=VID&N

Identity and Access Management

DirX Identity

Java Programming in DirX Identity
Version 8.10.13, Edition October 2025




All product names quoted are trademarks or registered trademarks of the
manufacturers concerned.

© 2025 Eviden

All Rights Reserved

Distribution and reproduction not permitted without the consent of Eviden.



Table of Contents

Copyright

Preface

DirX Identity Documentation Set

Notation Conventions

1. Overview

2.

3.

Using the Programming Environment

2.1. About the Development Environment

2.2. Debugging
2.2.1. Debugging in 1dS-J
2.2.2. Debugging in Tomcat

Extending Provisioning Workflows

3.1. Prerequisites

3.2. Documentation
3.2.1. DirX Identity Connectivity Administration Guide
3.2.2. DirX Identity Application Development Guide
3.2.3. DirX Identity Integration Framework Guide
3.2.4. JavaDoc

3.3. Training

3.4. Writing a Custom Mapping

3.5. Writing a User Hook

3.6. Writing a Connector Filter

3.7. Hints, Tips and Tricks

. Extending Password Synchronization Workflows

4.1. Prerequisites

4.2. Documentation
4.2.1. DirX Identity Connectivity Administration Guide
4.2.2. DirX Identity Application Development Guide
4.2.3. JavaDoc

4.3. Writing a User Hook

. Extending Event-based Processing Workflows

5.1. Prerequisites
5.2. Documentation
5.2.1. DirX Identity Application Development Guide
5.2.2. Java Documentation
5.3.Training
5.4. Examples
5.5. Hints, Tips and Tricks
5.5.1. Job Configuration
55.2. Input Events

O O O © W 0 W 0 W 0 3o o o 0 Ut W N o =

O T O rAANIAITITNIONOONON OO O



6. Extending Request Workflows

6.1. Prerequisites
6.2. Documentation
6.2.1. DirX Identity Application Development Guide
6.3. Interfaces
6.4. Training
6.5. Examples
6.6. Hints, Tips and Tricks
. Extending Web Services
7.1. Prerequisites
7.2. Documentation
7.2.1. DirX Identity Integration Framework Guide
7.3. Interfaces
7.4. Training
7.5. Examples
. Implementing Consistency Rules
8.1. Prerequisites
8.2. Documentation
8.2.1. DirX Identity Provisioning Administration Guide
8.2.2. DirX Identity Customization Guide
8.3. Training
8.4. Examples
8.5. Hints, Tips and Tricks
8.5.1. Using Consistency Rules in Event-based Operation
8.5.2. Testing a Consistency Rule
. Implementing a Custom Connector (General)
9.1. Prerequisites
9.2. Documentation
9.2.1. DirX Identity Integration Framework Guide
9.2.2. JavaDoc
9.3. Training
9.4. Examples
9.5. Hints, Tips and Tricks
9.5.1. Test
9.5.2. Timeout

10. Implementing a RESTful Connector

10.1. Documentation

10.2. Workflow Configuration and Connector Attribute Handling

10.2.1. Configuring All Entry Types
10.2.1.1. Handling the Entry Identifier
10.2.1.2. Distinguishing Users and Groups
10.2.1.3. Searching All Entries of a Type

19
19
19
19
19

20

20

20
21
21
21
21
21
21
22
23
23
23
23
23
23
23
24
24
24
27
27
27
27
27
27
27
27
28
29
31
31
31
31
31
31
32



10.2.1.4. Searching an Entry with ID
10.2.1.5. Handling Deleted Entries
10.2.2. Configuring Accounts
10.2.2.1. Handling the Logon Name
10.2.2.2. Handling Enable / Disable
10.2.3. Configuring Account — Group Memberships
10.2.4. Configuring the Connector
10.3. Connector Structure
10.3.1. REST-Specific Interfaces
10.3.2. Add User
10.3.3. Search
10.3.3.1. First Search
10.3.3.2. Retrieving Subsequent Pages
10.3.4. Read an Entry
10.4. Sample Connector
10.5. Authentication
10.6. ISpmIRequestTransformer Interface
10.7. ICmdProducer Interface
10.8. IRESTSender Interface
10.8.1. Interface Methods
10.8.2. CXFRSSender Implementation
10.9. IResponseEvaluator Interface
10.10. REST Utilities
10.11. SPML and Framework Utilities
10.12. Examples
11. Using the User LDAP Lock
Legal Remarks

22
32
32
32
33
33
33
35
35
36
39
39
40
41
42
42
43
43
YA
YA
45
45
46
46
47
48
50



Preface

This document describes a set of use cases that explain how to use specific features of DirX
Identity. It helps users to model their use case with DirX Identity and to set up and run their
DirX Identity system.

This document explains how to program Java extensions for DirX Identity. It consists of the
following chapters.

- Chapter 1 provides an overview of the described use cases.

- Chapter 2 explains how to work with the programming environment.

- Chapter 3 explains how to extend real-time workflows.

- Chapter 4 describes how to create Java-based extensions for password synchronization
workflows.

- Chapter 5 describes how to implement and manage user hooks for event-based
processing workflows.

- Chapter 6 describes how to extend request workflows.

- Chapter 7 provides information about web service extensions.
- Chapter 8 describes how to implement consistency rules.

- Chapter 9 describes how to implement a custom connector.

- Chapter 10 describes how to implement a RESTful connector.

- Chapter 11 describes how to use the User LDAP lock feature in Java classes and Java
scripts.


java-programming/ch1_overview.pdf
java-programming/ch2_using-IDE.pdf
java-programming/ch3_extending-prov-wf.pdf
java-programming/ch4_extending-pwsync-wf.pdf
java-programming/ch5_extending-event-wf.pdf
java-programming/ch6_extending-req-wf.pdf
java-programming/ch7_extending-web-services.pdf
java-programming/ch8_implementing-consistency-rules.pdf
java-programming/ch9_implementing-custom-connector.pdf
java-programming/ch10_implementing-restful-connector.pdf
java-programming/ch11_ldap-lock.pdf

DirX Identity Documentation Set

The DirX Identity document set consists of the following manuals:

- DirX Identity Introduction. Use this book to obtain a description of DirX ldentity
architecture and components.

- DirX Identity Release Notes. Use this book to understand the features and limitations of
the current release. This document is shipped with the DirX Identity installation as the
file release-notes.pdf.

- DirX Identity History of Changes. Use this book to understand the features of previous
releases. This document is shipped with the DirX Identity installation as the file history-
of-changes.pdf.

- DirX Identity Tutorial. Use this book to get familiar quickly with your DirX Identity
installation.

- DirX Identity Provisioning Administration Guide. Use this book to obtain a description of
DirX ldentity provisioning architecture and components and to understand the basic
tasks of DirX Identity provisioning administration using DirX ldentity Manager.

- DirX Identity Connectivity Administration Guide. Use this book to obtain a description of
DirX Identity connectivity architecture and components and to understand the basic
tasks of DirX ldentity connectivity administration using DirX Identity Manager.

- DirX Identity User Interfaces Guide. Use this book to obtain a description of the user
interfaces provided with DirX Identity.

- DirX Identity Application Development Guide. Use this book to obtain information how
to extend DirX Ildentity and to use the default applications.

- DirX Identity Customization Guide. Use this book to customize your DirX Identity
environment.

- DirX Identity Integration Framework. Use this book to understand the DirX Identity
framework and to obtain a description how to extend DirX Identity.

- DirX Identity Web Center Reference. Use this book to obtain reference information
about the DirX Identity Web Center.

- DirX Identity Web Center Customization Guide. Use this book to obtain information
how to customize the DirX Identity Web Center.

- DirX Identity Meta Controller Reference. Use this book to obtain reference information
about the DirX Identity meta controller and its associated command-line programs and
files.

- DirX Identity Connectivity Reference. Use this book to obtain reference information
about the DirX Identity agent programs, scripts, and files.

- DirX Identity Troubleshooting Guide. Use this book to track down and solve problems in
your DirX Identity installation.

- DirX Identity Installation Guide. Use this book to install DirX Identity.

- DirX Identity Migration Guide. Use this book to migrate from previous versions.


introduction:prf_identintroduction.pdf
release-notes:ReleaseNotes.pdf
release-notes:HistoryOfChanges.pdf
tutorial:prf_identtutorial.pdf
prov-admin-guide:prf_identprovadm.pdf
conn-admin-guide:prf_connectivity.pdf
user-interfaces-guide:prf_identgui.pdf
appl-dev-guide:prf_appldevgd.pdf
custom-guide:prf_identprovcustom.pdf
integration-framework:prf_identframework.pdf
web-center-ref:prf_identwebref.pdf
web-center-custom-guide:prf_identwebcustom.pdf
metacp-ref:prf_identcontref.pdf
conn-ref:prf_identagent.pdf
troubleshooting-guide:prf_identtrouble.pdf
install-guide:prf_install.pdf
migration-guide:prf_identmig.pdf

Notation Conventions

Boldface type
In command syntax, bold words and characters represent commmands or keywords that
must be entered exactly as shown.

