type=simple_value[;_simple_value_ … ]

Structured attributes are in the form:

type=structured_value[;_structured_value_ … ]

Each of the elements in simple and structured attributes is described in the following
sections.

5.1.1. Attribute Types

For both simple and structured attributes, the type parameter identifies the attribute.

Attribute types are identified internally by OID (object identifiers), a unique series of
integers separated by the period (.) character. For example, 2.5.4.3 is the OID for the

213



Common-Name attribute type. You can identify attributes by OID, but to make it easier to
specify attributes, the metacp commands allow you to identify them by LDAP names in
command lines.

The LDAP name(s) of an attribute are specified in the directory schema. For example, the
LDAP name c or countryName represents the Country attribute type, the LDAP name cn or
commonName represents the Common-Name attribute type. When specifying LDAP
names in metacp commands, LDAP names are treated case-insensitive; for example, cn,
Cn, and CN are all valid ways to specify the LDAP name for the Common-Name attribute
type independent of the exact value for the LDAP name specified in the directory schema.

When you display attributes, metacp uses

• the exact LDAP name value in results, when the LDAP name was specified in the
request.

• the first exact LDAP name value specified in the system, when specifying options like
-allattr in requests.

• the object identifier (OID), when the object identifier was specified in the request.

To obtain the LDAP names of attribute types, use metacp to read the directory schema as
shown in the following example:

metacp> bind -protocol LDAPv3
metacp> show cn=LDAPGlobalSchemaSubentry -allattr -pretty

5.1.2. Simple Attribute Values

For simple attributes, the simple_value parameter is the value assigned to the attribute.
simple_value can be only a simple value, not another attribute. To enter more than one
simple_value, separate each with a semicolon as shown in the following examples:

{telephoneNumber=+1 964 123 456}
{2.5.4.20=+1 964 123 456}
{telephoneNumber=+1 964 123 456;+1 965 234 543}

Simple attribute values are always treated as UTF-8 strings for LDAP binds.

5.1.3. Structured Attribute Values

The LDAP protocol generally handles all attribute values as UTF-8 strings. There is no
common rule how to specify structured attribute values. To obtain information about the
structured attribute syntaxes that are supported by the Identity store and how they are
specified, refer to the String Representations for Structured Attribute Syntaxes section in
this chapter and to RFC 2252 (Attribute Syntax Definitions). When displayed, structured
attribute values are not broken into subcomponents in pretty mode.

214



5.1.4. Attribute Lists for Simple and Structured Attributes

Most metacp operations allow you to specify more than one simple or structured attribute
on the command line. To specify more than one attribute, separate each attribute type and
value string with white space.

The following -attribute option specifies an objectClass, description and telephoneNumber
simple attributes, all separated by a space. Note that the description and
telephoneNumber attributes are enclosed in braces ({ }) because they contain white space
for readability.

-attribute objectClass=organizationalUnit
                 {description=Engineering Department}
                 {telephoneNumber=+1 964 123 4567}

5.1.5. Attribute Values in a File

For LDAPv3 binds, attribute values can also be specified in a file or written to a file. The
syntax is as follows:

attribute[;binary]_FILE=filename1[;filename2 …]

where attribute specifies the attribute type and filename the name of the file containing
the attribute value. When specifying multiple attribute values each value is saved in a
separate file. filename1;filename2 … then specify the value files. When reading multiple
attribute values .number is appended to filename where number is 1 to n (total number of
values). The first value is written to filename.

If the keyword ;binary is specified, the file contains the valid ASN.1 encoded value of the
attribute.

For the X.509 attributes Authority Revocation List, CA-Certificate, Certificate Revocation List,
Cross-Certificate-Pair, Delta Revocation List, and User Certificate the file always contains
the valid ASN.1 encoded value of the attribute regardless of specifying the keyword ;binary.

Specifying the attribute value in a file is possible for the following dirxcp operations:

• obj create (-attribute option)

• obj modify (-addattr, -changeattr, -removeattr, -replaceattr options)

• obj compare (-attribute option)

• obj show (-attribute option)

• obj search (-attribute option)

Examples:

• The following example adds two pictures to the jpegPhoto attribute. The files
"/tmp/john1.jpg" and "/tmp/john2.jpg" contain the binary representation of the pictures.

215



modify cn=Huber,ou=sales,o=pqr,c=de -addattr \
           {jpegPhoto_FILE=/tmp/john1.jpg;/tmp/john2.jpg}

• Compare the jpegPhoto attribute. The file "pict.jpg" contains the value of the jpegPhoto
attribute in binary representation.

compare cn=zapf,ou=asw,o=sni,c=de \
              -attr jpegPhoto_FILE=pict.jpg

• Modify the value of the jpegPhoto attribute. The file "pict_old.jpg" contains the old value
and the file "pict_new.jpg" contains the new value.

modify cn=Mayer,ou=sales,o=pqr,c=de \
            -changeattr jpegPhoto_FILE=pict_old.jpg \
             jpegPhoto_FILE=pict_new.jpg

• Create an entry. The file "cert.cer" contains the ASN.1 encoded value of the user
certificate attribute.

create cn=Huber,ou=sales,o=pqr,c=de -attr \
 
{objectClass=person;organizaionalPerson;strongAuthenticationUser}
\
            sn=Huber {userCertificate;binary_FILE=cert.cer}

• Show an entry. The ASN.1 encoded value of the user certificate attribute is written to the
file "huber.cer".

show cn=Huber,ou=sales,o=pqr,c=de -attr \
         {userCertificate;binary_FILE=huber.cer}

• Search several objects. The result contains eight objects two of them containing
multiple attribute values.

search o=pqr,c=de -subtree -attr jpegPhoto_FILE=photo.jpg

The output is as follows:

216



{ou=Sales,o=pqr,c=de}
{{cn=Smith John,ou=Sales,o=pqr,c=de}}
{cn=Mayer,ou=Sales,o=pqr,c=de}
{cn=Hohner,ou=Sales,o=pqr,c=de
{jpegPhoto_FILE=photo.jpg;photo.jpg.1;photo.jpg.2}}
{cn=Richter,ou=Sales,o=pqr,c=de}
{cn=Abele,ou=Sales,o=pqr,c=de
{jpegPhoto_FILE=photo.jpg.3;photo.jpg.4}}
{cn=Reichel,ou=Sales,o=pqr,c=de}
{cn=hohner2,ou=Sales,o=pqr,c=de}

5.1.6. Binary Attribute Values

The LDAP v3 protocol supports the specification of attribute values in binary format, that is
the ASN.1 encoding of the attribute value. To display and specify the binary attribute values
on the user interface of metacp the Base-64 encoded representation of the attribute value
is used. To specify or read attribute values in binary format the syntax is as follows:

{attribute;binary} to read the attribute value binary

{attribute;binary=attribute_value} to specify the attribute value binary

where attribute specifies the attribute type and attribute_value specifies the Base-64
encoding of the binary attribute value when creating or modifying this value.

When the syntax of the attribute is not OCTET STRING null bytes in the value are not
allowed.

Specifying the attribute value in binary format is possible for the following metacp
operations:

• obj create (-attribute option)

• obj modify (-addattr, -changeattr, -removeattr options)

• obj compare (-attribute option)

• obj search (-attribute option)

• obj show (-attribute option)

Examples:

The following example creates the person cn=TestUser1, ou=Development, o=PQR, c=de
with the attribute MHS-OR-Address (mhsOraddresses). The Base-64 encoded value of the
MHS-OR-Address represents the value
\{/G=j/S=testUser1/O=PQR/PRMD=pqr/ADMD=/C=de}.

create {cn=TestUser1, ou=Development, o=PQR, c=de} -attr sn=testp \

217



{objectClass=organizationalPerson;person;top;mhsUser} \
{mhsOraddresses;binary=MIAwgGGAEwJkZQAAYoATASAAAKKAEwNwcXIAAIMDUFFSpY
CACXRlc3RVc2VyMYEBagAAAAAAAA==}

The following example displays the Street Address attribute (street) of the person
cn=Digger, ou=Development, o=PQR, c=de Base-64 encoded:

show cn=Digger,ou=Development,o=pqr,c=de -attr {street;binary} -p

The output of the sample command as follows:

1) cn=Digger,ou=Development,o=PQR,c=de
    street\;binary : MjQgRG91Z2FuIFN0cmVldA==

5.2. Distinguished Names
A distinguished name consists of a list of one or more relative distinguished names (RDNs),
separated by a comma (,).The list of relative distinguished names starts with the last
namepart and ends with the first namepart under the root entry.For example:

cn=schmid+ou=ap11,ou=dap11,o=dbp,c=de

Each RDN consists of one or more naming attributes in the following format:

type=value[+type=value]…

where type is an LDAP name or an OID that corresponds to a naming attribute type and
value is the string representation that corresponds to the attribute syntax assigned to the
attribute type. The plus sign (+) is used to separate multiple AVAs within one RDN. For
example:

c=de

or

2.5.6.2=de

or

218



ou=dap11+l=munich

When the name of the root entry is specified, the slash (/) must be used.

5.3. Search Filters
Use search filter expressions to specify a filter in a metacp search operation.A search filter is
composed of one or more simple attributes, structured attributes, or distinguished name
strings, and search filter operators.Specify a search filter in the following format:

([logical_operator](type matching_operator value)[(type matching_operator value) …])

where:

logical_operator is one of the following operators:

Operator Meaning

& To "logically AND" two specified conditions

| To "logically OR" two specified conditions

! To "logically NEGATE" a specified condition

type specifies an LDAP name or an object identifier.

matching_operator is one of the following operators:

Operator Meaning

= To specify equality

~= To specify phonetic matching

>= To match values that are greater than or equal to a specified value

⇐ To match values that are less than or equal to a specified value

value specifies the attribute value in LDAP syntax. An asterisk (*) is used to specify
substrings or to check for the presence of an attribute.

No SPACE character is permitted between type and matching_operator and
matching_operator and value.

5.3.1. Search Filter Expression Example

The following sample search filter string

(&((cn~=schmid)\
(|(objectClass=organizationalPerson)\
(objectClass=residentialPerson))\

219



(!(sn=ronnie))))

directs metacp to search for names that meet all the following criteria:

• Have an object class attribute value of Organizational-Person or Residential-Person

• Have a Common-Name attribute value that approximately matches schmid

• Do not have a Surname attribute value of ronnie.

The following search filter string tests for the presence of the Common-Name attribute
type:

(&(c=de)(cn=*))

5.4. Reserved Attribute Characters
The following table describes reserved characters used for LDAP binds.(See Bind Types and
Bind IDs in the metacp section for details.)

Character Purpose

\{} For attributes and distinguished names: Encloses the entire attribute
(type and value) or distinguished name to indicate that white space is part
of an attribute value. For example,
\{cn=Henry Mueller} or \{o=SNI AG, c=de}

; For attributes: Separates multiple values.

\ Escapes a reserved character.

RFC 2252 specifies additional reserved characters that also must be
escaped in attribute values.

5.5. Attribute Syntax
The attribute syntax of all attribute types is treated as UTF-8 strings for LDAP binds.

5.5.1. Undefined Types

To specify an attribute type that has not been assigned an LDAP name in the directory
schema, use the attribute type OID, for example, 1.2.325.67890.4.2.

In the output, the metacp program returns a string in the form:

oid=attribute_value

For example:

220



1.2.325.67890.4.2=xyz

indicates that the attribute with the object identifier 1.2.325.67890.4.2 has a value of xyz.The
value of the attribute type must be specified according to its attribute syntax.

5.6. String Representations for Simple Attribute
Syntaxes
The following section describes the string representations for simple attribute syntaxes
supported.All other simple attribute syntaxes not described in this section are treated as
UTF-8 string.

5.6.1. Attribute Type Syntax

Specify an attribute type as an LDAP name (defined in the meta directory schema) or a
dotted notation (for example, 1.2.5.6).

For LDAP names only the following characters are permitted: A to Z, a to z (case ignore), 0
to 9, and - (hyphen).

5.6.2. Bit String Syntax

Specify a bit string as a sequence of 1’s and 0’s enclosed by the character ' and the
character B appended (for example, '11110100100001001101101'B).

5.6.3. Boolean Syntax

Specify a boolean as the string TRUE or FALSE.

5.6.4. Object ID Syntax

Specify an OID as an LDAP name (defined in the directory schema) or a dotted notation.
For example, Organizational-Person could be specified as organizationalPerson or 2.5.6.7.

5.6.5. Generalized Time Syntax

Specify generalized time as a simple string. The value of the string is the concatenation of
the 8 year-month-day digits (YYYYMMDD), plus the six hour-minute-second digits
(HHMMSS), plus a time zone difference of Z (designating GMT), +HHMM, or -HHMM. The
three possible forms, then, are:

• YYYYMMDDHHMMSSZ

• YYYYMMDDHHMMSS+HHMM

• YYYYMMDDHHMMSS-HHMM

For example, 19970101123000Z specifies Jan 1, 1997, 12:30:00 GMT.

The only difference between generalized time and UTC time is that the

221



year is specified with four digits instead of two.

5.6.6. IA5 String Syntax

Specify an IA5 string using 7-bit ASCII characters, with valid Hex values in the range 20 to
7E (for example, smith@pqr.de).

5.6.7. Integer String Syntax

Specify as an integer in the range 0 to 2**32 -1 (4,294,967,295). For example, 65535.

5.6.8. Numeric String Syntax

Specify as a sequence of digits (0 to 9) and space (for example, 4711 13).

5.6.9. Preferred Delivery Method Syntax

Preferred-delivery-method syntax is a syntax for single-valued attributes that document
the order of preference for message delivery methods. Specify this syntax in the following
format:

preferredDeliveryMethod=option [$option…]

option is one or more of the following keywords that describe the delivery methods and the
order of preference:

• any - Any method of delivery

• mhs - Message handling system delivery

• physical - Physical delivery

• telex - Telex delivery

• teletex - Teletex delivery

• g3fax - G3 FAX delivery

• g4fax - G4 FAX delivery

• ia5 - IA5 terminal delivery

• videotex - Videotex delivery

• telephone - Telephone delivery

The keywords are specified diminishing order of preference, with the most preferred
method first in the list. Separate multiple keywords with a dollar sign ($). For example:

preferredDeliveryMethod=mhs$teletex$telephone

5.6.10. Printable String Syntax

Specify a printable string as a sequence of characters. Valid characters are

222

mailto:smith@pqr.de


A to Z,
a to z,
0 to 9,
the space character,

and the special characters:

' (apostrophe),
( (left parenthesis),
) (right parenthesis),
+ (plus sign),
, (comma),
- (hyphen),
. (period),
/ (slash),
: (colon),
= (equal sign),
? (question mark).

An example of Printable String Syntax follows:

Smith/PQR AG.

5.6.11. UTC Time Syntax

Specify UTC time as a simple string.The value of the string is the concatenation of the six
year-month-day digits (YYMMDD), plus the six hour-minute-second digits (HHMMSS), plus
a time zone difference of Z (designating GMT), +HHMM, or -HHMM.The three possible
forms, then, are:

• YYMMDDHHMMSSZ

• YYMMDDHHMMSS+HHMM

• YYMMDDHHMMSS-HHMM

For example, 970101123000Z specifies Jan 1, 1997, 12:30:00 GMT.