In examples, bold words and characters represent user input.

Italic type
In command syntay, italic words and characters represent placeholders for information
that you must supply.

[]

In command syntax, square braces enclose optional items.

{}

In command syntax, braces enclose a list from which you must choose one item.

In Tcl syntax, you must actually type in the braces, which will appear in boldface type.

In command syntax, the vertical bar separates items in a list of choices.

In command syntax, ellipses indicate that the previous item can be repeated.

userlD_home_directory

The exact name of the home directory. The default home directory is the home directory of
the specified UNIX user, who is logged in on UNIX systems. In this manual, the home
pathname is represented by the notation user/D_home_directory.

install_path

The exact name of the root of the directory where DirX Identity programs and files are
installed. The default installation directory is userlD_home_directory/DirX Identity on UNIX
systems and C:\Program Files\DirX\Identity on Windows systems. During installation the
installation directory can be specified. In this manual, the installation-specific portion of
pathnames is represented by the notation install_path.

dirx_install_path

The exact name of the root of the directory where DirX programs and files are installed. The
default installation directory is userlD_home_directory/DirX on UNIX systems and
C:\Program Files\DirX on Windows systems. During installation the installation directory
can be specified. In this manual, the installation-specific portion of pathname is
represented by the notation dirx_install_path.

dxi_java_home

The exact name of the root directory of the Java environment for DirX Identity. This location
is specified while installing the product. For details see the sections "Installation" and "The
Java for DirX |dentity".

tmp_path



The exact name of the tmp directory. The default tmp directory is /tmp on UNIX systems. In
this manual, the tmp pathname is represented by the notation tmp_path.

tomcat_install_path
The exact name of the root of the directory where Apache Tomcat programs and files are
installed. This location is defined during product installation.

mount_point
The mount point for DVD device (for example, /cdrom/cdromO).



1. Overview

You can customize DirX Identity extensively using various methods like schema extensions,
object descriptions and setting options and parameters through wizards or object pages.

If these methods do not meet your customization requirements, DirX Identity provides
mechanisms for customizing DirX Identity features through Java programming.

This document explains the general programming environment and the following specific
use cases:

- Extending real-time workflows

- Extending event maintenance workflows

- Extending request workflows

- Extending Web Services

- Implementing operations and activities for consistency workflows

- Implementing a custom connector

- Implementing a Representational State Transfer (RESTful) connector

Note that we do not repeat information that is available in other parts of the DirX Identity
documentation. Instead, we reference it.

Most use cases comprise these chapters:

- Prerequisites

- Documentation
- Interfaces

- Training

- Examples

- Hints, tips and tricks



2. Using the Programming Environment

This chapter describes how to work with the programming environment.

2.1. About the Development Environment

The DirX Identity development team uses Eclipse for Java development and Apache Ant for
building the jar files. Therefore, delivered projects are Eclipse projects and you will often
find a build.xml file for building the project with Ant. You can download the latest Eclipse
version from http://www.eclipse.org/downloads/ and Apache Ant from
http://ant.apache.org/bindownload.cgi.

See the extensive Eclipse Help for instructions on how to set up a Java project and work
with Eclipse.

You can use other integrated development environments (IDEs) such as NetBeans for Java
and JavaScript development, but this document does not provide any additional hints
about their use.

Since most members of the DirX Identity development team work in a Windows
environment, file paths are given in Windows notation.

2.2. Debugging

To debug a standalone application that you can start directly with Eclipse, simply follow the
Eclipse documentation.

2.2.1. Debugging in IdS-J

To debug your classes in the Java Server 1dS-J, you need to:

- Set up a batch file debugServer.bat from runServer.bat.

- Create an Eclipse Debug Configuration for a Remote Java Application.

To run the IdS-J server in debug mode, start the server via a batch file rather than as a
service. Copy the file runServer.bat in the folder install_path\ids-j\bin to a new file, for
example debugServer.bat. Uncomment the line that sets the debug options. The line now
reads:

SET debug=-DIDM_DEBUG=0ON -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,address=48174,suspend=n,server=y

This means you can now access the debug port 48174. Of course, you can change the port
if needed.

Next, create a Debug Configuration for the |dS-J server in Eclipse. From the Run menu,
select Debug Configurations ... In the left-hand tree, select Remote Java Application and
then click New. Now you can enter the properties for your Debug Configuration. Select the
project with your Java sources under test. Keep Standard (Socket Attach) as the


http://www.eclipse.org/downloads/
http://ant.apache.org/bindownload.cgi

connection type. For the host, enter the IP address or DNS name where the |1dS-J server is
running (usually localhost) and the port that you entered in the file debugServer.bat,
typically 48174.

Note that you can debug an |dS-J server running on a separate system, even running in a
virtual machine (VM), provided that the firewall settings permit remote access to the debug
port.

To debug, first start the server by running the batch file debugServer.bat and then click
Debug in the Eclipse Debug Configuration. The Eclipse Debug perspective should open
and you should see the IdS-J threads running.

2.2.2. Debugging in Tomcat

To debug your classes in Apache Tomcat (especially Web Center and SPML Provisioning
Services user hooks), there are the following scenarios:

1. Tomcat is installed as a service.

2. You have installed the zip version of Tomcat and start it via catalina.bat.

If you have installed Tomcat as a service, open the Tomcat configuration via Start >
Programs > Apache > Configure Tomcat. Select the java tab and then enter the following
JVM options analogous to debugging the IdS-J:

- -Xdebug

- -Xrunjdwp:transport=dt_socket,address=48175,server=y,suspend=n
Make sure you are using a port that is not used by another application.

Set up an Eclipse Debug Configuration the same way as described for |dS-J, but use
another name for your configuration and enter the correct debug port for Tomcat. For
more details, see http://tomcat.apache.org/fag/development.htmli#rd.

If you start your Tomcat via a batch file, set the following environment variables:

- JPDA_ADDRESS=8000 (or another value such as 48175)
- JPDA_TRANSPORT=dt_socket

Start Tomcat using catalina jpda start.

An open source Eclipse plug-in is also available (http://www.eclipsetotale.com/
tomcatPlugin.html) that allows you to start, stop and debug Tomcat from within Eclipse in
addition to creating war files and configuring Tomcat easily.


http://tomcat.apache.org/faq/development.html#rd
http://www.eclipsetotale.com/tomcatPlugin.html
http://www.eclipsetotale.com/tomcatPlugin.html

3. Extending Provisioning Workflows

This chapter describes how to create Java-based extensions for real-time workflows. This
comprises only provisioning workflows. For information on extending password
synchronization or event-based processing workflows, see the next chapters.

You can extend provisioning workflows via user hooks, connector filters or custom
mapping definitions.

3.1. Prerequisites

We assume that you are familiar with Java and with building Java projects and that Ant
and a Java compiler are installed and in your path.

3.2. Documentation

To understand this issue, we recommend that you read the following chapters:

3.2.1. DirX Identity Connectivity Administration Guide

Managing Provisioning Workflows > Managing Java-based Provisioning Workflows
Read the entire chapter to understand the basics of real-time provisioning workflows.
Managing Passwords

If you intend to use password management, you should read this chapter as an
introduction.

3.2.2. DirX Identity Application Development Guide

Understanding the Default Application Workflow Technology > Understanding Java-based
Workflows

Read the entire chapter, especially these sections:

Java-based Workflow Architecture - provides all information for understanding real-time
provisioning workflow features and architecture.

Customizing Java-based Workflows - explains in detail how to customize real-time
provisioning workflows. Here you can find three sections:

Using User Hooks - explains how to use user hooks for customization.

Mapping with Java Classes - describes how to build custom mapping definitions. The
section Testing the Real-Time Workflow Mapping Classes shows how to perform offline
testing.

Using Connector Filters - explains how to use connector filters to intercept all operations to



and from a connector.

3.2.3. DirX Identity Integration Framework Guide

For more details on the interfaces for real-time workflows, see the chapter Java Connector
Integration Framework.

3.2.4. JavaDoc

For a detailed description of the relevant Java interface, see the Java documentation in the
folders Documentation/DirXldentity/ConnFrameWork and
Documentation/DirXldentity/RealtimeWorkflows on the product DVD.

You can also find information about reading the configuration and working with requests
and responses in this guide.

Most of the classes reflecting SPML/DSML are generated from the SPML
schemata. Therefore, the inline java documentation of these classes does
not help. For understanding them, please read the XML schemata and
check request and response samples.

3.3. Tralning
View two webinars that explain this topic:
Real-time Workflows - Part |

Real-time Workflows - Part Il

you can download webinars from our support portal. If you do not have
access to the support portal, contact your responsible support organization.

3.4. Writing a Custom Mapping
You can find sample sources in the following folder of your installation DVD:
Additions\RealtimeWorkflows\samples

The Java Eclipse Project dxmTestMapping can help you develop and test your Java
mapping classes needed for a specific real-time workflow. The project is delivered on the
DirX Identity DVD as a zip file in Additions/MappingTest and can be unpacked to any
location in the file system. It has all the necessary libraries in its own subfolder and is
independent of any installed DirX Identity files.

3.5. Writing a User Hook

For samples of user hooks, review the contents of the
Additions/RealtimeWorkflows/samples folder on the product DVD. They demonstrate



basic user hook handling and provide several valuable scenarios, such as working with
blacklists in LDAP. The sub-folder userhooks provides all user hook implementations that
are used in the default provisioning workflows.

One important sample demonstrates how to send an email notification from a user hook.
The Java class notifyMailAccountCreationUserHook.java is contained in the sub-folder
userhooks/common. It is used in the sample workflow for Extranet Portal for mail
notification of account creations.

See the chapter "Loading the Connectivity Scenario" in the DirX Identity Tutorial for more
information about the My-Company scenario.

Read the chapter "Implementing a User Hook for Email Notifications" in the DirX Identity
Application Development Guide.

3.6. Writing a Connector Filter
A sample is provided on the product DVD in the folder:

Additions/RealtimeWorkflows/samples

3.7. Hints, Tips and Tricks

For writing mapping classes, user hooks and connector filters, we recommend starting
with the Eclipse project dxmTestMapping. Check the chapter “Testing the Real-Time
Workflow Mapping Classes” in the DirX Identity Application Development Guide.

The project is delivered on the product DVD in the Additions/Mapping Test folder together
with a readme. It allows you to test and debug your mapping class in a local environment
outside the IdS-J server.

You can develop and test in several stages:
1. Test with special EntryMappingController reading one source entry from a file and

writing the mapping result also to a file.

2. Test with the same controller, but read the source entry from the real connected
system.

3. Test with the same controller and write the modifications for the mapped entry to the
real connected system.

4. Test with the real synchronization controller (Synchronize To Target System or
Validation) as a unit test running completely in Eclipse.

Copy the appropriate configuration snippets for the connector and the mapping from DirX
Identity Manager by selecting the appropriate port entry beneath the join activity of the
workflow definition from the Content (resolved) tab. Check the system design mode in the
menu bar to see the resolved content.

After you have successfully tested your Java classes, deploy the workflow to the 1dS-J server
and test it there. If you encounter problems that cannot be solved in your local test

10



environment, start 1dS-J for debugging as described above.

Please follow also the guidelines on checking and handling timeouts in the chapter 9
“Implementing a Custom Connector”.

n



4. Extending Password Synchronization
Workflows

This chapter describes how to create Java-based extensions for password synchronization
workflows. This comprises currently only the User Password Event Manager workflow. For
information on extending event-based processing workflows, see the next chapter.

You can extend the User Password Event Manager workflow via user hooks.

4.1. Prerequisites

We assume that you are familiar with Java and with building Java projects and that Ant
and a Java compiler are installed and in your path.

4.2. Documentation

To understand this issue, we recommend that you read the following chapters:

4.2.1. DirX Identity Connectivity Administration Guide

Managing Passwords

You should read this chapter as an introduction.

4.2.2. DirX Identity Application Development Guide

Understanding the Default Application Workflow Technology -> Understanding Java-based
Workflows

Read the entire chapter, especially these sections:

Java-based Workflow Architecture - provides overall information for understanding Java-
based workflow features and architecture.

Customizing Password Synchronization Workflows - explains in detail how to customize
password synchronization workflow, namely usage of user hooks:

Using User Hooks - explains how to use user hooks for customization.

4.2.3. JavaDoc

For a detailed description of the relevant Java interface, see the Java documentation in the
folders Documentation/DirXldentity/ConnFrameWork and
Documentation/DirXldentity/RealtimeWorkflows on the product DVD.

You can also find information about reading the configuration and working with requests
and responses in this guide.

12



Most of the classes reflecting SPML/DSML are generated from the SPML
schemata. Therefore, the inline java documentation of these classes does
not help. For understanding them, please read the XML schemata and
check request and response samples.

4.3. Writing a User Hook

For samples of user hooks, review the contents of the
Additions/RealtimeWorkflows/samples folder on the product DVD.

A simple implementation of the password user hook IPasswordUserHook is available as an
abstract Java class AbstractPasswordUserHook java and is contained in the sub-folder
userhooks/common. It should be used as a common super class for custom
implementation of password user hook in order to minimize implementation effort.

13



5. Extending Event-based Processing
Workflows

This chapter describes how to implement and manage user hooks for event-based
processing workflows.

5.1. Prerequisites

We assume that you are familiar with Java and with building Java projects and that Ant
and a Java compiler are installed and in your path.

5.2. Documentation

To understand this issue, we recommend reading the following chapters.

5.2.1. DirX Identity Application Development Guide

Understanding the Default Application Workflow Technology > Understanding Java-based
Workflows

Read the entire chapter, especially these sections:

Java-based Workflow Architecture - provides all information for understanding real-time
provisioning workflow features and architecture.

Customizing Event-based Maintenance Workflows - explains in detail how to customize
event-based maintenance workflows. Here you can find three sections:

Implementing a User Hook for an Event Maintenance Workflow - explains how to create a
user hook. The section Configuring a User Hook for an Event-based Maintenance
Workflow describes how to configure an implemented user hook.

Using Event Contexts - explains some useful helper methods when working with event-
based workflow user hooks.

Deploying a User Hook - describes how to deploy an implemented and configured user
hook.

5.2.2. Java Documentation

For the Java documentation of the API, see the folder
Documentation/DirXldentity/ /EventMaintenanceWorkflows

on the product DVD.

14



5.3. Training
View the webinar that explains this topic:

Event-based Workflows

Note: you can download webinars from our support portal. If you do not have access to the

support portal, contact your responsible support organization.

5.4. Examples

For a sample implementation, see the folder "Additions/EventMaintenanceWorkflows" on

the installation media.

5.5. Hints, Tips and Tricks

To write a user hook, we recommend that you follow the same approach as for writing
mapping classes and mapping user hooks: first test and debug in your local Eclipse
environment, and then run the workflow in 1dS-J.

You can run the activity for an event-based maintenance workflow as a framework job.
Then the event maintenance controller together with your user hook runs in the Eclipse
environment and you can easily debug it.

For running such a job as a unit test in Eclipse, see the hints in the chapter on mapping
classes.

5.5.1. Job Configuration

The configuration file should have the following structure:

<job>
<controller name="EventController"”
className="com.siemens.idm. jobs.ebr.AccountEventController">
<logging level="5" filename="src.test/confs/ebr/trace.txt">
</logging>

<property name="server" value="localhost"/>

</controller>

<connector role="reader" name="EventFileReader"

</connector>
</job>

The root element <job> contains two child elements:

15



<controller> configures the event maintenance controller for users, accounts, and so on.
<connector> configures the component, which reads an input event for a file.

You can copy most of the <controller> element from the LDAP activity entry of the
appropriate workflow. In Identity Manager, navigate to the event maintenance workflow of
the appropriate object type; for example, for accounts. Beneath the workflow, select the
join activity and then open the tab with the resolved content. Here you find the XML
document that represents the activity configuration. Copy the part with the <job> element
to your configuration file. Enter the <logging> element with the log level and the name of
the log file

Use the following XML snippet for the reader configuration in your file:

<connector role="reader" name="EventFileReader"”
className="siemens.dxm.connector.framework.event.SpmlEventFileReader"”
>
<connection type="SPML"
filename="src.test/confs/ebr/request.xml">
<property name="runInParseMode" value="true" />
<property name="validate" value="false" />
</connection>

</connector>

Adapt the location of the file that contains the input events.