5.7. String Representations for Structured Attribute
Syntaxes
This section describes the following structured attribute syntaxes supported by DirX
Identity for LDAP binds.

• Syntaxes for schema attribute types

• Attribute-Type-Description

• Object-Class-Description

• Syntaxes for Message Handling System (MHS) attribute types

223



• OR-Address

• Syntaxes for miscellaneous attribute types and subcomponents

• Facsimile-Telephone-Number

• Name-And-Optional-UID

• Postal-Address

• Teletex-Terminal-Identifier

• Telex-Number

All attributes with a structured attribute syntax that is not described in this
section must be specified in binary format for LDAP binds. (See the Binary
Attribute Values section in this chapter for details.)

5.7.1. Attribute-Type-Description

An attribute syntax for directory schema attributes that specify attribute types. The
attributeTypes attribute is an example of such attributes in the default directory schema:

Synopsis

attributeTypes=(attribute_identifier
    [NAME [(]'attribute_type_name' [… )] ]
    [DESC 'attribute_type_description' ]
    [OBSOLETE]
    [SUP derivation ]
    [EQUALITY equality_matching_rule ]
    [ORDERING ordering_matching_rule ]
    [SUBSTR substrings_matching_rule ]
    [SYNTAX attribute_syntax [{length}] ]
    [SINGLE-VALUE]
    [COLLECTIVE]
    [NO-USER-MODIFICATION]
    )

Attribute Type

attributeTypes

The LDAP name or OID that corresponds to a structured attribute with the Attribute-
Type-Description syntax. The LDAP Attribute-Types (attributeTypes) operational
attribute, which specifies the attribute types used within the schema, has the Attribute-
Type-Description attribute syntax. The attributeTypes attribute is multivalued; each
value describes one attribute type. The information held in this attribute should be
complete and in accordance with the registered definition of each attribute type. The
attributeTypes attribute also provides the LDAP names of the attribute types.

224



Components

attribute_identifer

An object identifier (OID) that corresponds to an attribute type.

NAME 'attribute_type_name'

A string (of up to 1024 characters long) that provides the LDAP name(s) for the attribute
type. The values are enclosed in single quotation marks (') and separated by a
whitespace character. A list of LDAP names is enclosed in parentheses (( … )). For LDAP
names only the following characters are permitted: A to Z, a to z (case ignore), 0 to 9, and
- (hyphen). A maximum of five LDAP names can be specified.

DESC 'attribute_type_description'

A UTF-8 string (of up to 1024 characters long) that describes the attribute type. The value
is enclosed in single quotation marks (').

OBSOLETE

The keyword OBSOLETE indicates that the attribute type is no longer supported (but its
characteristics are maintained). If an attribute type is deleted it is set to OBSOLETE, that
is this attribute cannot be added to an entry or modified. (The error Unwilling to
Perform is returned.) The values of obsolete attributes are returned by search and read
operations. The default is that the specified attribute type is supported and the keyword
OBSOLETE is omitted.

SUP derivation

Specifies the attribute type LDAP name or OID that corresponds to the attribute type of
which this attribute is a subtype. This component is used only for attributes defined with
a supertype.

EQUALITY equality_matching_rule

Specifies the LDAP name or OID of an equality matching rule. This is an optional
component, but it should be specified for attributes defined with equality matching
rules.

ORDERING ordering_matching_rule

Specifies the LDAP name or OID of an ordering matching rule. This is an optional
component, but it should be specified for attributes defined with ordering matching
rules.

SUBSTR substrings_matching_rule

Specifies the LDAP name or OID of a substrings matching rule. This is an optional
component, but it should be specified for attributes defined with substrings matching
rules.

SYNTAX attribute_syntax [{ length }]

Specifies the OID of the attribute type syntax for use with LDAP, and an optional
indication of the maximum length length of a value of this attribute.

225



SINGLE-VALUE

The keyword SINGLE-VALUE indicates that the attribute type is single-valued. The
default is that the specified attribute type is multivalued and the keyword SINGLE-
VALUE is omitted.

COLLECTIVE

The keyword COLLECTIVE indicates that the attribute type is a collective attribute. The
default is that the specified attribute type is not collective and the keyword COLLECTIVE
is omitted.

NO-USER-MODIFICATION

The keyword NO-USER-MODIFICATION indicates that the attribute type is not
modifiable by users. The default is that the specified attribute type is user modifiable
and the keyword NO-USER-MODIFICATION is omitted.

USAGE usage

Specifies how the attribute is to be used. This value is one of the following keywords:

• userApplications - For normal user attributes

• directoryOperation - For attributes used by the directory server as part of non-
distributed operations (for example, timestamps, access control attributes)

• distributedOperation - For operational attributes used by several directory servers as
part of distributed operations (e.g., knowledge-reference attributes)

• dSAOperation - For operational attributes that are used purely locally to the directory
server

The default value is userApplications.

Description

The LDAP Attribute-Types attribute is provided only to permit an LDAP server to publish
the static details of the attributes that it supports within its schema.

The components of this syntax are separated by a whitespace character.

For each attribute type either the SUP or the SYNTAX component must be specified.

Examples

attributeTypes=
....
( 2.5.4.20 NAME 'telephoneNumber' EQUALITY telephoneNumberMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.44 {32} )
....

226



5.7.2. Object-Class-Description

An attribute syntax for schema attributes that specify object classes. The objectClasses
attribute is an example of such attributes in the default directory schema.

Synopsis

objectClasses=( object_class_identifier
    [NAME 'object_class_name' ]
    [DESC 'object_class_description' ]
    [OBSOLETE ]
    superior_object_class[$ … )]]
    [kind]
    attribute_type [$ … )]]
    attribute_type [$ …)]])

Attribute Type

objectClasses

The LDAP name or OID that corresponds to a structured attribute with the Object-Class-
Description syntax. The LDAP Object-Classes (objectClasses) operational attribute is a
multi-valued attribute of the schema used to describe which object classes are
supported by the directory server. Each value describes one object class. The
objectClasses attribute provides the LDAP names of the object classes.

The information specified for this attribute should be complete and in accordance with
the registered definition of each object class.

Components

object_class_identifer

An OID that corresponds to an object class.

NAME 'object_class_name'

A string (of up to 1024 characters long) that corresponds to LDAP name given to the
object class. Only one LDAP name is provided. It is enclosed in single quotation marks (').
For LDAP names only the following characters are permitted: A to Z, a to z (case ignore),
0 to 9, and - (hyphen).

DESC 'object_class_description'

A UTF-8 string (of up to 1024 characters long) that describes the object class. The value is
enclosed in single quotation marks (').

OBSOLETE

The keyword OBSOLETE indicates that the object class is no longer supported (but its
characteristics are maintained). If an object class is deleted it is set to OBSOLETE, that is
this enrties of this object class cannot be added or modified. (The error Unwilling to
Perform is returned.) Entries of obsolete object classes are returned by search and read
operations. The default is that the specified object class is supported and the keyword
OBSOLETE is omitted.

227



SUP derivation

Specifies the LDAP names or OIDs that corresponds to the object classes (if any) that are
the superclass for this object class. A list of object classes is enclosed in parentheses and
the object classes are separated by a $ character.

kind

Specifies the kind of object class that the object class registration specifies. The value is
one of the following keywords:

• STRUCTURAL - Represents a real-world object (for example, device, organization)
that is concrete enough to have a place in the DIT

• AUXILIARY - Descriptive of real-world objects (usually being applicable to more than
one)

• ABSTRACT - Represents an abstraction of real-world objects which does not exist in
it own right

MUST attribute_types

Specifies one or more LDAP names or OIDs that correspond to attributes that are
registered as mandatory for entries of this object class. A list of attributes is enclosed in
parentheses and the attribute types are separated by a $ character.

MAY attribute_types

Specifies one or more LDAP names or OIDs that correspond to attributes that are
registered as optional for entries of this object class. A list of attributes is enclosed in
parentheses and the attribute types are separated by a $ character.

Description

The Object-Class-Description permits a LDAP server to publish the static details of the
object classes it supports.

The components of this syntax are separated by a whitespace character.

The sequence of the components must be provided as specified in the synopsis section
above.

Examples

objectClasses=
....
( 2.5.6.16 NAME 'certificationAuthority' SUP top AUXILIARY MUST
(cACertificate $ certificateRevocationList $ authorityRevocationList)
MAY crossCertificatePair )
....

228



5.7.3. OR-Address

An attribute syntax for attributes that specify X.400 originator/recipient (OR) addresses.

Synopsis

ORAddress=[/CN=common_name]
    [/I=initials]
    [/Q=generation_qualifier]
    [/G=given_name]
    [/S=surname]
    [/OU4=organizational_unit_4]
    [/OU3=organizational_unit_3]
    [/OU2=organizational_unit_2]
    [/OU1=organizational_unit_1]
    [/O=organization]
    /PRMD=PRMD
    /ADMD=ADMD
    /C=country

Attribute Type

ORAddress

The LDAP name or OID that corresponds to a structured attribute with the OR-Address
syntax. For example, mhsOraddresses is such an attribute. An OR address comprises a
number of standard components and a number of optional components defined by the
management domain to which the originator/recipient subscribes (know as domain
defined components). In most cases only the standard components C, ADMD, PRMD, O,
OU1 through OU4, S, G, Q and I are used.

Components

CN=common_name

The common name in Printable string format.

I=initials

The name initials in Printable string format.

Q=generation_qualifier

The generation qualifier in Printable string format.

G=given_name

The given name in Printable or string format.

S=surname

The surname in Printable string format.

O=organization
OU1=organizational_unit_1
OU2=organizational_unit_2

229



OU3=organizational_unit_3
OU4=organizational_unit_4

An identifier of the organization and up to 4 organizational units in Printable string
format.

PRMD=PRMD

An identifier of the Private Management Domain in either Printable or Numeric string
format.

ADMD=ADMD

An identifier of the Administrative Management Domain in either Printable or Numeric
string format.

C=country

An identifier of the country in either Printable or Numeric string format.

Description

Information about X.400 originator/recipient addresses is represented by the OR-Address
attribute syntax.

The components of this attribute syntax are separated by a slash (/).

Example

mhsOraddresses=/G=Irmgard/S=Hohner/OU2=S41/OU1=MCH1/O=PQR/PRMD=PQR
/ADMD=DBP/C=de

5.7.4. Facsimile-Telephone-Number

An attribute syntax for attributes that specify Facsimile (FAX) numbers.

Synopsis

FacsimileTelephoneNumber=phone_number
    [$fax_parameters]

Attribute Type

FacsimileTelephoneNumber

The LDAP name or OID that corresponds to a structured attribute with the Facsimile-
Telephone-Number syntax. For example, facsimileTelephoneNumber is such an
attribute.

Components

230



phone_number

The fax number in Printable string format (of up to 32 characters long).

fax_parameters

The settings for the G3 Fax parameters. Note that setting G3 parameters is hardly ever
required. Specify fax_parameters in the following format:

fax_parameter[$fax_parameters]

where fax_parameter is one of the following identifiers:

• twoDimensional

• fineResolution

• unlimitedLength

• b4Length

• b4Width

• a3Width

• uncompressed

Description

FAX numbers are represented with the Facsimile-Telephone-Number attribute syntax. The
number consists the country code and number in Printable string format. You can also set
G3 non-basic parameters.

The components of this attribute syntax are separated by a $ character.

Example

facsimileTelephoneNumber=+49 89 12345

5.7.5. Name-And-Optional-UID

An attribute syntax for attributes that identify objects by a distinguished name and an
optional identifier that can remove ambiguity from names that have been re-used.

Synopsis

NameAndOptionalUID=distinguished_name
    [#BIT_string]

Attribute Type

NameAndOptionalUID

The LDAP name or OID that corresponds to a structured attribute with the Name-And-
Optional-UID syntax. For example, uniqueMember is such an attribute. The

231



uniqueMember attribute can be used in objects which represent lists of names.

Components

distinguished_name

The distinguished name of the object. (See the Distinguished Names section in this
chapter for details.)

Although the # character is used as separator for the components of this syntax and it
may occur in a string representation of a distinguished_name, no additional special
quoting is done.

BIT_string

A bit string that uniquely identifies the object. The bit string can be used when an object
is removed from the Directory, and another object is subsequently given the same
Directory name. The bit string must be chosen for uniqueness, such as a time-stamp (for
example). (See the Bit String Syntax section in this chapter for details.)

Description

The identity of objects can be represented with the Name-And-Optional-UID attribute
syntax. The attribute consists of the object distinguished name and an optional bit string
that distinguishes between objects with the same distinguished name. The association
between a user of the Directory and a name when the UID is present can be established by
strong authentication using Version 2 (or later) certificates.

The components of this attribute syntax are separated by a # character.

Examples

uniqueMember=o=sni,c=DE#'100'B

5.7.6. Postal-Address

A structured attribute syntax for postal addresses.

Synopsis

PostalAddress=postal-address-string1
    [$postal-address-string2]
    [$postal-address-string3]
    [$postal-address-string4]
    [$postal-address-string5]
    [$postal-address-string6]

Attribute Type

232



PostalAddress

The abbreviation that corresponds to a structured attribute with the Postal-Address
syntax. For example, postalAddress is such an attribute.

Components

postal-address-stringn

A UTF-8 string (of up to 30 characters long) that provides a line of a postal address.

Backslashes (\) and $ characters, if they occur in a component, are escaped by using an
additional backslash, for example the string A\$ represents the value A$ in a component.

Description

Postal addresses are represented with the Postal-Address attribute syntax. The attribute
consists of up to 6 address lines in UTF-8 string format. Each address line is limited to 30
characters in (in accordance with ITU-T recommendation F.401). One address line is
required; the remaining 5 are optional.

The components of this attribute syntax are separated by a $ character.

Example

postalAddress=PQR AG$Sales Dpt$Einstein-Ring 4$D-81789 Munich$Germany

5.7.7. Teletex-Terminal-Identifier

An attribute syntax for attributes that specify a Teletex terminal.

Synopsis

TeletexTerminalIdentifier=teletex-terminal
    [$teletex-non-basic-parameters]

Attribute Type

TeletexTerminalIdentifier

The LDAP name or OID that corresponds to a structured attribute with the Teletex-
Terminal-Identifier syntax. For example, teletexTerminalIdentifier is such an attribute.

Components

teletex-terminal

A string (of up to 1024 characters long) that identifies the terminal. Specify the teletex-
terminal parameter using the Printable String syntax. See the Simple Attribute Syntax
section in this chapter for a description of Printable String syntax representation.

233



teletex-non-basic-parameters

A component that sets non-basic parameters for various teletex options. Specify teletex-
non-basic-parameters in the following format:

[$control:control_character_sets]
[$graphic:graphic_character_sets]
[$misc:miscellaneous_capabilities]
[$page:page_formats]
[$private:private_use]

where:

control:control_character_sets specifies a string that defines the control character sets
to use.

graphic:graphic_character_sets specifies a string that defines the graphic character sets
to use.

misc:miscellaneous_capabilities specifies a string that defines miscellaneous
capabilities to use.

page:page_formats specifies a string that defines the page formats to use.

private:private_use specifies a string that defines user-defined Teletex parameters.