5.5.2. Input Events

The file with the input events has the following structure:

<events>
<addEvent
name="dxm.event.SvcTSAccount.cluster="'localhost'.resource="'cn=My-

n

Company'
</addEvent>

<modifyEvent
name="dxm.event.SvcTSAccount.cluster="localhost'.resource="'cn=My-
Company " "

</modifyEvent>

16



</events>

The root element <events> contains one or more event children. They are either
<addEvent>, <modifyEvent> or <deleteEvent>.

Each event is the extension of the respective SPMLV1 request and contains the same child
elements as the SPML request.

Each event contains the SPML <identifier> and a <source> element and optionally SPML
<operationalAttributes>. In addition, the <addEvent> contains SPML <attributes>, while the
<modifyEvent> contains SPML <modifications>.

The name attribute of the event reflects the topic of the message. It is not important for
this test configuration. The 1dS-J server evaluates it to find the appropriate workflow.

Typically the workflow will not evaluate the <source> element, but the user hook may do so
if it is of interest which component has produced the event. Here is a sample snippet:

<source application="joinEngine"
resource="cn=My-Company"
cluster="localhost”

/>

The application attribute contains the name of the sending component. The term
joinEngine is used for the provisioning workflows and indicates here that the event was
produced because the validation or synchronization workflow changed the LDAP entry.

The most important part will be the <attributes> of an <addEvent> and the <modifications>
of a <modifyEvent>. They contain the list of attributes that were changed. The actions of the
event controller and the user hook will most likely depend on them.

Here is a snippet of <attributes>:

<spml:attributes>
<spml:attr name="objectclass">
<dsml:value>dxrTargetSystemAccount</dsml:value>
<dsml:value>top</dsml:value>
</spml:attr>
<spml:attr name="description">
<dsml:value>test account created new</dsml:value>
</spml:attr>
</spml:attributes>

And here is one for <modifications>:

17



<spml:modifications>
<spml:modification name="dxrTSState" operation="replace">
<dsml:value>ENABLED</dsml:value>
</spml:modification>
</spml:modifications>

A <deleteEvent> does not contain any specific child elements; that is, no <attributes> or
<modifications>. It contains the <identifier> with the DN of the deleted entry. Here is a
sample snippet:

<spml:identifier type="urn:oasis:names:tc:SPML:1:0#DN">
<spml:id>cn=Jane Webinar3,cn=accounts,cn=New-

LDAP2,cn=Clusterl,cn=DemoCluster,cn=TargetSystems,cn=My-

Company</spml:id>

</spml:identifier>

18



6. Extending Request Workflows

This chapter describes how to extend request workflows with custom routines.

6.1. Prerequisites

We assume that you are familiar with Java and with building Java projects and that Ant
and a Java compiler are installed and in your path.

6.2. Documentation

To understand this issue, we recommend reading these chapters:

6.2.1. DirX Identity Application Development Guide

Understanding the Default Application Workflow Technology > Understanding Request
Workflows

Read the entire chapter, especially these sections:

Request Workflow Architecture - provides all information for understanding request
workflow features and architecture.

Customizing Request Workflows - explains in detail how to customize request workflows.
Here you can find these sections:

Using Variable Substitution - explains how to set variable text sections in mail texts that
are replaced during runtime.

Implementing an Activity - describes how to implement and deploy a job for a custom
activity. It especially expands on how to read configuration data and workflow objects.

Implementing a Java Class for Finding Participants - describes how to implement your
custom algorithm for finding participants.

Implementing Participant Filters and Constraints - shows how you can filter participants
and how to implement rules and constraints on participants.

6.3. Interfaces

This chapter provides information about the interfaces you can use.
For the APl documentation, consult the following folder on your DVD:

Documentation\DirXldentity\RequestWorkflows\index.html

19



6.4. Training
View the webinar that explain this topic:
Request Workflows

Note: you can download webinars from our support portal. If you do not have access to the
support portal, contact your responsible support organization.

6.5. Examples
For sample sources, see the following folder on your DVD:

Additions\RequestWorkflows\samples.

6.6. Hints, Tips and Tricks

If you need to read or write in the DirX Identity domain, you can obtain an LDAP connection
from the Java server.

For participants finder, constraint and filter, see the *Extended interfaces. They provide a
context, which provides a getter for the connection.

If you implement an activity, your job class should extend a provided Abstract Job. This also
provides the LDAP connection through a getter method. See the corresponding chapter in
the DirX Identity Application Development Guide and the sample.

There is no environment outside of 1dS-J for running and testing jobs of a request workflow,
participant finders and constraints. For information on how to debug with 1dS-J, see the
chapter "Using the Programming Environment" in this guide.

20



7. Extending Web Services

This chapter describes how to use and extend web services.

7.1. Prerequisites

We assume that you are familiar with Java and with building Java projects and that Ant
and a Java compiler are installed and in your path.

7.2. Documentation

To understand this issue, we recommend reading these chapters:

7.2.1. DirX Identity Integration Framework Guide
The Web Services chapter in this guide describes various aspects of this issue:

Authentication, Authorization, Web Services Runtime Operation, Common SPML Aspects
- provide basic information about the subject.

User Management to Groups Management - explains specific issues for specific object
types and the corresponding web services.

User Hooks - describes how to use the web services user hooks.

Using the Sample Client — provides a sample implementation that can be used as a
starting point for your custom implementation.

7.3. Interfaces

This chapter provides information about the interfaces you can use.
For a Java documentation of the user hook interfaces, see the folder
Documentation/DirXldentity/ProvisioningWebServices

on your installation media.

7.4. Training
View the webinar that explains this topic:
Web Services

Note: you can download webinars from our support portal. If you do not have access to the
support portal, contact your responsible support organization.

21



7.5. Examples

You can find a sample Java-based SOAP client that can be used as the basis for your
custom implementation in the library com.siemens.dxm.provisioning.jar (you can find the
jar file in the installation area). It contains the classes that represent all the requests and
responses.

For a sample implementation of a user hook, see the folder
Additions/ProvisioningWebServices/samples

on your installation media.

22



8. Implementing Consistency Rules

This chapter describes how to implement consistency rules.

8.1. Prerequisites

We assume that you are familiar with Java and with building Java projects and that Ant
and a Java compiler are installed and in your path.

8.2. Documentation

To understand this issue, we recommend reading these chapters:

8.2.1. DirX Identity Provisioning Administration Guide
Managing Automatic Provisioning and Consistency Checking
Read the entire chapter, especially these sections:

- Understanding Rule Types > Consistency Rules - explains the concept of consistency
rules and describes the default consistency rules delivered with the product.

- Managing Consistency Rule Operations > Using Operations Based on Java Methods -
explains the basics of Java-based operations and rules.

- Managing Consistency Rule Operations > Adding a Java Operation - explains how to
integrate your custom Java class.

8.2.2. DirX Identity Customization Guide

Writing Java Extensions

Read the section "Writing an Extension to Implement a Consistency Rule" to understand
how to build your own custom class.

8.3. Training

We do not provide any special training or webinars for this issue.

8.4. Examples

A configuration sample for the My-Company sample domain is provided in the file rules.zip
on your DVD in the folder:

Documentation\DirXldentity

You can find the corresponding description in the section "Writing an Extension to
Implement a Consistency Rule" in the chapter "Writing Java Extensions" in the DirX Identity
Customization Guide.

23



8.5. Hints, Tips and Tricks

This section gives additional hints and guidelines.

8.5.1. Using Consistency Rules in Event-based Operation

Writing consistency rules that save objects through the service layer means that each save
operation issues a corresponding event if you work with event-based workflows. Try to
minimize save operations to avoid triggering too many event-based workflows.

If you run consistency rules from event-based processing workflows, this means that
consistency rules perform save operations as well as the event-based job itself. To avoid this
problem, integrate your code into user hooks and pass the result to the event-based job.
The result is that only one save operation is performed.

8.5.2. Testing a Consistency Rule

You can write your own unit test to test your Java-based consistency rule outside the
workflow and without the rule processor. In the unit test, provide a SvcSession object to the
Identity domain and a RuleContext.

The following sample snippet shows how you can easily create a session:

/*
* Creates a session to sample domain with domain admin
* and binds.
* @return session to sample domain.
* @throws StorageException in case no bound session can be
created.
*/
private static SvcSession getDefaultSession() throws
StorageException {
SvcSession session = null;
try §
session = new SvcSession();
} catch (Exception e) {
e.printStackTrace();
throw (e instanceof StorageException) ? (
StorageException)e : new StorageException(e);
3
StorageBindProfile bp = getDefaultBindProfile();
if (session.Bind(bp) == 0) {
try §
String[] ignoreTags=new String[] {"editor"

24



, 'propertypage”,

"action" %;

String rootDN = bp.getRootDN();

session. loadConfiguration

("storage://DirXmetaRole/cn=Config.xml,cn=0bject

Descriptions,cn=Configuration, "+rootDN+"?content=dxrObjDesc”,

ignoreTags);

} catch (Exception e) {

e.printStackTrace();
throw (e instanceof StorageException) ?

(StorageException)e : new StorageException(e);

throw new StorageException("Bind failed");

return session;

5
3
else {
3
5
/**

* Produces

a default bind profile for access to sample domain.

* @return bind profile for sample domain.

*/

private static StorageBindProfile getDefaultBindProfile() {
StorageBindProfile profile = new StorageBindProfile();

profile.
profile.
profile.
profile.
profile.
profile.
profile.

setHost("localhost");

setPort(389);
setRootDN("cn=My-Company");

setUser ("cn=DomainAdmin, cn=My-Company");
setPassword("dirx");
setAuthenticationMethod("simple");
setSSL(false);

return profile;

The following snippet shows how to create a RuleContext and pass it to the Java Action

Class:

StorageObject subject = session.getObject(subjectDN);
RuleContext ruleCtx = new RuleContext();

25



26

ruleCtx.setSubject(subject);
ruleCtx.setSimulateOnly(false);

ruleCtx.setUserStorage(session);

ProvisioningServices ps = new ProvisioningServices();
ps.setContext(ruleCtx);



9. Implementing a Custom Connector
(General)

This chapter describes how to implement a custom connector.

9.1. Prerequisites

We assume that you are familiar with Java and with building Java projects and that Ant
and a Java compiler are installed and in your path.

9.2. Documentation

To understand this issue, we recommend that you read these chapters:

9.2.1. DirX Identity Integration Framework Guide

The chapter Java Connector Integration Framework provides information about the
interfaces a connector must implement and about its configuration and deployment.

9.2.2. JavaDoc

For the Java documentation of the interfaces, see the folder
Documentation/DirXldentity/ConnFrameWork on the product DVD.

The package siemens.dxm.connector.framework.util provides some helper utilities like
serialization of SPML classes and response creation.

Note that most of the classes reflecting SPML/DSML are generated from the SPML
schemata. Therefore, the inline java documentation of these classes does not help. For
understanding them, please read the XML schemata and check request and response
samples.

9.3. Training

We do not provide any special training or webinars for this issue.

9.4. Examples

For a sample connector, see the classes in the folder SampleConnector/java on the product

DVD.

9.5. Hints, Tips and Tricks

This section provides additional hints.

27



9.5.1. Test

We recommend testing the connector outside of IdS-J with a JUnit Test from within a Java
IDE such as Eclipse. For start-up, you can use the same project dxmTestMapping that is
mentioned in the section in this guide on hints for provisioning workflow extensions. You
don’t need all the included jar files, but that does not matter for development.

Test using a standalone job configuration reading requests from a file. Change the
following template to your requirements regarding file locations and connector
configuration:

<job>
<controller
className="siemens.dxm.connector.framework.DefaultControllerStandalon
e">
<logging level="9" filename="yourFolder/trace.txt">
</logging>
</controller>

<connector
role="reader"
name="SPML file reader"
className="siemens.dxm.connector.framework.SpmlFileReader">
<connection type="SPML" filename="yourFolder/request.xml">
</connection>
<property name="validate" value="false"/>

</connector>

<connector
role="connector"
className="siemens.dxm.connector.sample.SampleConnector"”
name="Sample connector">
<connection type="file"
filename="yourFolder/response.xml"
>
<property name="validate" value="false"/>
</connection>
</connector>

<connector
role="responseWriter"

name="SPML File writer"

28



className="siemens.dxm.connector.framework.test.SpmlTestWriter">
<connection type="SPML"
filename="yourFolder/receivedRsp.xml">
<property name="referencefile"
value="yourFolder/referenceRsp.xml"
/>
</connection>
</connector>
</job>

For a sample on how to run this configuration as a JUnit test, see one of the test classes of
the dxmTestMapping project; for example, TestSample.

Use several SPML request files for testing. In order to have more than one request in a file,
XML requires a root element. You can use the SPML <batchRequest> for this purpose, but
SPML allows only a restricted set of requests within the batch. Especially, the batch must
not contain a <searchRequest>. Therefore, the connector framework supports a proprietary
extension: the root element <test> allows all types of SPML requests and responses.

9.5.2. Timeout

Workflows might be cancelled due to timeout or a server shutdown. In this case, the server
performs a graceful abort and first informs all running worker threads., the server stops the
threads after the grace period is over.

The job controller (also called the join engine) handles the cancel indications: it checks
before it processes the next entry and stops when cancel has been requested.

Normally, connectors are not concerned with these issues unless they perform operations
where they need to wait for another entity; for example, network operations or a batch or
system script. In these cases, they should limit waiting time and check whether the activity
has been cancelled. They can do this by calling the isCancelled method on the task context.

A connector should implement the interface
siemens.dxm.connector.framework.DxmContext. The job controller passes the job context
via its setContext() method. The connector can get the task context by

TaskContext taskContext = (TaskContext)context.get(TaskContext.class)

The task context holds the flag indicating an abort. You can check the flag as shown in the
following code snippet:

if (((taskContext != null) && taskContext.isCancelled())
| | Thread.currentThread().isInterrupted()) 1§
// stop and return to job controller

29



A hard stop of the thread is indicated by the interrupted flag of the thread. Never ignore
InterruptedExceptions! Return immediately to the controller. Make sure you never reset
either flag!

30



10. Implementing a RESTful Connector

This chapter describes guidelines for implementing a connector for RESTful Web Services.
Please consider these guidelines, especially the ones on workflow configuration and
mMapping: most often they can be applied with only slight adaptations.

10.1. Documentation

To understand this topic, we recommend that you read Chapter 9, "Implementing a
Custom Connector (General)" in this guide and the additional documentation listed in its
"Documentation" section.

The inline Java documentation of the REST-related interfaces and implementing classes is
part of the whole connector framework in the folder
Documentation/DirXldentity/ConnFrameWork on the product media. See the section
REST framework for the REST-related interfaces and classes.

10.2. Workflow Configuration and Connector
Attribute Handling

This section provides guidelines for configuring the workflows, especially the mapping.
Please follow these guidelines unless there is an important reason not to do so.

10.2.1. Configuring All Entry Types

This section provides guidelines for configuration that apply to all entry types.

10.2.1.1. Handling the Entry Identifier

Most REST services generate a unique identifier for each entry (user, group or role) that
they create. They use it to identify the entry in service requests or in (user) attributes as a
reference to a linked entry.

The REST service returns this identifier in the response to a create request. The connector
should return it in the identifier of the Add Response with an identifier type "GenericString".
The workflow should map it to the dxrPrimaryKey Identity domain attribute. In the
mapping to the connected system, the dxrPrimaryKey is used as the identifier for all
requests except the Add. As the identifier is not initially known in Identity, the identifier in
an Add Request is left empty.

10.2.1.2. Distinguishing Users and Groups

Use operational attributes to allow the connector to distinguish operations between users
and groups. For the channel to the connected system, set the operational attribute
"objType" to the right value; use either "user" or "group". For additional types, take a value of
your own; for example, "role". Here is the snippet for the accounts channel:

31



<operationalAttrMapping mappingType="constant" name="objType">
<value>user</value>
</operationalAttrMapping>

10.2.1.3. Searching All Entries of a Type

For searching all entries of a type (for example, all users), leave the search base empty. This
means no string "all" or similar.

10.2.1.4. Searching an Entry with ID

For finding the joined entry in the connected system, use its Identifier (dxrPrimaryKey) and
pass it as the search base in the search request.

10.2.1.5. Handling Deleted Entries

If the REST service supports a delete operation, the mapping is straightforward as for other
types of systems:

If the dxrState of the ldentity entry (account or group) is DELETED, the mapping needs to
create a delete request. It performs this task by setting the request type to DELETE as in
this snippet:

targetMapResult.setRequestType(Request.Type.DELETE)

In the opposite direction from the connected system to Identity, set dxrTsState to DELETED
if the REST entry doesn’t exist or some state attribute indicates the deleted state.

Some systems do not support deleting entries. If they provide an attribute for indicating
the deleted state, the mapping is straightforward: configure a Java mapping that provides
the appropriate values for both directions. If the service does not provide this kind of an
attribute out of the box, consider either appropriating an existing attribute that is not
needed in your environment or extending the schema of the connected system to
introduce this attribute.