Description

Teletex terminals and their parameters are represented by the Teletex-Terminal-Identifier
attribute syntax. The information consists of a printable string that identifies the terminal
and optional non-basic, advanced parameters that control terminal parameters such as
character sets, page formats and other capabilities.

The components of this attribute syntax are separated by a $ character.

Example

{teletexTerminalIdentifier=PQR AG Teletex center$page:letter}

5.7.8. Telex-Number

An attribute syntax for attributes that specify Telex numbers.

Synopsis

TelexNumber=telex_number
    [$country_code]
    [$answer_back]}

234



Attribute Type

TelexNumber

The LDAP name or OID that corresponds to a structured attribute with the Telex-
Number syntax. For example, telexNumber is such an attribute.

Components

telex_number

The telex number in Printable string format (of up to 14 characters long).

country_code

The county code in Printable string format (of up to 4 characters long).

answer_back

The short textual string (of up to 8 characters long), in Printable string format, with
which the telex station responds when required to indicate its identity. (For example,
when the telex station is connected to.)

Description

Telex numbers are represented with the Telex-Number attribute syntax. The number
consists of the country code, Telex number, and answer-back code.

The components of this attribute syntax are separated by a $ character.

Example

{telexNumber=24344$046$GAMEX B}

235



6. DirX Identity Program Files
The command-line programs metacp, metacpdump and metahubdump use the following
files:

• The DirX Identity client log and trace message configuration files (
install_path/client/conf/dirxlog.*). The logging configuration files control the trace and
exception messages that metacp logs. The metacpdump program is used to interpret
the trace message section of the generated log files. The default location of the
generated log files is install_path/client/log.

• The Directory client configuration file (dirxcl.cfg). The metacp program uses this file to
locate Identity stores during a bind operation.

• The Identity controller (metacp) SSL/TLS certificate database (cert8.db). The metacp
program uses this file to determine whether it can trust certificates sent from directory
server when a bind operation specifies the use of SSL/TLS protocol. This file also contains
the user certificates sent from directory clients when a bind operation specifies the use
of certificate-based client authentication (SASL EXTERNAL).

• The Identity controller (metacp) SSL/TLS key database (key3.db). The metacp program
uses this file to access its private key when a bind operation specifies the use of
certificate-based client authentication (SASL EXTERNAL).

• IDMS configuration and key material files. The IDMS configuration and key material files
contain the parameters for SSL/TLS initialization when the DirX DSA, LDAP server or
metacp program use the encrypted variant of the X.500 protocols over IDM (IDMS) and
the necessary key material files.

This chapter describes these files.

6.1. Logging Configuration Files for metacp
dirxlog.on
dirxlog.off
dirxlog.cfg

Purpose

Logging configuration files define the messages to be logged and how and where the logs
should be written.Two types of messages can be logged:

• Exception Messages - ASCII format messages that are human-readable. The directory
service always logs exception messages for both servers and clients.

• Trace Messages - Binary format messages that must be read by the metacpdump
command. Trace logging can be turned on and off explicitly.

Description

DirX Identity client logging (for example, metacp) is controlled by the specifications
contained in the install_path/client/conf/dirxlog.cfg file. When DirX Identity is installed, the

236



following configuration files specifying default values are installed for client logging:

install_path/client/conf/dirxlog.cfg

(enables only client exception logging)

install_path/client/conf/dirxlog.on

(enables default client trace and exception logging)

install_path/client/conf/dirxlog.off

(enables only client exception logging)

The client log files are written to the directory install_path/client/log.

Enabling Logging

• Enable client logging:

Before starting the application, copy the configuration file
install_path/client/conf/dirxlog.on to the file install_path/client/conf/dirxlog.cfg.

• Disable client logging:

Before starting the application, copy the configuration file
install_path/client/conf/dirxlog.off to the file install_path/client/conf/dirxlog.cfg.

The .on and .off files for DirX Identity client logging are installed in install_path/client/conf.

You can modify the .on and .off files to define your desired logging parameters, and you
can create additional files that function in a manner similar to the .on and .off files and
manually maintain the copy from dirxlog.cfg to these files.

You can override the default file name for the logging configuration file by setting the
DIRX_LOGCFG_FILE environment variable to the full pathname of the file. This is NOT
recommended because metacp, the Server (IDS-C) and the DirX dirextory server will read
the same logging configuration file if they are restarted.

Use the logging configuration .on and .off files to perform the following tasks:

For trace logging:

Turn on client trace logging and specify the traces to be logged and the destinations for
the log files

Turn off client trace logging for all or selected directory subcomponents

For exception logging:

Override the default exceptions logged for clients and the default destination for the log file

237



Turn client exception logging off for all or selected directory subcomponents

File Formats

All logging configuration files consist of two sections: one that defines trace logging and
one that defines exception logging. The following subsections describe the format of the
trace logging and exception logging sections.

The Trace Logging Section

The trace logging section defines the component and subcomponents for which to
capture trace messages and the debug level of the traces to log. It consists of a line in the
format:

component:subcomponent.level,[…]:
process.max_num_files.max_num_entries:_file_name_

where:

component

Is the name of the component to log. All directory log file entries are currently associated
with the dir component name. All DirX Identity log file entries are currently associated
with the mdi component name.

subcomponent

Is the name of the subcomponent to log and the debug level of the traces to capture.
The valid values for subcomponent are listed in the table that follows.

You can use a wildcard character (*) to specify all subcomponents. In this
case, however, the debug levels you specify with level are used for all
subcomponents.

The mdi component supports the following DirX Identity subcomponent names:

Value Meaning

meta Dir Identity client interface

The dir component supports the following directory subcomponent names:

Value Meaning

adm Administration

api Application interface

bth Bind table handling

ctx Context-specific memory interface

icom Internal thread communication interface

osi OSI communication

238



Value Meaning

ros Remote operation service

sock Socket interface

sys System call interface

util Utility functions

vthr Virtual thread interface

level

Specifies the debug level of the traces to log. Level is an integer or list of integers
ranging from 0 through 9. You can specify debug levels:

• As a range. For example, 1-5 indicates debug levels 1 through 5 inclusive

• As individual levels separated by a period. For example, 1.3.4.5 indicates levels 1, 3, 4,
and 5

• As a combination of ranges and individual levels. For example 1.3-5 indicates level 1, 3,
4, 5.

The integers 0 and 9 have special meanings. Level 0 disables logging for the
subcomponent. (Not listing the subcomponent at all has the same effect.) Level 9 causes
the structures in a trace function to also be evaluated for each log level specified; that is,
the contents of the interface parameters defined as structures are also logged. (Note
that the structure logging can create extremely large log files.) You can turn on level 9
for each valid value for level.

Levels 1-8 log the contents of the other parameters. Level 1 logs the top-level functions,
while the higher log levels determine the depth of the internal functions that are logged.
For example, level 6 traces the function call foo with parameters. If levels 6 and 9 are
specified, function call foo is traced with parameters and with the structures of those
parameters.

You can specify multiple subcomponent*.level entries, separating each with a comma
and using a backslash (\) to continue the line. Without the backslash, the *NEWLINE
character terminates the line.

There are the following level values for the component mdi:

Sub-com-
ponent

Valid value
for level

Usage

meta 1

2

Interface functions of the DirX Identity client interfaces

Internal interface functions of the DirX Identity client
interfaces

There are the following level values for the component dir:

239



Sub-com-
ponent

Valid value
for level

Usage

adm 1

2

4

5

6

7

8

metacp (Administration) translator functions

metacp internal functions for abandon operation

LDAP client functions, such as BIND, SEARCH, CREATE etc.

LDAP functions for extracting names/attributes from a
search result

LDAP functions for freeing internally used LDAP memory

OCL functions (OSS Convenience library, string parsing)

DAM functions (dir abbreviation module, that is functions
for reading and writing the abbreviation file and validation
of abbreviations)

api 1-2 Interface functions and internal functions of application
interface

bth 1

2

3

4

5

6

Bind table handling functions (binding entries handling)

Operation entries handling

Subscriber handling

lock / unlock functions

resume_info handling

bind_waiter handling

ctx 1

2

3-6

CTX package (context-specific memory) interface functions
related to context creation/deletion

CTX package interface functions related to context memory
allocation/release

CTX package internal functions

osi 1

3

Incoming/outgoing event-handling functions

TP routines

240



Sub-com-
ponent

Valid value
for level

Usage

ros 1

3

4

6

7-8

RTROS interface functions

RTROS internal functions

CMX interface functions

AMS compiler logging

AMS (NDS) library functions

sock 1

2

3

4

Socket interface functions (connection establishment)

Data transfer

Event generation

Name handling and utility functions

sys 1

2

3

4

System calls (2)

System library functions (3C)

System library functions (3C) related to memory allocation

WIN32 library functions

util 1 Utility functions

vthr 1

2-3

4

5

6

7

VT package (Virtual thread) interface functions related to
threads creation/termination

VT package interface functions related to threads
controlling

VT package interface functions related to mutexes

VT package interface functions related to condition
variables

VT package interface functions related to thread specific
data

VT package internal functions

process

Indicates how to store the log entries. Valid values for process are:

DISCARD - Do not write any log entries.

BINFILE - Write entries to a binary file. You must supply the name of the file. (See the
file_name parameter description.) BINFILE must be used for the dir component

241



TEXTFILE - Write entries to a human-readable text file. You must supply the name of the
file. (See the file_name parameter description.)

STDOUT - Write entries in human-readable text to standard output.

STDERR - Write the entries in human-readable text to standard error.

GOESTO:severity…-Write the entries to same destination as the messages of the
specified component. You can specify multiple severities by separating each one with a
comma. severity can be:

• FATAL - Fatal errors

• ERROR - Non-fatal errors

• WARNING - Warnings

• NOTICE - Informational notices

• NOTICE VERBOSE - Verbose informational notices

max_num_files

The maximum number of log files to create (a number from 01 to 99 inclusive). When the
first log file reaches its capacity (specified by max_num_entries), a second file is written
and so on until the number of files specified by max_num_files is reached. When the
maximum number of files is reached, the next file overwrites the first file, and the next
the second file, and so on. If multiple files are written, the sequence number of the file (a
number in the range 01 to the number specified by max_num_files) is appended to the
file name.

max_num_entries

The maximum number of entries to write to the file.

file_name

The full pathname of the file in which to store the entries. You can use the %s variable to
insert the pathname of the base directory in which DirX Identity is installed in the file
name. (See the description of $DIRXMETAHUB_INST_PATH in the DirX Identity
Environment Variables chapter for details.) You can use the %d variable to insert the ID
of the currently running process in the file name. For example, LOG%d creates a file
named LOG appended with the process ID. You must supply file_name only if you
supply a process parameter of BINFILE, TEXTFILE, and FILE.

Sample Trace Section Lines

The following sample line uses the wildcard character to specify logging for all
subcomponents. It captures debug messages of levels 1-5 and level 9. The %s variable is
used to insert the base directory in which DirX Identity is installed, for example C:/Program
Files/Atos/DirX Identity in the file name. The %d variable is used to store the log messages
in a file named LOGprocess_id:

dir:*.9.1-5:BINFILE.2.200:%s/client/log/LOG%d

242



The following sample specifies the logging of level 1 messages from the adm and api
subcomponents and of level 2 messages from the sys, vthr, and util components:

dir:adm.1,api.1,\
sys.2,vthr.2, util.2:\
BINFILE.2.200:C:/Program Files/Atos/DirX Identity/client/log/LOG%d

In both of the sample lines above, two binary log files are created. The first 200 log entries
are written to the file C:/Program Files/Atos/DirX Identity/client/log/LOG*process_id.01*
and the second 200 log entries are written to the file C:/Program Files/Atos/DirX
Identity/client/log/LOG*process_id.02*. Then LOG*process_id.01* is overwritten with the
next 200 log entries, then LOG*process_id.02* is overwritten and so on.

Depending on the logging configuration, the binary log files can become very big. It is
recommended to configure only the log levels needed, for instance:

ros.4.9    in order to trace all DAP, DSP or DISP-PDUS
vthr.1    in order to trace the interthread communication

The Exception Logging Section

The exception logging section of the logging configuration files defines the severity of
exceptions to log and how and where to log them. It consists of lines in the following
format:

severity:process.max_num_files.max_num_entries:file_name

where:

severity

Specifies the severity of the exception to store. Valid values are:

FATAL - Fatal errors

ERROR - Non-fatal errors

WARNING - Warnings

NOTICE - Informational notices

NOTICE VERBOSE - Verbose informational notices

process

Indicates how to handle the log entries for the specified severity. Valid values, which can
be used with any of the severities listed above, are:

DISCARD - Do not write any log entries.

243



BINFILE - Write entries to a binary file. You must supply the name of the file. (See the
file_name parameter description.) BINFILE must be used for the dir component

TEXTFILE - Write entries to a human-readable text file. You must supply the name of the
file. (See the file_name parameter description.)

STDOUT - Write entries in human-readable text to standard output.

STDERR - Write the entries in human-readable text to standard error.

GOESTO:severity_or_component…-Write the entries to same destination as the entries of
the specified severity or component. You can specify multiple severities or components
by separating each one with a comma.

max_num_files

The maximum number of log files to create (a number from 01 to 99 inclusive). See the
max_num_files parameter in "The Trace Logging Section" for more details.

max_num_entries

The maximum number of entries to write to the file.

file_name

The full pathname of the file in which to store the entries. See the file_name parameter
in "The Trace Logging Section" for more details.

Sample Exception Lines

The following example specifies that:

• Exceptions with severity of FATAL are stored in two places. The first is a text file with up
to 100 entries named /usr/tmp /EXCprocess_id. Only one such file is created. When the
file reaches 100 entries it is overwritten. The second is not shown in the example. It is the
file where the traces for the dir components are stored.

• Exceptions with a severity of ERROR are stored in three places. The first is a text file with
up to 100 entries named /usr/tmp/USRprocess_id. Only one such file is created. When
the file reaches 100 entries it is overwritten. The second is the same place where
exceptions with a severity of FATAL are stored. The third is the same place where traces
for the dir component are stored.

• Messages with a severity of NOTICE are stored in the same place as messages with a
severity of ERROR.

FATAL:TEXTFILE.1.100:/usr/tmp/EXC%d;GOESTO:dir
ERROR:TEXTFILE.1.100:/usr/tmp/USR%d;GOESTO:FATAL
NOTICE:GOESTO:ERROR

Examples

In the examples that follow, lines beginning with the # character are comment lines used

244



to differentiate the trace logging section from the exception logging section.

The following is a sample dirxlog.on file.