10.2.2. Configuring Accounts

This section provides guidelines for configuring accounts.

10.2.2.1. Handling the Logon Name

The dxrName attribute of an Identity account should contain the logon name of the user in
the connected system. The object description for the accounts must generate a unique
value. A good choice is to take the user's email address. Check the existing template
descriptions for samples.

32



10.2.2.2. Handling Enable / Disable

In principle, we distinguish between the following cases:
- The REST user contains a state attribute; for example, isSuspended.

Use a direct mapping between the Identity attributes dxrState / dxrTsState and the REST
attribute. You will typically need to write a Java mapping because the REST service will
almost never support the same values as Identity (ENABLED, DISABLED, TOBEDELETED,
etc.).

- The REST service supports suspend / enable operations.

The connector should support a virtual attribute for the state, let's say dxrState. The
mapping can be as in the case above and map the Identity states to ENABLED / DISABLED.

The connector must evaluate this attribute in SPML requests passed by the join engine and
issue the appropriate suspend / enable operations to the REST service. The connector must
also populate this state attribute with ENABLED / DISABLED when returning a
searchResultEntry. Often the REST responses contain appropriate attributes that are read-
only in these cases.

10.2.3. Configuring Account — Group Memberships

In the Identity domain, always store group memberships at the account. The referenced
attribute in the group is dxrPrimaryKey.

At the target system entry, you configure this in the Advanced tab by enabling the flag
"Reference Group from Account" and setting "Referenced property" to "dxrPrimaryKey. This
setting assumes that the identifier of the REST entry is stored in dxrPrimaryKey (as
described in previous sections) and is used in the REST service for linking users and groups.

In the workflow configuration in the Connectivity database, you need to link the members
channel from the accounts channel (General tab). In the mapping to the REST service, use
the virtual attribute "members" for the member values (that is, the values taken from
dxrPrimaryKey). The REST connector must evaluate them appropriately, as described in
the following sections.

10.2.4. Configuring the Connector

Use the existing standard names for the connector’s configuration parameters as much as
possible. Use one of the existing connectors as a template; for example, Salesforce or
Office365.

The <connection> attributes user, password, ssl, server and path contain the user’s logon
name, its password, whether to use “http” or “https”, the address of the REST service and
the relative path to the application respectively.

Authentication is often done via OAuth. In these cases, the connector must send
authentication requests to an OAuth service. The attribute authEndpoint should contain
the relative or absolute path to the OAuth service depending on whether or not it is located

33



on the same server as the "productive" REST service. The connector must identify itself as
an application and therefore provide its identifier (in OAuth, it is called the client or
application ID) and its secret (kind of password). The client ID and client secret should be
configured in the attributes clientlD and clientSecret respectively. Use the LDAP attributes
dxmClientID and dxmClientSecret to store them in the connected directory. Usually, the
connector must also provide the name of a user and a password. They should be
configured in the attributes user and password and taken from the bind profile.

If the REST service can only be accessed through a proxy, store its server and port in an
additional connected directory, reference it from the connected directory via the attribute
dxmProxyServer-DN and pass the values as proxyHost and proxyPort properties to the
connector.

Here is a sample snippet of a <connection> template with proxy and OAuth properties:

<connection
password="${DN4ID(THIS)@dxmBindProfile-DN@edxmPassword?}"
server="$$DN4ID(THIS)@dxrConnectionLink@dxmService-DNe@dxmAddress?i"
ss1="${DN4ID(THIS)@dxmSSL}"
user="$§DN4ID(THIS)@dxmBindProfile-DNe@dxmUsert" >

<property name="clientId"
value="${DN4ID(THIS)@dxrConnectionLink@dxmClientIdt" />

<property name="clientSecret"”
value="$$DN4ID(THIS)@dxrConnectionLink@dxmClientSecret}"/>

<property name="securityToken"
value="${DN4ID(THIS)@dxrConnectionLink@dxmBindProfile-
DNedxmSpecificAttributes(securitytoken)t"/>

<property name="authEndpoint"
value${DN4ID(THIS)@dxrConnectionLink@dxmSpecificAttributes(oauth_path
)Y@dxmAddresst"/>

<property name="path"
value="${DN4ID(THIS)@dxrConnectionLink@dxmSpecificAttributes(servicep
ath)i"/>

<property name="proxyHost"
value="$$DN4ID(THIS)@dxrConnectionLink@dxmProxyServer-DNedxmService-
DNedxmAddresst" />

<property name="proxyPort"
value="$$DN4ID(THIS)@dxrConnectionLink@dxmProxyServer-DN@edxmService-
DNedxmDataPortt"/>
</connection>

Only the parameters user, password, ssl, server and port are XML attributes.
The others must be configured as <property> elements within the

34



<connection> element.

10.3. Connector Structure

A connector typically performs the following steps when processing a provisioning
operation (add, modify, delete, search):

- Before the first operation: authenticate, mostly via OAuth or basic authentication.

- Determine the type of an entry: user, group. Sometimes also other types need to be
supported.

- Transform to the specific REST operation(s): the HTTP operation POST, PATCH
(practically never: PUT), DELETE or GET, sometimes with a payload that is most often
JSON.

- Often not only one, but a series of operations must be sent. As a result, entry attributes
need to be split. A typical example: user — group memberships are managed and
qgueried in additional operations.

- Send the HTTP operation and evaluate the response code.

- For create, extract the identifier of the new entry. For search, evaluate the JSON payload
and transform to SPML search result entries.

The connector framework supports this process by providing a connector template that
follows this sequence and uses a couple of interfaces and sample implementations
together with other common utilities.

The REST template connector is implemented in the AbstractRestSampleConnector class.
Its source is provided in the folder Additions/RESTfulConnector of the product media. The
following sections describe how it processes selected requests and the interfaces it
requires.

A specific connector can extend this template and can override some of its methods when
necessary. Normally, it must provide its own implementations for the important interfaces:
the request transformer, the commmand producer and the response evaluator.

10.3.1. REST-Specific Interfaces

The following figure illustrates the REST-specific interfaces that the
AbstractRestSampleConnector uses:

35



AbstractRestConnector Configuration
Options

<<interface>> <<interface>>

ISpmIRequest e IResponseEvaluator
Transformer

<<interface>> .
BasicResponse

|IAuthentication Evaluator

Control

|
SimpleSpmIRequest SimpleCommand CXFRSSender
Transformer Producer _

OAuthPassword

Authenticator

Figure 1. REST Interfaces used by the Abstract REST Connector

The AbstractRestConnector class provides the configuration parameters in the
ConfigurationOptions convenience class.

The interfaces and basic implementations used include:

ISpmIRequestTransformer — transforms the given SPML requests to attribute sets or — for a
search request - to filters and requested attributes. A sample implementation is
SimpleSpmIRequestTransformer.

ICmdProducer - produces the REST operations (GET, POST, etc.) that correspond to the
SPML requests (search, add, etc.). A sample implementation is SimpleCommandProducer.

IRESTSender — sends the REST operations to the remote REST service. If available, it uses an
authentication control for authentication. The recommended implementation is
CXFRSSender, based on Apache CXF.

IAuthenticationControl — performs authentication and adds the corresponding HTTP
header to the REST operation. An implementation for OAuth?2 is
OauthPasswordAuthenticator.

IResponseEvaluator - evaluates the REST responses and supports transforming them to
SPML responses. A sample implementation is BasicRspEvaluator.

All these interfaces support an open method which is used for passing the configuration
parameters. For details, see the next sections.

10.3.2. Add User

This section shows how these interfaces work together to create a user.

36



Each connector implements an add method that receives a SPML AddRequest and returns
a SPML AddResponse. The template connector extracts the entry type (here we assume
User) from the operational attribute (see the section "Configuring All Entry Types") and then
calls the specific method (here: addUser).

The following sequence diagram illustrates the first set of actions in addUser:

I€ommand CXFRS

AbstractRest ISpmiReguest
SampleConnector Transformer

IResponse
Evaluator

Producer Sender

Add |
Response |
|

1
= werAdkbreqrsph P
i |

creabeCiml = addUserEtisets)
1 |

IREST
Regquest

e abeifsy :ISEI'IHIII'EHE[:ITII"]
|

ewaltap =eﬂmu;erldﬂu'ealelhp,u'eil:d‘—'“

1
1
|
1
1
1
|
1
|
setideniifere waltsp get idemntifierl),

e Y

Figure 2. addUser Actions - Part 1

The REST connector prepares an AddResponse and then calls the request transformer’s
userAdd method to separate the attributes from the AddRequest into sets as a preparation
for the subsequent commands. For adding a user, we expect one command for creating
the user and a list of commands to add the new user to groups. Consequently, the
transformer will produce one set with all the attributes required for the user creation and
another set with the group memberships. The attribute set for the create operation is a
map with the attribute names as keys and the values as either String or list of Strings.