# Trace Logging
dir:sys.1,sock.1.9,vthr.1,ctx.0,\
ros.1,\
bth.1,\
util.1-2:BINFILE.6.2000:/usr/tmp/LOG%d
#
# Exception Logging
FATAL:TEXTFILE.1.100:/usr/tmp/EXC%d;GOESTO:dir
ERROR:TEXTFILE.1.100:/usr/tmp/USR%d;GOESTO:FATAL
NOTICE:GOESTO:ERROR
WARNING:GOESTO:FATAL
NOTICE_VERBOSE:GOESTO:FATAL

The following is an example of a dirxlog.off file. Note that the first line of the file turns trace
logging off for the dir component. (Exception logging is not disabled.) In addition, the dash
is used as a placeholder and indicates an empty field.

# Trace Logging
dir::DISCARD:-
#
# Exception Logging
FATAL:TEXTFILE.1.100:/usr/tmp/EXC%d
ERROR:TEXTFILE.1.100:/usr/tmp/USR%d;GOESTO:FATAL
NOTICE:GOESTO:ERROR
WARNING:GOESTO:FATAL
NOTICE_VERBOSE:DISCARD:-

See Also

metacpdump

6.2. Directory Client Configuration File
dirxcl.cfg

Purpose

The directory client configuration file dirxcl.cfg, used by metacp, defines the Identity stores
that are available to the meta controller.

245



Description

The default location for the dirxcl.cfg file is:

install_path/client/conf

You can override the default location by setting the DIRX_CLCFG_FILE environment
variable to the full path name of the file.

In the directory client configuration file, comment lines are lines that begin with a #
character in the first column and are ignored.

Other than comments, the file contains two types of lines, as follows:

• A mandatory line for the address of the meta controller

• Optional Identity store (LDAP server) address lines.

The meta controller address line starts with the word self (case insensitive), followed by the
address of the meta controller in valid PSAP address format.

A Identity store address line is specified in the following format:

name address protocol

where:

name

is the symbolic name of the Identity store. This name is the name to be specified in the
obj bind command in the -server option. (See the obj bind operation for details.)

address

is the real address of the Identity store in one of the following formats:

• host[:port]

• host1[:port1],host2[:port2][,…]

where host or hostn is either an IP address or a DNS (domain name server) name and
port or portn is a port number (<32767). 389 is used as the default port number.

If more than one real address is specified, an attempt is made to establish a connection
using real addresses from left to right.

protocol

is the protocol to be used for the LDAP bind. Supply one of the following keywords (case-
insensitive):

• LDAPv2 - LDAP version 2

• LDAPv3 - LDAP version 3

The protocol specification can be overridden by -protocol option in the obj bind
command. (See the obj bind operation for details.)

246



The first Identity store address line identifies the default Identity store.

Anything following and separated from the protocol specification in a Identity store
address line with a space is ignored.

If no Identity store address line is specified, the server address must be specified in the obj
bind command in the -address option for an LDAP server. (See the obj bind operation for
details.)

If LDAPv2 or LDAPv3 is specified in the -protocol option of an obj bind operation and no
LDAP server address line is specified in the client configuration file dirxcl.cfg a bind to the
local Identity store is established. (See the obj bind operation for details.)

If you use environment variables to override a dirxcl.cfg file entry and an error occurs (for
example, if DIRX_CLCFG_FILE is set to a nonexistent file or is incorrectly specified), the
meta controller reports the error, but makes no attempt to return to the overridden default.
If errors occur, consult the exception log file for a description of the error.

Sample dirxcl.cfg File

# any line starting with '#' is a comment and is ignored
# any line starting with 'self' (case insignificant) contains
# the psap of the meta controller - there must be 1 such line
# further lines contain Identity store names and addresses;
# the first is the default
# the next line is the psap of the meta controller itself - can be
first, # last or anywhere
Self TS=Client1,NA='TCP/IP!internet=139.23.81.32+port=2555'
# LDAPv3 Server
hawk hawk.virt.de.com LDAPv3
# LDAPv2 Server
eagle eagle.virt.de.com,hawk@virt.de.com LDAPv2

6.3. SSL/TLS Certificate Database
cert8.db

Purpose

The SSL/TLS certificate database, used by metacp, defines the server and certificate
authority (CA) certificates that the meta controller is to trust when authenticating a server
during a bind operation with SSL/TLS enabled.It also contains the client certificate that the
meta controller is to use when authenticating clients during a bind operation with SASL
EXTERNAL enabled.

247



Description

The default location for the cert8.db certificate database is:

install_path/client/conf

You can override the default location and file name by setting the DIRX_TRUSTED_CA
environment variable to the full pathname of the file.

When an LDAP client connects to an LDAP server over SSL/TLS, the LDAP server
authenticates itself by sending its certificate to the LDAP client. The LDAP client needs to
determine whether the certificate authority (CA) that issued the certificate is trusted.

The LDAP client (metacp) uses the Mozilla SDK to implement SSL/TLS support. The security
protocols and versions supported by the SDK are SSL V2 and SSL V3. The Identity store
supports SSL V3 and TLS V1. Consequently, if metacp connects to an LDAPv3 server, the
two programs will agree on SSL V3 during the negotiation of the security protocol to use.

The Mozilla SDK API requires a certificate database to hold the CA certificate. The
prerequisites for connecting over SSL are as follows:

1. The meta controller has access to a Mozilla certificate database. This database must be
the cert8.db database file. Note that previous and later versions of these applications
use different file formats for the certificate database. Attempting to use a different
version of the certificate database will result in certificate database errors. The LDAP API
function called by metacp uses this certificate database to determine if it can trust the
certificate sent from the server.

2. The certificate database that you are using can contain:

◦ The certificate of the certificate authority (CA) that issued the LDAP server’s
certificate

◦ The certificates of all the CAs in the hierarchy, if the certificate authorities (CAs) are
organized in a hierarchy

◦ The certificate of the LDAP server

◦ User certificates

3. The CA certificate is marked as "trusted" in the certificate database.

When metacp sends an initial request to the secure LDAP server, the LDAP server sends its
certificate back to metacp. metacp then determines which CA issued the LDAP server’s
certificate and searches the certificate database (cert8.db) for the certificate of that CA.

If metacp cannot find a trusted certificate of the server or the issuer it refuses to connect to
the server. It also refuses to connect if the LDAP server’s certificate has expired or if the
certificate extension restricts the usage to client usage only. The latter applies if the LDAP
server sends a browser certificate instead a server certificate.

The DirX Identity installation contains an example cert8.db file containing the CA certificate
of the "Test CA" that issued all test keymaterial. It includes also the user certificate for
cn=mayer,ou=sales,o=my-company for the purpose of testing SASL binds.

248



Certificate Administration

metacp clients use the Mozilla LDAP SDK to implement the LDAP stub and the SSL
Security support.In order to manipulate the certificate databases read by metacp you need
to use the utility program certutil provided as part of the SDK.

You may download the sources and binaries from the Mozilla web site

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

For a complete documentation on the certutil command line tool see

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/NSS_Tools_certutil

6.4. SSL/TLS Key Database
key3.db

Purpose

The key database, used by metacp when a SASL bind operation with the EXTERNAL
mechanism is performed, contains the data required to access the private key that
corresponds to the client certificate.

Description

The default location for the key3.db key database is:

install_path/client/conf

You can override the default location and file name by setting the DIRX_KEY3DB_FILE
environment variable to the full pathname of the file.

When an LDAP client (in this case, metacp) binds to an LDAP server (in this case, the
Identity store) using the ldap_sasl mechanism (see the obj bind operation for details),
metacp accesses

• the cert8.db certificate database in order to retrieve the client’s user certificate

• the key3.db key database in order to retrieve the client’s private key.

Use the Mozilla command line tool certutil to add Client PSEs to the cert8.db database and
to the key3.db key database files. Note: The newer certutil tool targets per default cert9.db
and key4.db files.Use the option -d to work with cert8.db and key3.db files.See the given
documentation link above.

The DirX Identity installation contains an example key3.db file containing a private key for
testing purposes for the user with the nickname "mayer".It is protected with the
passphrase "dirxdirx".See the description of the -sasl option of the metacp operation obj
bind.

249

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools/NSS_Tools_certutil


6.5. IDMS Configuration and Key Material Files
idmssl.cfg
own_keymaterial.pem
password_file.pwd
trustedCA.pem

Purpose

The encrypted IDM (IDMS) configuration file idmssl.cfg specifies the parameters for the SSL
initialization that is needed to perform the X.500 protocols over IDMS, the encrypted variant
of IDM.The *.pem and .pwd files contain the necessary key material.

Keep in mind that in DirX Identity installations, metacp normally uses LDAP protocol. The
information about idmssl.cfg is only needed in the very rare case when a customer still
runs workflows or any other Tcl scripts using DAP protocol (over IDMS rather than OSI). For
more details (for example, on how to create the appropriate *.pem files), please refer to the
DirX documentation.

Description

Each DirX process that uses IDMS has its own configuration file (idmssl.cfg) located in a
specific configuration (/conf) folder:

• For the DSA (dirxdsa process), the file is located in install_path/server/conf/idmssl.cfg.
(This information is only given here for completeness.)

• For the LDAP server (dirxldapv3 process), the file is located in
install_path/ldap/conf/idmssl.cfg. (This information is only given here for
completeness.)

• For the DUA client metacp, the file is located in install_path/client/conf/idmssl.cfg (and
its input should be derived from install_path/conf/idmssl.cfg.template).

If IDMS is enabled, the processes read the file at startup. To enable IDMS, the DirX process’s
own PSAP address must contain a DNS component with an SSLPORT subcomponent value
greater than 0. The DIRX_OWN_PSAP environment variable specifies the DSA process’s
own PSAP address, whereas the LDAP server and the DUA client (metacp) get their own
PSAP addresses from the SELF entry in the dirxldap.cfg or dirxcl.cfg configuration files.

The settings are used for the lifetime of the process; that is, a restart is required for changes
to the configuration file to take effect.

The idmssl.cfg file contains the pathnames of the key material files used by the SSL/TLS
library and configuration options for the security protocol, ciphers, wait time and logging
level.

In the configuration file, comment lines begin with the hashtag character (#) in the first
column and are ignored. The format of all other lines is:

keyword value

250



The following parameters (keyword) must be specified:

idm_ssl_own_pse_file

Specifies the fully-qualified name of the running process’s own PEM file. This PEM file
must contain the following items:

• The private key and the public key certificate representing the Personal Security
Environment (PSE) of the running process.

• The issuers' Certificate Authority (CA) certificates (chain of CA certificates of all
intermediate CAs and the root CA).

The file must be accessible and readable for the started DirX process.

DirX Identity installs an example file IDMPSE.pem under install_path*/conf*. This file
contains the demo PSE for /O=My-Company/OU=DirX-
Example/OU=DirX8.2B/CN=dirxIDM issued by the testCA /O=My-Company/OU=DirX-
Example/CN=test-CA. Note that these files match the content of the sample files
provided by the DirX installation.

idm_ssl_pwd_file

Specifies the fully-qualified name of the file that contains the password for accessing the
private key contained in the own PEM file. (See the idm_ssl_own_pse_file parameter for
details.) The password must be the only content of this file. When creating the file, the
password must be specified in plain ASCII format. When IDMS reads the password for
the first time, it encrypts it and reuses the encrypted format in subsequent starts.
(Similar to the handling of the LDAP server’s SSL password; see the description of the
LDAP PKCS12 Password File attribute.) The file must be accessible and readable for the
started process.

DirX Identity installs the file IDMPSE.pwd under install_path/conf. This file contains the
clear text password dirxdirx, which is suitable for accessing the private key contained in
the own PEM file. Note that these files match the content of the sample files provided by
the Dir.X installation.

idm_ssl_trusted_ca_cert_file

Specifies the fully-qualified name of the PEM file of all trusted CAs. This PEM file contains
the certificates of all CAs trusted to issue valid server certificates. In client mode, the
certificate sent by the server is checked against the certificates contained in this file. The
file must be accessible and readable for the started process.

DirX Identity installs an example file testCA.pem under install_path/conf. This file contains
the CA certificate of the CA /O=My-Company/OU=DirX-Example/CN=test-CA as the trusted
CA.

idm_ssl_protocol

Specifies the SSL protocol that IDM accepts for incoming and outgoing connections. The
value must be one of SSLv3, TLSv1, TLSv11, TLSv12 or ALL (for all protocols). Both sides
must accept the same protocol to establish an SSL connection. SSLv2 is considered to be
unsafe and is therefore not supported.

251



idm_ssl_ciphers

Specifies the list of ciphers accepted for encryption. IDMS accepts all cipher names and
shortcuts that OpenSSL supports.

To get a list of cipher names, see the OpenSSL documentation or start an OpenSSL-shell
and perform a ciphers command to get a list of cipher names or cipher groups. In the
following example, the list of RSA ciphers names and groups are read:

OpenSSL> ciphers RSA

The command output is as follows:

AES256-GCM-SHA384:AES256-SHA256:AES256-SHA:CAMELLIA256-SHA:DES-
CBC3-SHA:DES-CBC3-MD5:AES128-GCM-SHA256:AES128-SHA256:AES128-
SHA:SEED-SHA:CAMELLIA128-SHA:IDEA-CBC-SHA:IDEA-CBC-MD5:RC2-CBC-
MD5:RC4-SHA:RC4-MD5:RC4-MD5:DES-CBC-SHA:DES-CBC-MD5:EXP-DES-CBC-
SHA:EXP-RC2-CBC-MD5:EXP-RC2-CBC-MD5:EXP-RC4-MD5:EXP-RC4-MD5:NULL-
SHA256:NULL-SHA:NULL-MD5

The cipher names can also be meta-names like RSA, MEDIUM or HIGH as supported by
OpenSSL.

idm_ssl_io_timeout

Specifies the maximum time in seconds that IDMS is to wait while performing
SSL_accept() to complete the initial SSL handshake. If this time period expires, the
handshake is aborted and the TCP connection is disconnected.

If IDMS acts as a server (the DSA process), the initial SSL handshake requires both sides
to exchange some messages (read/write) in order to establish an SSL connection. If the
client does not send data within idm_ssl_io_timeout seconds, IDM will abort further data
exchange and assume that the connection is broken.

While waiting for data, the corresponding IDM worker thread is blocked and does not
service other requests. As a result, it is recommended not to configure this parameter in
minutes or hours.

As IDMS is currently only used between DirX components that can be assumed to
behave in a friendly manner, a timeout may indicate serious network problems or a
third-party attack.

idm_ssl_logging

Specifies whether or IDM generates SSL logging. Use this option only for debugging.
Specify one of the following values:

• 0—Logging is turned off.

• 1—Logging of SSL function calls (level low).

252



• 2—Logging of SSL function calls and select and poll events (level medium).

• 3—Logging of SSL function calls, select and poll events, and input / output data (level
high).

If SSL logging is enabled, a log file is generated under install_path*/tmp*. The name of
the log file is idmssl*pid**_id.txt*, where pid is the process identifier of the running
process and id is either d (DSA), l (LDAP server, lower case l) or c (metacp).

Keep in mind that changing the logging status requires a restart of the process. A
logging file grows endlessly. You can use logging, for example, to track down IDM SSL
connection problems.

Although individual configuration is possible, the default IDMS configuration file that is
installed with DirX provides the configuration settings shown below for all DirX
processes using IDMS. All entities use the same key material: ($DIR identifies the DirX
Identity installation directory).

#########################################
# SSL Configuration file for IDM protocol
# each line contains a token and a value
#########################################
# the pathname of the file containing the own private key and
certificate chain
# in PEM format
idm_ssl_own_pse_file $DIR/conf/IdmPSE.pem
# the pathname of the password file for accessing the private key
idm_ssl_pwd_file $DIR/conf/IdmPSE.pwd
# the pathname of the PEM file that contains trusted CA
certificates
# the file may contain multiple CA certificates in PEM format.
# In client mode, these CA certs are used to verify the certificate
received
# from the server.
idm_ssl_trusted_ca_cert_file $DIR/conf/testCA.pem
# the security protocol to be used - one of: SSLv3, TLSv1, TLSv11,
TLSv12
idm_ssl_protocol TLSv12
# the ciphers to use (names must be compatible with OpenSSL naming
schema)
idm_ssl_ciphers RSA
# max wait time in seconds in SSL I/O
idm_ssl_io_timeout 10
# SSL log level (0=off,1=low)

253



#  0 = off
#  1 = low    (SSL function calls)
#  2 = medium ( == low + select/poll eventing )
#  3 = high   ( == medium + I/O data )
idm_ssl_logging 0
#########################################

254



7. DirX Identity Environment Variables
This chapter is a table that describes the environment variables used by DirX Identity
programs and processes. The table includes the variable name and description, the
commands and processes that use the variable, and the variable default value, which is
used if the variable is not set.

Name Description Used by… Default

DIRX_CLCFG_FILE Supplies the name of the
directory client configuration
file.

The metacp
command

$DIRXMETAHUB_INS
T_PATH/
client/conf/dirxcl.cfg

DIRX_CTX_LIMIT Specifies the maximum
memory size of the metacp
process in MB.

metacp Unlimited

DIRX_DEL_TIME Specifies the time threshold
(in hours) for trace and
exception message file
deletion. Any trace or
exception file (LOG*, USR*,
EXC* in the trace file
directories), that was created
more than DIRX_DEL_TIME
before process startup will
be deleted.

All processes No trace file is
deleted.

DIRX_LOG_DATASI
ZE

Supplies the maximum
length of data to be logged
in a log record.

All processes 1024

DIRX_LOGCFG_FILE Supplies the name of the log
configuration file.

All processes $DIRXMETAHUB_INS
T_PATH/
client/conf/dirxlog.cf
g

DIRX_MAX_THREA
DS

Specifies the maximum
number of parallel threads.

The maximum value is 512.

All processes 128

This value must be
adapted according
your system
configuration.

DIRXMETAHUB_INS
T_PATH /
DIRXIDENTITY_INST
_PATH

Supplies the pathname of
the base directory in which
DirX Identity is installed.

All processes C:\Program Files\
DirX\Identity
(on Windows)

255



Name Description Used by… Default

DIRX_SVC_EXTINFO Specifies the information
that is required to evaluate
log files that have been
generated by non-DirX client
or server components such
as metacp. Specify the value
of the environment variable
in the following format:

library_name1,
<function_table_name1
[,message_table_name1]
|-,message_table_name1>
[:library_name2,
<function_table_name2
[,message_table_name2]
|-,message_table_name2>]
…
[:library_nameN,
<function_table_nameN
[,message_table_nameN]
|-,message_table_nameN>]

where:

library_name
Specifies the name of a
dynamic link or shared
library with the extension
.dll, .so, .sl that contains an
additional function or
message table.

funtion_table_name
Specifies the name of the
function table that contains
the function pointers of
additional encoding-
/decoding-functions (XDR-
functions).

The
metacpdump
and
metahubdump
command

None.
The environment
variable is set
appropriately in the
commands.

256



Name Description Used by… Default

message_table_name
Specifies the name of the
message table that contains
all additional serviceability
messages.

Example:

libdirxapi_md,metadir_ids,m
di_msg_table

DIRX_TRUSTED_CA Specifies the full pathname
of the file that contains the
server certificates or CA
certificates used for SSL
binds. (See the description of
SSL/TLS Certificate Database
the DirX Identity Program
Files chapter.)

The metacp obj
bind command

When this
environment variable
is not set, the file
$DIRXMETAHUB_INS
T_PATH/
client/conf/cert8.db
is used.

DIRX_SET_TLS_LEV
EL_MIN

Specifies the minimum
version of the TLS protocol.
The valid values are "1.0", "1.1",
"1.2" and "1.3".

metacp,

IdS-C server

1.0

DIRX_SET_TLS_LEV
EL_MAX

Specifies the maximum
version of the TLS protocol.
The valid values are "1.0", "1.1",
"1.2" and "1.3".

metacp,

IdS-C server

1.3

DIRX_KEY3DB_FILE Specifies the full pathname
of the file that contains the
private keys used for SASL-
authenticated binds with the
EXTERNAL mechanism. (See
the description of SSL/TLS
Certificate Database the DirX
Identity Program Files
chapter.)

The metacp obj
bind command

When this
environment variable
is not set, the file
$DIRXMETAHUB_INS
T_PATH/
client/conf/key3.db
is used

DXI_JAVA_HOME Specifies dxi_java_home in
native notation. For
Windows platforms, this
variable is only defined after
execution of a command like
this (including quotes):
call
"%DIRXIDENTITY_INST_PAT
H%\setdxienv.bat"

Java and
keytool
processes of
DirX Identity.
Exceptions (see
below)

None. The variable is
set appropriately in
the environment
(Unix platforms) in
the file
install_path/setdxien
v.bat (Windows
platforms),
respectively.

The environment variable DXI_JAVA_HOME is not used for these applications:

257



• Java-based Server for Windows and Linux. For these platforms, the Java server uses the
configured properties vm and dxi.java.home.bin (Windows only) in the file idmsvc.ini in
install_path*/ids-j-technical-domain-name-S*number*/bin* which is created during
configuration of a Java-based Server.

• Web Applications deployed into Tomcat. The JRE used by these files depends on the
Tomcat configuration and can also be the JRE for DirX Identity.

TLS Support

metacp is linked with NSS 3.42 (Network Security Service) that supports TLS1.3. (Note that
SSL3.0 has been disabled.).

The accepted range of TLS versions is set to TLS1.0 up to TLS1.3 by default. This range can be
restricted with the environment variables DIRX_SET_TLS_LEVEL_MIN and
DIRX_SET_TLS_LEVEL_MAX. See the previous table for descriptions of these variables.

258



8. Directory Synchronization Templates
DirX Identity provides the following directory synchronization templates in the
Samples\metacp directory of the DirX Identity installation:

• Full import to the Identity store from an LDIF content file (initial and subsequent;
demos 1, 2, and 3)

• Delta import to the Identity store from an LDIF content file (demo 4)

• Export from the Identity store to an LDIF content file (demo 5)

• Import to the Identity store from a Microsoft Exchange data file in Microsoft Exchange
"admin" format (demo 6)

• Export from the Identity store to a Microsoft Exchange data file in Microsoft Exchange
"admin" format (demo 7)

• Import to the Identity store from a DirX Identity Microsoft Exchange agent data file
(demo 8)

• Export from the Identity store to a DirX Identity Microsoft Exchange agent data file
(demo 9)

• Import to the Identity store from a Lotus Notes data file (initial, subsequent, delta;
demos 10, 11, and 12)

• Export from the Identity store to Lotus Notes data file format (demo 13)

• Conversion of Exchange format to LDIF content format (demo 16)

This chapter describes the main features of the synchronization templates for importing
from an LDIF content file and exporting to an LDIF content file. (See LDIF Content Format
for a description of the file format.) See the file l-metacpReadme.txt in the
Samples\metacp directory for a detailed description of how the demos can be applied and
what the setup needs to be. See the chapters on the Lotus Notes and Microsoft Exchange
Identity agents in the DirX Identity Agent Reference for a description of Lotus Notes and
Exchange import and export data file formats.

This chapter also describes how to read and write XML data files.

8.1. Import from an LDIF Content File
This example synchronization template imports the contents of an LDIF-formatted file
(LDIF content format) into the Identity store.You can use it to:

• Perform an initial import to an empty Identity store from an import data file.The import
data file is the only source for import and all of its entries are imported.

• Perform a subsequent import to a non-empty Identity store.The control logic in the
synchronization profile performs a search in the Identity store to get a list of the existing
entries and uses this list to perform dynamic delta recognition on an entry basis.Entries
that exist in the Identity store but which are not supplied in the import data file are
deleted-the logic assumes that the import data file provides 100% of the Identity store
contents and the Identity store is cleared of unwanted entries.The synchronization

259



profile performs a second level of delta recognition for entries that exist in the Identity
store and in the import data file.All attributes to be synchronized are compared
between both entries and the Identity store entry is modified accordingly.

The example synchronization template runs under the following assumptions:

• The Identity store setup is the sample PQR database starting at /O=PQR

• The PQR database contains no Organizational-Person (ORP) entries

• The collective attribute subentry does not define any collective attributes

• The meta controller uses the default LDAP attribute names supplied with DirX Identity

8.1.1. Files

This synchronization template uses the following files and Tcl scripts:

Attribute
Configuration Files

Description

l-ldifattr.cfg LDIF attribute information (source)

ldapattr.cfg LDAP attribute information (target)

Data Files Description

ldif.data LDIF file for initial import into the Identity store

ldif.data1 LDIF file for a subsequent import into the Identity store

Synchronization
Profile Scripts

Description

common.tcl Control logic section. Contains the utility functions that are
common to all of the synchronization templates.

import.tcl Control logic section. Imports a file into the DirX server using one
global search.

map.l-import.ldif.tcl Mapping section. Maps attribute values from LDIF syntax to LDAP
syntax for importing into the Identity store.

l-import.ldif.tcl Variable section. The user-callable script to run the initial and
subsequent imports. The script calls import.tcl.

test.import.tcl Control logic section. Performs only the data mapping and does
not interact with the Identity store (for updates). This Tcl script is
called if the profile switch test_mapping_only is set to TRUE in l-
import.ldif.tcl. The script writes each input data entry plus the Tcl
variable arrays (one for the entry with its attributes and one for the
generated LDAP entry with its attributes) to the trace file. This
output allows you to check the correctness of your attribute
mappings.

260



8.1.2. Synchronization Profile Structure

The following sections describe the contents and design of this example synchronization
profile.

Variable Section Settings

The Variable section of the example synchronization profile (see the file l-import.ldif.tcl)
provides the following information:

• A set of profile switches that configure the operation of the synchronization profile

• The names of the mapping procedures defined in the mapping section

The following table describes the profile switches.

Name Description

home_dir The home directory in which the synchronization profile Tcl scripts
are located

debug_trace Controls the output of the source and target Tcl variables. Possible
values are:
0-Do not output
1-Output to standard out (the display)
2-Output to the meta controller trace file

trace_file The name of the meta controller trace file

trace_level The trace level to be used. Possible values are:
1-Perform an error trace (only trace failed operations)
2-Perform a full trace (trace all operations)
3-Perform a full trace only on operations that are actually sent to the
Identity store

init_mode Runtime execution mode. Possible values are:*
REAL* - All update operations are sent to the Identity store (actual
database synchronization is performed)*
TRIAL* - No updates are made to the Identity store (actual database
synchronization is not performed). Use TRIAL mode to examine
whether the synchronization, if run in REAL mode, operates as
expected and does not perform any unwanted updates

superior_info The parameters for the automatic creation of superior entries

agent_attr_file The name of the Identity agent attribute configuration file

x500_attr_file The name of the Identity store attribute configuration file

agent_data_file The name of the import data file (generated by the Identity agent
export procedure)

agent_attr_list The attributes to be synchronized from the source connected
directory

conn_type The type of the connection to the Identity store (LDAP)

261



Name Description

x500_attr_list The attributes to be synchronized in the Identity store

file_format The import data file format. Possible values are TAGGED and
UNTAGGED.

process_all_attr Controls whether or not all attributes are processed. Possible values
are TRUE (process all attributes) and FALSE (process those attributes
in ldap_attr_list).

object_class_abbr The type of object class abbreviations (LDAP) used in the control
logic section.

user_name User name parameter for the obj bind operation

user_pwd User password parameter for the obj bind operation

dsa_name Name of the Identity store as defined in the directory client
configuration file (dirxcl.cfg).

server_address Identity store address (LDAP server DNS name or IP address and port
number) for the obj bind operation.

protocol The protocol to access the Identity store. Possible values are LDAPv2
and LDAPv3. See the description of the obj bind operation for details.

base_obj Search base parameter for the obj search operation

subset Search scope parameter for the obj search operation

filter Search filter parameter for the obj search operation

sort_key Sort key parameter for the meta sortresult operation. Possible values
are ASC and DESC. See the meta sortresult description in the meta
object section for details.

sort_order Sort order parameter for the meta sortresult operation. Possible
value is DDN. See the meta sortresult description in the meta object
section for details.

perform_read Controls whether the meta controller is to read all attributes from the
Identity store during the initial search (FALSE) or with an additional
read operation (TRUE)

remove_objects Controls whether the meta controller is to remove entries in the
Identity store returned in a search result that do not exist in the
source data file. Possible values are TRUE (remove entries) or FALSE
(do not remove entries).

marking_attr This switch is only relevant when "remove_objects" is FALSE:
Instead of removing the entry the specified attribute type is added to
the entry (using the value specified in "marking_value") to mark it as
deleted.

marking_value This switch is only relevant when "remove_objects" is FALSE:
Specifies the attribute value to be used for the attribute type
specified in "marking_attr".

262



Name Description

keep_objects Specifies the objects that should never be removed from the Identity
store, even if not provided in the data file. The template profile switch
specifies the name of the administrator on whose behalf the
directory bind is performed; this list can be extended

test_mapping_only Controls whether the meta controller performs the data mapping
operations but no other operations. Possible values are TRUE (test
mapping only) and FALSE (run entire synchronization profile).

test_max_entries Controls how many entries are to be mapped, if test_mapping_only
is TRUE. Supply the number of entries to be mapped. If all entries are
to be mapped, supply -1.

_localcode The code set in which the data to be processed is encoded. Possible
values are PC850 or LATIN-1.

Mapping Section Procedures

For LDAP access to the Identity store, the main purpose of the mapping section of the
example synchronization profile (see the file map.l-import.ldif.tcl) is to assign attribute
values from LDIF records to attribute values in directory objects. This is a simple one-to-one
mapping.

Control Logic

The control logic supplied in the example synchronization profile has the following
characteristics:

• Synchronizes from a single source only (the import file is the entry owner)

• Moves all of the entries from the import file into the Identity store

• Creates superior entries automatically with the parameters specified in the profile
switch in the Variable section

• Processes import entries individually

• Performs dynamic delta recognition on the subsequent import. The delta recognition is
performed in two phases:

◦ Matched entries: For matched entries, performs the modify operation on the target
entry in the Identity store according to the target attribute synchronization flags set
in the profile switch in the Variable section

◦ The set of entries supplied in the import file: compares the complete import file with
the entries in the Identity store, removes any entries not supplied in the import file,
and adds entries available in the import data file that do not exist in the Identity
store.