The connector then forwards these attribute sets to the command producer in the method
addUser. The command producer produces a REST request, which consists of the HTTP
method (in this case: POST), an HTTP path, the attribute set as payload and query
parameters.

The connector forwards the command to the REST sender. The sender uses Apache CXF to
issue REST operations. The sender handles authentication. If an authenticationControl was
set, the sender asks it to extend the HTTP headers. The authenticationControl also might
change the endpoint of the REST service. If no authenticationControl is available, the
sender assumes basic authentication and produces the appropriate header itself. For more
details on authentication, see the "Authentication" section.

The sender transforms the payload to JISON and then sends the REST operation using CXF.
It accepts only JISON as the response format and populates the result (payload, HTTP result
code along with the REST request) into a REST response and then returns it to the

37



connector.

The connector passes this response to the response evaluator. The evaluator creates and
returns an evaluated response. For an addRequest, the response should contain the
identifier of the new entry.

The connector puts this identifier into the prepared SPML AddResponse and into the
attribute sets so that it can be used in the subsequent commands.

The next actions for handling group memberships and additional attributes are shown in
the next diagram:

AbstractRest I€ommand CXFRS IResponse

SampleConnector Producer Sender Evaluator

e e nCimudks = p‘umml.lserTnﬂuqﬁ{ilh‘SEis}

it a=sawcdtn el |

-y _

gl =5enlﬂmunheri:md}
I

ewahmel e Grompiesponse (rspid, memberCmad)
bl e bl inaiireny, s, i Seds, o wallsp) i
|

I
:
wrviks = sl b el icomabaatin Seos) :
:
4
|

rent b e | . |
sl = semiaddonabCmal)——————————————
[ |

AN IS . A

el = evﬂﬂrlﬁu’ﬁdﬂﬂdihﬂrspﬁd, addlima[:mld, el
l l l
I I
! !

Figure 3. addUser Actions — Part 2

The connector asks the command producer for the commands to create user-group
memberships, passes each of them to the REST sender and then asks the evaluator to
check the responses. On failures, the evaluator throws an exception and thus stops
processing, causing the connector to return an error response.

For some applications, additional commands should be sent to fully provision a new user.
This function is handled in the connector method addUserAdditional. The connector asks
the command producer for the list of specific REST commands, passes them to the sender
and then lets the evaluator check them.

38



The handling of modify and delete requests is very similar.

10.3.3. Search

This section shows how the interfaces work together to search users. It includes searching

in iterations, where the REST service provides the result in chunks, each of which must be
explicitly retrieved.

10.3.3.1. First Search

In the search method, the connector receives an SPML SearchRequest and returns a

SearchResponse. As in the other methods, the template connector extracts the entry type

(here we assume User) from the operational attribute (see the section "Configuring All
Entry Types") and then calls the specific method (here: searchUser).

The following sequence diagram gives an overview of the actions in searchUser. Searches
for other entry types are very much the same.

AbstractRest

ISpmIRequest

Transformer

SampleConnector

PagingSearch

I
—
1
I Response

T 1
searchUsers{req.rsp)
. ]

1

searchCtx = userSearch(req, rsp)——M
]

[REET

cmdCtx = searchUser(searchCtx)

CmdContext

1
|
|
I
|
|
I
|
I
|
I
|
|
|
|
|
|
|
— ]
searchUsers(rsp,searchCtx) :
|
|
|

ICommand CXFRS IResponse

Producer Sender Evaluator

searchRsp = send(cmdCtx getBasicsearchCmd(fqp—o— —P
| |
4:—evalep = evaluateUserSearch[searchRsp.cdetx.getElas'lcSearthCmd(].searche:tx]—;— —
1 1 : |
; + :
foun dEntr'.r resuREntries | 1 : : :
—furtherCmds = getAdditionalEntrySearchCommands()——1—— .| |
1 I
| 1 : |
—cmdCtx = 5earchU5erAddrtlonaltfoundEntr',r searchChx,cmdCix)}—— b: | :
|
foundEntr',r addAttributesToUser({foundEntry, cmdCtx) : | :
i 1 ! I
1 .' 1
I addrtlonaICmds getAdditionalEntrySearchCommands()— T | i
1 I
1 | I
: | ! 1
1 T t T
additionalCmds | 1 : l
: restRsp = send(cmd.getRestCommand|) : —'—H
1 | ! |
‘I foundEntry = addUse rattributes(foundEntry, restRsp, cmd.getType()) : : »
y 1 | 1
addsSearchResultEntry(foundEntry) s : : :
1
1 ! !

Figure 4. searchUser Actions

First, the connector prepares a SearchResponse that is returned to the join engine at the
end. To support paging, it creates a special PagingSearchResponse. The
PagingSearchResponse extends the normal SPML Search Response and provides
additional features for retrieving the subsequent page of result entries when the current
page has been processed. This implementation ensures that always only one page is in
memory so that very large result sets can be processed.

39




By calling the method userSearch, the connector asks the request transformer to produce
a search context. A search context contains the information needed for issuing a query:
filter, search base, requested attributes, and operational attributes as well as the original
SPML request and the current SPML response.

With this search context, the commmand producer creates a search commmand context. A
search commmand context contains a list of REST requests: one basic (that is, the first or
main) and an optional list of additional ones. The basic search command is supposed to
obtain a list of entries matching the filter with a set of attributes. The other commmands
serve to obtain additional attributes per entry.

The rest of the search is handled in an extra method, searchUsers, which expects the search
response and the search context as parameters. This method is also used when retrieving
subsequent result pages so that the common actions can be handled by only one method.

The connector passes the basic search commmand to the REST sender and passes the
returned REST response to the response evaluator along with the search command and
the search context. The evaluator transforms the result to a list of SPML
SearchResultEntries and returns them in an evaluated response.

For each result entry, the connector asks the command producer to create further
commands for retrieving additional attributes of the entry (here: user). The connector
passes them to the REST sender and asks the response evaluator to extract them from the
REST response to the found SPML result entry. After the last command, the connector adds
the result entry to the SPML search response.

10.3.3.2. Retrieving Subsequent Pages

For convenience, the join engine of the provisioning job (aka job controller) obtains the list
of result entries one by one by calling the method enumerateSearchResultEntry of the
search response. This gives the search response class control and allows it to re-issue
subsequent searches after the first chunk has been processed. As a disadvantage, it might
not know the total number of result entries at the beginning.

40



PagingSearch Search AbstractRest ScimCommand

Response Response SampleConnector Producer

I 1

I I

enumerateISearchResu kEntw[]+cuwentEnum = enumeratesearchResultEntry()
1 | 1

1 | |
F——nhasMoreElements—+——hasMoreE lements—P

| |

| |

: T

false |
removedllsearchResukEntry()
1 1
| |
———hasMextPage = getMextPagel ser{this,searchCix)——+—pgeth ext Page User(se arch i)

l true

searchlUsers(rsp,searchCix)

o

L
[hasMextPage == true]lenumerateSearchResultEntry()

The PagingSearchResponse delegates enumeration of entries to the underlying SPML
Search Response. As long as it has more elements, it just returns them to the join engine.

If the first chunk is exhausted, the PagingSearchResponse requests the next chunk from
the connector by calling its method getNextPageUser (for users) and passes the current
search context.

The connector asks the command producer for the command to retrieve the next page
(here: of users). If there is oneg, it calls the same method searchUsers as in processing the
original search request. When it returns, the entries of the current page are in the search
response.

Now the PagingSearchResponse can again enumerate over the result entries and pass
them to the join engine.

10.3.4. Read an Entry

As mentioned above, reading a single entry should be implemented by a search request
with a search base. The search base represents the identifier of the entry.

The connector performs the same actions as outlined above. Just setting the response
should be a bit different. If the entry cannot be found, the response should have an error
code NOSUCHIDENTIFIER and a custom error code NO_SUCH_OBJECT. This is important
for the provisioning join engine; in that case it continues trying to find the joined entry with
the next join expression.

41



10.4. Sample Connector

We provide the sources for a sample connector BasicScimConnector as a sample. The
sample extends the AbstractRestSampleConnector template and just sets the OAuth
Authentication control and a simple response evaluator.

Note that despite its name, the connector does not (yet) implement the SCIM specification.
It takes some elements of SCIM to provide a simple demonstration rather than invent a
new REST protocol.