• No ordering of the import file is necessary

8.1.3. Customizing This Synchronization Template

To customize this synchronization template:

263



• Ensure that its control logic matches your import synchronization needs

• Determine whether you want automatic creation of superior entries. If you do, supply
the information for it in the appropriate profile switch in the Variable section.

• Develop attribute configuration files for the source and target directory (1 each). You can
use the attribute configuration files supplied with DirX Identity as templates, or create
your own.

• Choose the specific set of attributes that you want to synchronize, for the source
directory and for the target directory

• Decide on your data file names and supply them in the appropriate profile switch in the
Variable section

• Supply your credentials for binding to the Identity store in the appropriate profile switch
in the Variable section

• Choose the file format (tagged or untagged) that represents the data to be imported.
Depending on your selection, you’ll need to have additional information in the attribute
configuration file (for a tagged file) or additional information supplied in the set of
synchronized attributes (for an untagged file).

• Select the search parameters to be used to get an appropriate search result that is used
for matching the entries.

• Select the entries that should never be deleted.

• Decide whether entries should be deleted or whether such entries simply should be
marked as deleted.

• Select to search with all relevant attributes, or to search with just the distinguished
name and perform another read operation for the attributes whenever they are needed
(for example, before a modify operation can be performed).

• Create the mapping procedures by:

◦ defining the mapping for each attributes

◦ writing Tcl code to perform the mapping

Use the mapping procedure scripts supplied with DirX Identity as templates.

8.2. Export to an LDIF Content File
This example synchronization template exports the contents of the Identity store to an
LDIF-formatted file.The example synchronization template runs under the following
assumptions:

• The Identity store setup is the sample PQR database starting at /O=PQR

• The PQR database contains entries

• The meta controller uses the default LDAP attribute names supplied with DirX Identity

8.2.1. Files

This synchronization template uses the following files and Tcl scripts:

264



Attribute
Configuration
Files

Description

l-ldifattr.cfg LDIF attribute information (target)

ldapattr.cfg LDAP attribute information (source)

Data Files Description

export.data LDIF file created by the export process

Synchronization
Profile Scripts

Description

common.tcl Control logic section. Contains utility functions that are common to all
of the synchronization templates.

export.tcl Control logic. Exports data from the Identity store using one global
search.

map.l-
export.ldif.tcl

Mapping section. Maps LDAP entries to LDIF syntax.

l-export.ldif.tcl Variable section. This is the user-callable Tcl script to run the export
operation. The script calls export.tcl

8.2.2. Synchronization Profile Structure

The following sections describe the contents and design of this example synchronization
profile.

Variable Section Settings

The Variable section of the example synchronization profile (see the file l-export.ldif.tcl)
provides the following information:

• Profile switches that configure the operation of the synchronization profile

• The names of the mapping procedures defined in the mapping section

The following table describes the profile switches.

Name Description

home_dir The home directory in which the synchronization profile Tcl scripts are
located

debug_trace Controls the output of source and target Tcl variables. Possible values
are:*
0* - Do not output
1 - Output to standard out (the display)*
2* - Output to the meta controller trace file

trace_file The name of the meta controller trace file

265



Name Description

trace_level The trace level to be used. Possible values are:*
1*-Perform an error trace (only trace failed operations)*
2*-Perform a full trace (trace all operations)*
3*-Perform a full trace only on operations that are actually performed

agent_attr_file The name of the Identity agent attribute configuration file.

x500_attr_file The name of the Identity store attribute configuration file.

dump_file The name of the export data file to be created or to be appended
(depends on the file_mode switch).

file_attr_list The attributes to be synchronized in the export data file

file_format The data format to use for the generated export data file. Possible values
are TAGGED and UNTAGGED.

file_mode The mode to write to the export data file (overwrite or append).

conn_type The type of the connection to the Identity store (LDAP).

x500_attr_list The attributes to be synchronized from the Identity store.

user_name User name parameter for the obj bind operation.

user_pwd User password parameter for the obj bind operation.

dsa_name The name of the Identity store as defined in the directory client
configuration file (dirxcl.cfg).

server_address Identity store address (LDAP server DNS name or IP address and port
number) for the obj bind operation.

protocol The protocol to access the server for the obj bind operation. Possible
values are LDAPv2 and LDAPv3. See the obj bind operation.

base_obj Search base parameter for the obj search operation.

subset Search scope parameter for the obj search operation.

filter Search filter parameter for the obj search operation

sort_key Sort key parameter for the meta sortresult operation. Possible values as
ASC and DESC. See the description of the meta sortresult operation in
the meta object section.

sort_order Sort order parameter for the meta sortresult operation. Possible value is
DDN. See the description of the meta sortresult operation in the meta
object section.

sorted_list Controls whether the export data file is sorted (TRUE) or not (FALSE)

perform_read Controls whether the meta controller is to read all attributes from the
Identity store during the initial search (FALSE) or with an additional read
operation (TRUE)

_localcode The code set in which the data to be processed is encoded. Possible
values are PC850 or LATIN-1.

266



Mapping Section Procedures

For LDAP access to the Identity store, the main purpose of the mapping section of the
example synchronization profile (see the file map.l-export.ldif.tcl) is to assign attribute
values from objects to attribute values in LDIF records. This is a simple one-to-one
mapping.

Control Logic

The control logic supplied in the example synchronization profile has the following
characteristics:

• Exports all entries in a Identity store subtree (subject to the specified search filter) to a
flat file

• Processes Identity store entries individually

• Sorts the entries in the generated export data file (if the sorted_list profile switch is set
to TRUE)

8.2.3. Customizing This Synchronization Template

• Ensure that its control logic matches your export synchronization needs

• Develop attribute configuration files for the source and target directory (one each). You
can use the attribute configuration files supplied with DirX Identity as templates, or
create your own.

• Choose the specific set of attributes that you want to synchronize, for the source
directory and for the target directory

• Decide on the name of the export data file to be generated and supply it in the
appropriate profile switch in the Variable section

• Supply your credentials for binding to the Identity store in the appropriate profile switch
in the Variable section

• Select the search parameters that will generate an appropriate search result

• Choose the file format (tagged or untagged) that represents the data to be exported.
Depending on your selection, you’ll need to have additional information in the attribute
configuration file (for a tagged file) or additional information supplied in the set of
synchronized attributes (for an untagged file).

• Create the mapping procedures by:

◦ defining the mapping for each attributes

◦ writing Tcl code to perform the mapping

Use the mapping procedure scripts supplied with DirX Identity as templates.

• Decide whether you want the generated export file to be sorted or not, and set the
sorted_list profile switch in the Variable section appropriately

267



9. Data Format Handling Procedures
This section discusses procedures necessary to handle typical data formats:

• XML Formats

• ChangeLog Formats

9.1. Handling XML Files
This section describes how to handle XML data files in DirX Identity.Specifically, it describes
how to:

• Read an XML data file

• Write an XML data file

See also the XML data format section.

9.1.1. Reading an XML Data File

To read an XML data file, perform the following steps:

• Create the attribute configuration handle ah by passing the name of an attribute
configuration file to the meta readattrconf function.

• For flat XML, create a connection handle ch with a meta openconn function of the form:

meta openconn -conn ch -type FILE -format FLAT-XML -attrconf ah -filemode
READ …

• For DSML: create a connection handle ch with a meta openconn function of the form:

meta openconn -conn ch -type FILE -format DSML -attrconf ah -filemode READ …

• Use the meta getentry function in a loop for reading the file, for example:

meta getentry -source ch -target eh

The Tcl variable array eh is available in the same way as usual and can be used for mapping
purposes.

Keep in mind that the enclosing tokens in an XML data file are
<xml_data.xml> and </xml_data.xml>, for example

<?xml version='1.0' encoding='ISO-8859-1'?>
<!-- Example -->
<xml_data.xml>
         ...
</xml_data.xml>

268



Using different tags in the data file results in a warning “Invalid record” in
the trace file at run time.

9.1.2. Writing an XML Data File

To write an XML data file, perform the following steps:

Create an attribute configuration handle ah by passing the name of an attribute
configuration file to the meta readattrconf function.

• For Flat XML: create a connection handle ch with a meta openconn function of the
form:

meta openconn -conn ch -type file -format FLAT-XML -attrconf ah -filemode
WRITE …

• For DSML: create a connection handle ch with a meta openconn function of the form

meta openconn -conn ch -type file -format DSML -attrconf ah -filemode WRITE …

• Use the meta gethandle function in to create a handle for the output file, for example:

meta gethandle -conn ch -entry eh

The Tcl variable array eh is available in the same way as usual and can be filled for mapping
purposes.To write the data XML file from a directory search result:

• Write the header using the meta writetext function

• Call the meta getentry function on the directory search result in a loop:

◦ Perform the mapping of the directory entry to the entry represented by the handle
eh obtained with meta gethandle

◦ Write entry eh using the meta writerecord function

• Write the footer using the meta writetext function.

9.2. Handling ChangeLogs
The ChangeLogs are read from the iPlanet or OID directory by calling obj search.For each
object in the search result a getentry is called and a TCL variable array with the result is
filled (see also changeLog data formats).So for the first example listed above, there might
exist TCL variables such as

rh_ldap(DDN) = Changenumber=207, cn=changelogentry
rh_ldap(objectClass) = {top changelog}
rh_ldap(targetdn) = {cn=Shrivastava
Saurabh,ou=metadirectory,o=oracle,dc=com}
rh_ldap(changetype) = Add
rh_ldap(operationtime) = 19991029153546z
...

269



rh_ldap(changenumber) = 207
rh_ldap(orclchangeretrycount) = 0
rh_ldap(changes) = objectclass:inetOrgPerson
          objectclass:OrganizationalPerson
          objectclass:Person
          objectclass:Top
          cn:Shrivastava Saurabh
          cn:Shrivastava
          cn:Saurabh
          cn:Saurabh Shrivastava
          cn:sshrivas
          employeenumber:22
          givenname:Saurabh
          sn:Shrivastava
          title:Mr.X
          mail:sshrivas@us.oracle.com.X
          telephonenumber:650-574-9107
          postaladdress:1067 Foster city Blvd $Apt B$Foster city
CA=94404-X
          l:Foster city
          orclguid:0003968769422514087583716869442
          creatorsname:cn=orcladmin
          createtimestamp:19991029153546z

The relevant fields that are of further interest are highlighted.

In order to handle the iPlanet and OID-ChangeLogs, the following operation can be used:

meta getchangelog
          -name <DN>
          -changetype <operation change type>
          -changes <list of changes>
          -source <handle to pseudo LDIF-file>
          -target <result handle>

metacp internally can parse LDIF-Change_Files. As that parser should also be used for
handling of the ChangeLogs, an entry from the Search-Result (which represents the
ChangeLogs) needs to be mapped to the correct LDIF syntax. The only items of interest are
targetdn, changetype, changes.

Therefore the three interface parameters will be concatenated in memory and an
appropriate prefix (if necessary) is assigned to each of them. Such a byte stream can easily

270



be handled by the LDIF parser. The only difference is that the parser gets its values from
memory and not from file.

The command getchangelog will fill a TCL variable array (named by result handle of
parameter -target) the same way as if getentry would have read an LDIF change file.

Example:

After having called ‘getentry’ for the first entry from the search result, the ‘getchangelog’
will be called as follows:

getchangelog
          -name [lindex $rh_ldap(targetdn) 0]
          -changetype [lindex $rh_ldap(changetype) 0]
          -changes [lindex $rh_ldap(changes) 0]
          -source file_ch
           -target rh

The first entry from the examples listed above will be mapped to the following byte stream:

dn: cn=Shrivastava Saurabh,ou=metadirectory,o=oracle,dc=com
changetype: Add
objectclass:inetOrgPerson
objectclass:Person
objectclass:Top
cn:Shrivastava Saurabh
cn:Shrivastava
....

The following TCL variables will be set:

rh(DDN) = {cn=Shrivastava Saurabh,ou=metadirectory,o=oracle,dc=com}
rh(_ldif_opcode) = Add
rh(objectClass) = {inetOrgPerson Person Top}
rh(cn) = {{Shrivastava Saurabh} Shrivastava}

The parameter $rh_ldap(changenumber) holds the last change number. So the last
changenumber is always available and can easily be used in the next synchronisation cycle,
when the obj search command needs to be called with the following filter:

-filter (&(objectclass=changeLogEnty)(changenumber>=’LAST-CHANGE-

271



NUMBER’))

9.2.1. ChangeLog Sample Code

In the following sample code, only the relevant functions are listed.

The sample code doesn’t include error handling etc. (e.g. if obj search fails). Furthermore, it
doesn’t list the functions that need to be called first in order to get the relevant handles
that are passed to openconn, e.g. ah or ldap_ah etc.

#
# open a pseudo LDIF data file (That is just a 'dummy' open for the
routine 'getchangelog'. so that this routine
# gets a correct source handle 'file_ch')
#
set cmd "meta openconn  -type     FILE \
        -file          \"$agent_data_file\" \
        -mode     READ \
        -format   TAGGED \
        -attrconf ah       \ # attribute handle generated by
‘readattrconf’
                           \ # when reading ‘l-ldifattr.cfg’
        -conn     file_ch"
if {$agent_attr_list != ""} then {
append cmd " -attribute {$agent_attr_list}"
}
exec_cmd $cmd

#
# create a connection handle "change_ch" that requests all the
attributes that need to be read from the
# LDAP server in order to get the changelog entry
# The parameter ‘change_attr_list’ contains all the attributes that
are read (by ‘obj search’) from the Changelog
# entry: ‘changes’, ‘targetdn’, ‘changenumber’, ‘changetype’, ‘DDN’
#
set cmd "meta openconn -type     LDAP \
        -attrconf ldap_ah       \ # attribute handle generated by
‘readattrconf’
                                \ # when reading ‘l-ldifattr.cfg’
        -conn     change_ch"
if {$change_attr_list != ""} then {

272



append cmd " -attribute {$change_attr_list}"
if {$process_all_attr == "TRUE"} then {
append cmd " -processallattr"
}
}
exec_cmd $cmd

#
# retrieve the relevant objects from the LDAP server
# (The parameter filter is set as follows:
# set filter {(&(objectclass=changelogentry) (server=$host_name)
(changenumber>=$change_number)
(!(modifiersname=$subscriber_dn)))}
# with ‘change_number’ being the relevant change number that has been
processed up so far)
#
set cmd "obj search {$base_obj} \
         $subset \
         -conn       change_ch \
         -result     ldap_res"
if {$filter != ""} then {
append cmd " -filter \"$filter\""
}
set status [catch { eval $cmd } result]

set result 0
while {$result == 0} {
#
# extract an entry from the search result
#
set result [exec_cmd "meta getentry -source ldap_res \
                                    -target rh_ldap"]
if {$result == 0} then {
         set max_change_number [lindex $rh_ldap(changenumber) 0]
         # pass the retrieved attributes of the changelog entry to
‘getchangelog’; the TCL variable array named
         # by the ‘-target’ parameter contains all the changes.
         exec_cmd "meta getchangelog     \
              -name     {[lindex $rh_ldap(targetdn) 0]}     \
              -changetype {[lindex $rh_ldap(changetype) 0]} \
              -changes    {[lindex $rh_ldap(changes) 0]}      \

273



              -source     file_ch        \ # handle to
                                         \ # pseudo LDIF
                                         \ #  file
              -target     rh"
         #
         # now the change log entry is available in the Tcl-Variable
"rh"
         #
         ...
}
}

274



Appendix A: Country Codes
This appendix lists countries and their 2-letter ISO 3166 country code. This code is used in
the Country Name simple syntax.

Country Code

AFGHANISTAN AF

ALBANIA AL

ALGERIA DZ

AMERICAN SAMOA AS

ANDORRA AD

ANGOLA AO

ANGUILLA AI

ANTARCTICA AQ

ANTIGUA AND BARBUDA AG

ARGENTINA AR

ARMENIA AM

ARUBA AW

AUSTRALIA AU

AUSTRIA AT

AZERBAIJAN AZ

BAHAMAS BS

BAHRAIN BH

BANGLADESH BD

BARBADOS BB

BELARUS BY

BELGIUM BE

BELIZE BZ

BENIN BJ

BERMUDA BM

BHUTAN BT

BOLIVIA BO

BOSNIA AND HERZEGOVINA BA

BOTSWANA BW

BOUVET ISLAND BV

BRAZIL BR

275



Country Code

BRITISH INDIAN OCEAN TERRITORY IO

BRUNEI DARUSSALAM BN

BULGARIA BG

BURKINA FASO BF

BURUNDI BI

CAMBODIA KH

CAMEROON CM

CANADA CA

CAPE VERDE CV

CAYMAN ISLANDS KY

CENTRAL AFRICAN REPUBLIC CF

CHAD TD

CHILE CL

CHINA CN

CHRISTMAS ISLAND CX

COCOS (KEELING) ISLANDS CC

COLOMBIA CO

COMOROS KM

CONGO CG

CONGO, THE DEMOCRATIC REPUBLIC OF THE CD

COOK ISLANDS CK

COSTA RICA CR

COTE D’IVOIRE CI

CROATIA HR

CUBA CU

CYPRUS CY

CZECH REPUBLIC CZ

DENMARK DK

DJIBOUTI DJ

DOMINICA DM

DOMINICAN REPUBLIC DO

ECUADOR EC

EGYPT EG

EL SALVADOR SV

276



Country Code

EQUATORIAL GUINEA GQ

ERITREA ER

ESTONIA EE

ETHIOPIA ET

FALKLAND ISLANDS (MALVINAS) FK

FAROE ISLANDS FO

FIJI FJ

FINLAND FI

FRANCE FR

FRENCH GUIANA GF

FRENCH POLYNESIA PF

FRENCH SOUTHERN TERRITORIES TF

GABON GA

GAMBIA GM

GEORGIA GE

GERMANY DE

GHANA GH

GIBRALTAR GI

GREECE GR

GREENLAND GL

GRENADA GD

GUADELOUPE GP

GUAM GU

GUATEMALA GT

GUINEA GN

GUINEA-BISSAU GW

GUYANA GY

HAITI HT

HEARD ISLAND AND MCDONALD ISLANDS HM

HOLY SEE (VATICAN CITY STATE) VA

HONDURAS HN

HONG KONG HK

HUNGARY HU

ICELAND IS

277



Country Code

INDIA IN

INDONESIA ID

IRAN, ISLAMIC REPUBLIC OF IR

IRAQ IQ

IRELAND IE

ISRAEL IL

ITALY IT

JAMAICA JM

JAPAN JP

JORDAN JO

KAZAKHSTAN KZ

KENYA KE

KIRIBATI KI

KOREA, DEMOCRATIC PEOPLE’S REPUBLIC OF KP

KOREA, REPUBLIC OF KR

KUWAIT KW

KYRGYZSTAN KG

LAO PEOPLE’S DEMOCRATIC REPUBLIC LA

LATVIA LV

LEBANON LB

LESOTHO LS

LIBERIA LR

LIBYAN ARAB JAMAHIRIYA LY

LIECHTENSTEIN LI

LITHUANIA LT

LUXEMBOURG LU

MACAO MO

MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF MK

MADAGASCAR MG

MALAWI MW

MALAYSIA MY

MALDIVES MV

MALI ML

MALTA MT

278



Country Code

MARSHALL ISLANDS MH

MARTINIQUE MQ

MAURITANIA MR

MAURITIUS MU

MAYOTTE YT

MEXICO MX

MICRONESIA, FEDERATED STATES OF FM

MOLDOVA, REPUBLIC OF MD

MONACO MC

MONGOLIA MN

MONTSERRAT MS

MOROCCO MA

MOZAMBIQUE MZ

MYANMAR MM

NAMIBIA NA

NAURU NR

NEPAL NP

NETHERLANDS NL

NETHERLANDS ANTILLES AN

NEW CALEDONIA NC

NEW ZEALAND NZ

NICARAGUA NI

NIGER NE

NIGERIA NG

NIUE NU

NORFOLK ISLAND NF

NORTHERN MARIANA ISLANDS MP

NORWAY NO

OMAN OM

PAKISTAN PK

PALAU PW

PALESTINIAN TERRITORY, OCCUPIED PS

PANAMA PA

PAPUA NEW GUINEA PG

279



Country Code

PARAGUAY PY

PERU PE

PHILIPPINES PH

PITCAIRN PN

POLAND PL

PORTUGAL PT

PUERTO RICO PR

QATAR QA

REUNION RE

ROMANIA RO

RUSSIAN FEDERATION RU

RWANDA RW

SAINT HELENA SH

SAINT KITTS AND NEVIS KN

SAINT LUCIA LC

SAINT PIERRE AND MIQUELON PM

SAINT VINCENT AND THE GRENADINES VC

SAMOA WS

SAN MARINO SM

SAO TOME AND PRINCIPE ST

SAUDI ARABIA SA

SENEGAL SN

SERBIA AND MONTENEGRO CS

SEYCHELLES SC

SIERRA LEONE SL

SINGAPORE SG

SLOVAKIA SK

SLOVENIA SI

SOLOMON ISLANDS SB

SOMALIA SO

SOUTH AFRICA ZA

SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS GS

SPAIN ES

SRI LANKA LK

280



Country Code

SUDAN SD

SURINAME SR

SVALBARD AND JAN MAYEN SJ

SWAZILAND SZ

SWEDEN SE

SWITZERLAND CH

SYRIAN ARAB REPUBLIC SY

TAIWAN, PROVINCE OF CHINA TW

TAJIKISTAN TJ

TANZANIA, UNITED REPUBLIC OF TZ

THAILAND TH

TIMOR-LESTE TL

TOGO TG

TOKELAU TK

TONGA TO

TRINIDAD AND TOBAGO TT

TUNISIA TN

TURKEY TR

TURKMENISTAN TM

TURKS AND CAICOS ISLANDS TC

TUVALU TV

UGANDA UG

UKRAINE UA

UNITED ARAB EMIRATES AE

UNITED KINGDOM GB

UNITED STATES US

UNITED STATES MINOR OUTLYING ISLANDS UM

URUGUAY UY

UZBEKISTAN UZ

VANUATU VU

VENEZUELA VE

VIET NAM VN

VIRGIN ISLANDS, BRITISH VG

VIRGIN ISLANDS, U.S. VI

281



Country Code

WALLIS AND FUTUNA WF

WESTERN SAHARA EH

YEMEN YE

ZAMBIA ZM

ZIMBABWE ZW

282



Appendix B: Code Conversion
This chapter describes the features DirX Identity provides to perform code conversion.
These features are based on the built-in capabilities of the Tcl 8.3 scripting language.

This chapter provides:

• Basic usage of the code conversion features

• Expert Usage of the code conversion features

• A systematic overview of the Tcl features for code conversion

• Character sets

Please refer to the original Tcl documentation for more details.

B.1. Basic Usage
DirX Identity supports all Tcl capabilities described in the character sets section below.

The main functionality of the meta controller is controlled via the Tcl variable _localcode (as
it was in previous versions).This chapter describes the common usage of this variable and
the related behavior to

• transfer information between LDAP and utf-8 coded files

• transfer information between LDAP and files coded in another character set

• control DirX Identity interactively from a terminal window

More detailed information (especially when you intend to program with Tcl) is provided in
the following chapters.

Transfer of information between LDAP and utf-8 coded files

Set the _localcode variable to utf-8.

This allows either to read utf-8 coded files to LDAP or to write from LDAP to utf-8 coded
files.

This mode is the fastest mode available. If you need high performance
synchronizations, you should keep all data always in utf-8 format.

The setting of the _localcode variable influences the code conversion for all
files (i.e. you cannot handle different character sets for different files at the
same time). If you want to handle files with different character sets please
refer to expert usage section.

Transfer of information between LDAP and files into another codeset

Set the _localcode variable to the required character set (for example Latin1).

283



You can evaluate the available character sets with the command encoding names. It is also
possible to extend the available character sets with additional ones. See the original Tcl 8.3
documentation.

This allows either to read files of that character set to LDAP or to write from LDAP to files in
that character set.

Note that the setting of the _localcode variable influences the code conversion for all files
(i.e. you cannot handle different character sets for different files at the same time). If you
want to handle files with different character sets please refer to expert usage section.

The DirX Identity default applications are delivered with _localcode set to Latin1 to obtain
compatibility to previous versions.

Interactive operation from a terminal window

In this mode, you can define operations for DirX Identity interactively in a terminal window.
The necessary code conversion is done automatically.

Note: for compatibility reasons you can set the _localcode variable to PC850 if you work
with a DOS box. This setting is ignored. Tcl converts the terminal input and output
automatically to utf-8 format.

You can define Unicode characters in strings in the form "\udddd" (for example "\u592a"
represents a Chinese glyph and "\u0041" represents the glyph "A"). To input utf-8 characters
you have to use the method for Unicode characters.

For single byte characters you can use the representation "\xdd" where Tcl assumes the
first byte to be zero (for example "\x41" represents the glyph "A"). In this case Tcl has the
behaviour that the \x mode does only end when a character not equal a to f is input.
Therefore you must input all following characters in the \x mode if they are in the range a to
f.

Examples:

\xfc\x62\x65l results in the German word übel (b and e are in the range a to f, l is not).

f\xfcndig results in the German word fündig (n is not in the range a to f).

Output conversion to the screen can result in the message ‘Not convertible’
if utf-8 characters are contained which cannot be represented with the
terminal character set.

You can redirect the output to a file where you can define any character set you want (use
the fconfigure channel -encoding encoding command for this purpose - this is described in
the next chapters in detail).

Output conversion to a file can result in the message ‘Not convertible’ if utf-
8 characters are contained which cannot be represented with the defined
encoding set.

284



If you want to use the source command with command files not in the format of the
terminal window, you have to read the full file content into a variable and evaluate it
afterwards (see the Tcl documentation for details).

B.2. Expert Usage
This chapter provides detailed knowledge of the internal structure of the meta controller,
which is necessary to understand its behavior and to program specific code conversions in
Tcl scripts directly.

Metacp Architecture

To understand the capabilities of the code conversion mechanisms the internal
architecture of metacp has to be understood (see next figure).

Figure 1. meta controller architecture for code conversions

Storage Area (Tcl variables and Tcl arrays)

Contains all Tcl variables and the Tcl arrays that are used for intermediate storage of the
entries to be synchronized. Tcl assumes all internal strings to be in utf-8 format.

285



Tcl Interpreter

All Tcl functionality is available plus DirX specific extensions (for example to access the
translation API or the File Handler). It handles the stdin (per default the keyboard) and the
stdout (per default the screen) channels (1). These channels can be redirected to files (2).

It also contains commands to handle file input and output via other channels (3).

Via Tcl commands the storage area can be accessed directly. Variables and arrays can be
processed and converted.

Translation API

Gets orders via its API functions and translates it to LDAP or DAP specific calls. Returns the
results back to the API functions (for example search results). It is called by the Tcl
extensions or from external programs (for example DirXmanage).

File Handler

Reads and writes files (for example LDIF, CSV or XML files) as specified in the attribute
configuration to and from the storage area. It is called from the Tcl extensions. It is able to
convert data from or to the internal used character set utf-8 to any of the provided
character sets.

Code conversions

Code conversions are controlled by:

• The metacp specific Tcl variable _localcode that can be used to set a global character
set for all file handling (a default value). As value you can choose any of the provided
character sets. For compatibility reasons the values UTF8, LATIN1 and PC850 are still
supported.

• The metacp specific settings of the -encoding parameter of the meta openconn and
meta readattrconf commands for individual setting of character sets for specific files.

• The Tcl specific settings of the system encoding (encoding system).

• The Tcl specific settings of the different channels (stdin, stdout or individual channel
definitions). These settings can be set or retrieved via the fconfigure command.

The next paragraphs describe typical applications of these settings.

Transfer of information between LDAP and utf-8 coded files

Set the _localcode variable to utf-8.

When reading files (4), the File Handler reads the file into the storage area of the Tcl arrays
while no conversion is done. Internal Tcl routines can now work on these arrays (for
example mapping functions (5)). The Tcl arrays can be accessed by the Translation API (6) to
move the data to the LDAP API (7) and from there to the LDAP server (not shown in the
picture). Because the data is already in utf-8 format, no conversion is performed.

286



Note: This mode is the fastest mode available. If you need high performance
synchronizations, you should keep all data always in utf-8 format.

When writing files, the data is retrieved from the LDAP server 7) - in utf-8 format) via the
Translation API into the storage area (6). Internal Tcl routines can now work on these arrays
(for example mapping functions - (5. The File Handler can access the Tcl arrays and write it
to files ((4) - no conversion is performed).

Transfer of information between LDAP and files codes in another
character set

Set the _localcode variable to the required character set (for example Latin1).

When reading files, the File Handler reads the file (4) into the storage area of the Tcl arrays
while a conversion from the defined character set to utf-8 is done. Internal Tcl routines can
now work on these arrays ((5) - for example mapping functions). The Tcl arrays can be
accessed by the Translation API (6) to move the data to the LDAP server (7). Because the
data is already in utf-8 format, no conversion is performed.

When writing files, the data is retrieved from the LDAP server ((7) in utf-8 format) via the
Translation API into the storage area (6). Internal Tcl routines can now work on these arrays
((5) - for example mapping functions). The File Handler can access the Tcl arrays (4) and
write it to files while converting it from utf-8 to the required character set.

Converting files from one character set to another

If you want to convert a file coded in character set A to a file in character set B you have to
set the individual -encoding parameters for the meta openconn and meta readattrconf
commands.

For example:

• Open the tagged source file mysourcefile.data with character set iso-8859-6 with the
command:

meta openconn -type FILE \
-file mysourcefile.data \
-mode READ \
-format TAGGED \
-encoding iso-8859-6 \
-attrconf ah \
-conn ch

• You can read the data from the file to the metacp storage area. It is automatically
converted from iso-8859-6 to utf-8 characters.

• Perform all necessary handling of the Tcl variables and fields (all in utf-8 format) like
mapping routines and other issues.

• Open the untagged target file mytargetfile.data with character set unicode with the
command:

287



meta openconn -type FILE \
-file msexch.data \
-mode WRITE \
-format NON-TAGGED \
-encoding unicode \
-attribute {o ou sn givenName telephoneNumber facsimileTelephoneNumber} \
-attrconf ah \
-conn ch

• Write the information to the output file. The utf-8 characters are automatically
converted to Unicode characters (in this example).

• Close the files as usual.

Interactive operation from a terminal window

For compatibility reasons you can set the _localcode variable to PC850 in a DOS box (this is
no longer required because Tcl converts the terminal input and output automatically from
and to utf-8 format).

You can use the escape sequences described in the next chapter to input Unicode or Hex
characters in your input strings.

The commands, which are input at the terminal window, are sent to the Translation API
and processed there. For example you can enter a search request to the LDAP server. After
conversion from the terminal character set (1), all parameters are handled in utf-8 format
and transferred to the LDAP server (7). The search result is returned also in utf-8 format (7)
and converted to the terminal character set (1). Output conversion to the screen can result
in the message ‘Not convertible’ if utf-8 characters are contained which cannot be
represented with the terminal character set.

You can redirect the output to a file (2) where you can define any character set you want
(use the fconfigure channel -encoding encoding command for this purpose - details see
next chapter).

If you want to use the source command with command files not in the format of the
terminal window, you have to read the file content into a variable and evaluate it afterwards
(see the Tcl documentation for details). A sample routine dxm_source to perform this task
is contained in the DirX Identity Connectivity Configuration under Configuration → Tcl →
Other Scripts → Common Script.

Directly programmed code conversions

If you intend to create files directly (3) from the content in the storage area 5) or (7, you can
open channels to those files and set the character set with the fconfigure -encoding
command for each of them (see the next chapter for details).

You can also access the storage area via Tcl commands and perform character set
conversions directly in memory 5) or (7.Be aware not to send variables other than utf-8
coded ones to the operating system (stdin, stdout).This will lead to strange results.

288



External access of the Translation API

External programs can access the translation API directly (B).In this case automatic code
conversions based on a special interface switch (_localstrings - not used by metacp) can be
performed.If _localstrings is set to true, no conversion is performed (the strings are
assumed to be in utf-8 format), otherwise a transformation from Latin1 to utf-8 is done.

The DAP functionality at the Translation API is only available for compatibility reasons.

B.3. Tcl Features
Tcl has changed the internal representation of characters to utf-8/Unicode, i.e. it assumes
to be all strings in this format when conversions have to be done to the operating system.

Unicode is a two byte (16 bit) representation used at the operating / user interface level.

utf-8 is a representation of Unicode, which is identical for all characters from 00 to 7F to the
ASCII character set.All other Unicode characters are represented by a 1- to 3-byte sequence
with the most significant bit of the first character set.Tcl handles these character sequences
as one character when calculating strings (for example in the length command).

Therefore, utf-8 is fully compatible to all scripts and strings that only use the ASCII
character set.

Defining Unicode Characters

You can define Unicode characters in strings in the form "\udddd" (for example "\u592a"
represents a Chinese glyph and "\u0041" represents the glyph "A"). To input utf-8 characters
you have to use the method for Unicode characters.

For single byte characters you can use the representation "\xdd" where Tcl assumes the
first byte to be zero (for example "\x41" represents the glyph "A"). In this case Tcl has the
behaviour that the \x mode does only end when a character not equal a to f is input.
Therefore you must input all following characters in the \x mode if they are in the range a to
f.

Examples:

\xfc\x62\x65l results in the German word übel (b and e are in the range a to f, l is not).

f\xfcndig results in the German word fündig (n is not in the range a to f).

Tcl has built in functionality for about 50 common character encodings. You can display the
available encodings with the command:

encoding names

Important encodings are:

• ascii - pure ascii (single-byte)

• utf-8 - the internal character set of Tcl (multi-byte)

289



• unicode - the Unicode character set (two-byte)

• cp850 - the PC DOS character set for DOS shells (single-byte)

• iso8859-1 - the Latin-1 (Windows) character set (single-byte)

Channel Based Conversion

You can define a character encoding for each input / output channel:

fconfigure channelid -encoding encoding

Example:

set fd [open $file r]
fconfigure $fd -encoding shiftjis

Tcl now converts automatically all shiftjis coded characters (shiftjis is a widely used
Japanese character set) from the file to the internal utf-8 format.

The Tcl source command always reads files using the system encoding.

You can check the encoding for a specific channel with the command:

fconfigure channelid

Example:

fconfigure stdin
fconfigure $fd

in a DOS box the encoding is set to cp850 (which is the PC850 character
set).

System Encoding

The system encoding is the character encoding used by the operating system. Tcl
automatically handles conversions between utf-8 and the system encoding when
interacting with the operating system.

Tcl usually can determine a reasonable default system encoding based on the platform and
locale settings. If not, it uses ISO8859-1 (Latin1) as default setting.

You can check the actual system encoding with

encoding system

You can redefine the system encoding with

290



encoding system encoding

This is not recommended because the interaction of the system could not work correctly.
Use the fconfigure channelid -encoding encoding command instead.

String Conversion

Strings can be converted with the functions:

encoding convertfrom
encoding convertto

Example:

set ha [encoding convertfrom utf-8 "\xc3\xbc"]

On a DOS terminal window this should result in the echoed output "ü".

B.4. Character Sets
Tcl 8.3 supports a variety of different encodings. (see install_path\lib\tcl8.3\encoding (on
Windows) or install_path/lib/tcl8.3/encoding (on UNIX)).The encodings listed in these
encoding files can be used in the _localcode variable by dropping the file suffix ".enc".

Example:

Encoding file name: cp850.enc
_localcode must be set to "cp850".

The following character sets or code sets are available:

ascii

big5

cp437
cp737
cp775
cp850 (also PC850 for use in _localcode variable)
cp852
cp855
cp857
cp860
cp861
cp862
cp863
cp864
cp865
cp866

291



cp869
cp874
cp932
cp936
cp949
cp950
cp1250
cp1251
cp1252
cp1253
cp1254
cp1255
cp1256
cp1257
cp1258

dingbats

euc-cn
euc-jp
euc-kr

gb12345
gb1988
gb2312

identity

iso2022
iso2022-jp
iso2022-kr
iso8859-1 (also Latin1 for use in _localcode variable)
iso8859-2
iso8859-3
iso8859-4
iso8859-5
iso8859-6
iso8859-7
iso8859-8
iso8859-9

jis0201
jis0208
jis0212

koi8-r

ksc5601

macCentEuro
macCroatian

292



macCyrillic
macDingbats
macGreek
macIceland
macJapan
macRoman
macRomania
macThai
macTurkish
macUkraine

shiftjis

symbol

unicode

utf-8 (also UTF8 for use in _localcode variable)

For compatibility reasons the values UTF8, LATIN1 and PC850 are also
supported for the _localcode variable.

You can extend the available character sets by writing your own character
conversion tables. See the original Tcl 8.3 documentation for details.

293



DirX Product Suite
The DirX product suite provides the basis for fully integrated identity and access
management; it includes the following products, which can be ordered separately.

 DirX Identity

DirX Identity provides a comprehensive,
process-driven, customizable, cloud-
enabled, scalable, and highly available
identity management solution for
businesses and organizations. It provides
overarching, risk-based identity and access
governance functionality seamlessly
integrated with automated provisioning.
Functionality includes lifecycle
management for users and roles, cross-
platform and rule-based real-time
provisioning, web-based self-service
functions for users, delegated
administration, request workflows, access
certification, password management,
metadirectory as well as auditing and
reporting functionality.

 DirX Directory

DirX Directory provides a standards-
compliant, high-performance, highly
available, highly reliable, highly scalable, and
secure LDAP and X.500 Directory Server and
LDAP Proxy with very high linear scalability.
DirX Directory can serve as an identity store
for employees, customers, partners,
subscribers, and other IoT entities. It can also
serve as a provisioning, access management
and metadirectory repository, to provide a
single point of access to the information
within disparate and heterogeneous
directories available in an enterprise
network or cloud environment for user
management and provisioning.

 DirX Access

DirX Access is a comprehensive, cloud-ready,
scalable, and highly available access
management solution providing policy- and
risk-based authentication, authorization
based on XACML and federation for Web
applications and services. DirX Access
delivers single sign-on, versatile
authentication including FIDO, identity
federation based on SAML, OAuth and
OpenID Connect, just-in-time provisioning,
entitlement management and policy
enforcement for applications and services in
the cloud or on-premises.

 DirX Audit

DirX Audit provides auditors, security
compliance officers and audit
administrators with analytical insight and
transparency for identity and access. Based
on historical identity data and recorded
events from the identity and access
management processes, DirX Audit allows
answering the “what, when, where, who and
why” questions of user access and
entitlements. DirX Audit features historical
views and reports on identity data, a
graphical dashboard with drill-down into
individual events, an analysis view for
filtering, evaluating, correlating, and
reviewing of identity-related events and job
management for report generation.

For more information: support.dirx.solutions/about

294

https://support.dirx.solutions/about


Eviden is a registered trademark © Copyright 2025, Eviden SAS – All rights reserved.

Legal remarks

On the account of certain regional limitations of sales rights and service availability,
we cannot guarantee that all products included in this document are available
through the Eviden sales organization worldwide. Availability and packaging may
vary by country and is subject to change without prior notice. Some/All of the features
and products described herein may not be available locally. The information in this
document contains general technical descriptions of specifications and options as
well as standard and optional features which do not always have to be present in
individual cases. Eviden reserves the right to modify the design, packaging,
specifications and options described herein without prior notice. Please contact your
local Eviden sales representative for the most current information. Note: Any
technical data contained in this document may vary within defined tolerances.
Original images always lose a certain amount of detail when reproduced.

295


	Meta Controller Reference
	Copyright
	Table of Contents
	Preface
	DirX Identity Documentation Set
	Notation Conventions
	1. DirX Identity Commands
	1.1. metacp
	1.1.1. ats (metacp)
	1.1.2. ldapargs (metacp)
	1.1.3. meta (metacp)
	1.1.4. obj (metacp)
	1.1.5. util (metacp)

	1.2. metacpdump
	1.3. metahubdump

	2. Attribute Configuration File Format
	2.1. Attribute Definition Fields
	2.1.1. Abbreviation
	2.1.2. Name
	2.1.3. Prefix
	2.1.4. Suffix
	2.1.5. Attribute Length
	2.1.6. Multi-Valued Attribute Separator
	2.1.7. Matching Rule
	2.1.8. Encryption

	2.2. Global Information Fields
	2.2.1. Record Separator
	2.2.2. Field Separator
	2.2.3. Prefix (Base-64)
	2.2.4. Comment
	2.2.5. Continuation Line
	2.2.6. Enclosing Sequence
	2.2.7. Operation Code Field
	2.2.8. Add Modification Field
	2.2.9. Skip Lines
	2.2.10. Replace Modification Field
	2.2.11. Delete Modification Field
	2.2.12. New RDN Field
	2.2.13. Delete Old RDN Field
	2.2.14. New Superior Field
	2.2.15. Modification Separator
	2.2.16. Add Op Code
	2.2.17. Delete Op Code
	2.2.18. Modify Op Code
	2.2.19. Modify DN Op Code
	2.2.20. Modify RDN Op Code
	2.2.21. Ignore Empty Value


	3. Directory Data File Formats
	3.1. Tagged Data File Format
	3.2. Untagged Data File Format
	3.3. LDIF Format
	3.3.1. LDIF Content Format
	3.3.2. LDIF Change Format
	3.3.2.1. Add Directory Entry Format

	3.3.3. Delete Directory Entry Format
	3.3.4. Modify Entry Format
	3.3.4.1. Add Attribute Value Structure
	3.3.4.2. Delete Attribute and Delete Attribute Value Structure
	3.3.4.3. Replace Attribute Value Structure

	3.3.5. Modify Distinguished Name/Modify Relative Distinguished Name Format

	3.4. Extensible Markup Language (XML) Format
	3.4.1. Directory Service Markup Language (DSML V1) Format
	3.4.2. Flat XML Format


	4. ChangeLog Data Handling
	4.1. DirX ChangeLog Format
	4.2. iPlanet and OID Formats
	4.2.1. Add Object Format
	4.2.2. Delete Object Format
	4.2.3. Modify Object Formats
	4.2.4. Modify DN Format


	5. String Representation for LDAP Binds
	5.1. Simple and Structured Attributes
	5.1.1. Attribute Types
	5.1.2. Simple Attribute Values
	5.1.3. Structured Attribute Values
	5.1.4. Attribute Lists for Simple and Structured Attributes
	5.1.5. Attribute Values in a File
	5.1.6. Binary Attribute Values

	5.2. Distinguished Names
	5.3. Search Filters
	5.3.1. Search Filter Expression Example

	5.4. Reserved Attribute Characters
	5.5. Attribute Syntax
	5.5.1. Undefined Types

	5.6. String Representations for Simple Attribute Syntaxes
	5.6.1. Attribute Type Syntax
	5.6.2. Bit String Syntax
	5.6.3. Boolean Syntax
	5.6.4. Object ID Syntax
	5.6.5. Generalized Time Syntax
	5.6.6. IA5 String Syntax
	5.6.7. Integer String Syntax
	5.6.8. Numeric String Syntax
	5.6.9. Preferred Delivery Method Syntax
	5.6.10. Printable String Syntax
	5.6.11. UTC Time Syntax

	5.7. String Representations for Structured Attribute Syntaxes
	5.7.1. Attribute-Type-Description
	5.7.2. Object-Class-Description
	5.7.3. OR-Address
	5.7.4. Facsimile-Telephone-Number
	5.7.5. Name-And-Optional-UID
	5.7.6. Postal-Address
	5.7.7. Teletex-Terminal-Identifier
	5.7.8. Telex-Number


	6. DirX Identity Program Files
	6.1. Logging Configuration Files for metacp
	6.2. Directory Client Configuration File
	6.3. SSL/TLS Certificate Database
	6.4. SSL/TLS Key Database
	6.5. IDMS Configuration and Key Material Files

	7. DirX Identity Environment Variables
	8. Directory Synchronization Templates
	8.1. Import from an LDIF Content File
	8.1.1. Files
	8.1.2. Synchronization Profile Structure
	8.1.3. Customizing This Synchronization Template

	8.2. Export to an LDIF Content File
	8.2.1. Files
	8.2.2. Synchronization Profile Structure
	8.2.3. Customizing This Synchronization Template


	9. Data Format Handling Procedures
	9.1. Handling XML Files
	9.1.1. Reading an XML Data File
	9.1.2. Writing an XML Data File

	9.2. Handling ChangeLogs
	9.2.1. ChangeLog Sample Code


	Appendix A: Country Codes
	Appendix B: Code Conversion
	B.1. Basic Usage
	B.2. Expert Usage
	B.3. Tcl Features
	B.4. Character Sets

	Legal Remarks