10.5. Authentication
Authentication is handled within the REST sender.

The (derived) connector can set an authentication control in the REST sender. An
authentication control must implement the interface IAuthenticationControl.

IAuthenticationControl methods include:
open — used for passing the configuration parameters.

getAuthenticationHeaders - allows the authentication control to return the
authentication- and authorization-relevant HTTP headers that must be added to a REST
request.

getDynamicEndpoint — allows the authentication control to return an application endpoint
generated dynamically from the authentication service, thereby instructing the REST
sender to use it for the next REST request.

evaluateErrorResponse — allows the authentication control to check the result code and
error message of a JAX-RS response to determine whether or not to refresh an access
token for the next request.

If no authentication control is passed, the sender uses the user name and password from
the configuration for basic authentication.

If an authentication control is available, the connector asks the control for additional
(authentication and authorization) headers and then adds them to the REST command.
The control may also provide an endpoint to which requests are subsequently to be sent.
This parameter supports scenarios where the address of the REST service is determined by
the authentication service.

The framework provides an authentication control for OAuth2, the
OauthPasswordAuthenticator. It obtains a new token when required and a refresh token
once the previous is expired and adds it in a HTTP header "Authorization Bearer".

For accessing the OAuth?2 service, the control evaluates the configuration options
authorizationServerUrl (address), clientld and clientSecret (see OAuth2): identification or
user name of the connector as a client application and its password.

42



10.6. ISpmIRequestTransformer Interface

An implementation of ISpmIRequestTransformer must evaluate SPML requests for users,
groups and other entry types and then return appropriate attribute sets:

For add, modify and delete requests - an object that implements ISeparatedAttributes. A
sample implementation is BasicSeparatedAttributes. This kind of object provides the
attributes in various sets:

Basic attributes for the first or main operation to create or modify an entry.
Attributes for either adding a user to a group or removing it.
The identifier of the (new) entry.

The list of additional attribute sets, when more operations are needed to create, update or
delete an entry.

For search requests — an object that implements ISearchContext. A search context
provides the search filter, requested attributes, a search base and operational attributes. A
sample implementation is BasicSearchContext.

In the open method, the connector passes the configuration options for the entire
connector that might also be used by the request transformer.

A sample implementation for a request transformer is SimpleSpmIRequestTransformer. |t
assumes that the attribute "memberOf" is the one that contains the groups of which a user
is member and provides them as groupMemberToAdd/Delete. All the other attributes go
into the basic attribute set. It also respects a list of multi-valued attributes. The values for
these attributes are provided as lists. The names of multi-valued attributes can be set from
the connector.

From a search request, it extracts the search base and the requested attributes, but not
(yet) the filter.

10.7. ICmdProducer Interface

An implementation of the ICmdProducer interface produces the REST commands for
creating, updating, deleting and searching for users, groups and other entries. The main
inputs are the attribute sets and search contexts produced by the request transformer.

In the open method, the connector passes the configuration options for the entire
connector that may also be used by the command producer.

For each entry type (user, group or other) there are the following methods:

*Add / modify / delete*Type — for creating / updating or deleting the basic attributes of an
entry. The method is expected to produce a REST request with either a POST, PUT, PATCH
or DELETE operation, the relative path that needs to be added to the application endpoint,
the query parameters, the headers and the (preferably JISON) payload.

43



ProcessUserToGroups — for returning the REST requests for adding a user to and removing
it from groups. The returned list typically has a request per user-group membership.

Add / modify / delete*Type*Additional - for performing additional requests for managing
special attributes or privileges such as licenses, profiles, etc. The command producer
returns a (potentially empty) list of REST requests that are processed one after the other.

*Search*Type — for finding all entries (of the specific type user, group or some proprietary
one) matching the filter. Typically, the searches will try to find all entries of a given type (for
example, all users) or only one entry associated with the given source entry (called the
joined entry). In this case, the filter will just reference a unique identifier (the primary key) or
a few basic attributes. These methods expect a search context as input and return a search
command context.

Search*Type*Additional - for finding the additional attributes of a given entry. The method
expects the search context, the search command context produced by the previous
SearchType method and the evaluated REST response associated with the previous search
as input parameters. It returns a search command context with explicitly the additional
typed search requests populated. The type allows for distinguishing several attribute sets
(for example, groups, licenses). Unfortunately, the identifier of the individual entry is not
known to the producer at the time this method is called. As a result, the connector must
currently insert it somehow into the REST command.

*GetNextPage*Type — for retrieving the next page (chunk) of result entries if there are some
left. The information needed to decide that should be put to the search context by the
response evaluator.

The SimpleCommandProducer class provides a straightforward implementation of a
command producer inspired by SCIM. It can be used as a copy/paste starting point for
specific command producers. The framework also provides implementations for search
command context and REST requests that are basically property holders.

10.8. IRESTSender Interface

An implementation of the IRESTSender interface sends REST requests according to REST
command objects passed to it and returns corresponding REST responses. The sender
handles authentication. The connector may pass an authentication controller, which the
sender then uses to obtain authentication headers and/or query parameters.

10.8.1. Interface Methods

In the open method, the connector passes the configuration options for the entire
connector that can also be used by the sender.

The setAuthenticationControl method expects an authentication controller implementing
the interface IAuthenticationControl. For details on authentication, see the
"Authentication" section.

In the send method, the sender sends a REST request according the given REST command
(interface IRESTRequest; see the section "ICmdProducer Interface". The sender returns a

44



REST response object that holds the HTTP result code, the full original response, the
payload, the headers and potentially an error message.

10.8.2. CXFRSSender Implementation

The framework provides the CXFRSSender class as an implementation of the IRESTSender
interface. CXFRSSender uses Apache CXF for sending REST requests and evaluating the
responses.

The sender accepts only JISON REST responses. It also assumes JSON for the payload of
requests, which can be overridden by the request media type. The Jackson JSON provider
helps transform the message payload to and from Maps. Consequently, the connector and
the other components don't need to manage JSON handling; they simply produce and
consume Java Maps.

When the connector doesn't set an authentication control, CXFRSSender assumes basic
authentication and uses the configured user and password for producing the
authentication header.

When a proxy host is configured, the sender instructs the CXF Web client to send the
requests to the proxy host and port from the configuration. Currently, no authentication for
the proxy is supported.

10.9. IResponseEvaluator Interface

A response evaluator implements the IResponseEvaluator interface and needs to check
the REST responses, extract identifiers and attributes from the payload, transform them to
SPML and then feed them into the evaluated response.

The interface methods are organized according to entry types (user, group, other) and
operations (add, modify, delete, search). In the open method, they receive the configuration
parameters for the connector.

All the methods must check the response for errors. If the HTTP result code indicates
failure, the REST sender sets the result of the internal REST response to failure. All the
methods get the REST request and the corresponding REST response with the payload.

Some of the methods (modify, delete) normally do not contain a payload or the payload is
not evaluated by the join engine. So the evaluator can simply ignore them.

When an entry is created, the response payload most often contains the identifier of the
new entry. In the methods evaluateTypeAdd, the evaluator must extract it and put it into
the evaluated response.

The payload of GET operations contains the matching entries as a list or a single entry. The
evaluator receives the payload in two groups of operations:

evaluateTypeSearch — the payload is expected to contain the basic attributes of the
matching entries. The evaluator must transform each of them into a SPML result entry and
then put them into the search result entries list of the evaluated response. Each result entry

45



needs to have an identifier and can have a list of single- or multi-valued attributes.

For paging supyport, the evaluator must also read response attributes that tell whether the
result is complete or how to retrieve the next chunk. This information should be stored in
the search context.

addTypeAttributes - the payload contains additional attributes of an entry. The evaluator
must add them to the existing SPML entry. The entry with the attributes already obtained
is passed as an input parameter. Another parameter passes a type that if present indicates
the attribute set that is expected in the payload. A typical type will indicate the groups of
which a user is a member.

The BasicResponseEvaluator class provides a simple implementation of the interface and
returns the simple implementation BasicEvaluatedResponse. This evaluator checks the
REST response and throws an exception on failure. A specific implementation can extend it
and then must implement the evaluate*Search methods at a minimum, and frequently
the add*Attributes methods, too. The ScimRspEvaluator implementation shows how to
extract simple String attributes from the payload and create SPML search result entries and
the SPML identifier. It also reads the number of total results, start index and items per page
that can be used to decide whether a request to retrieve a subsequent chunk of entries
makes sense.

10.10. REST Utilities

The RESTUtils class provides some utility methods that are helpful for sending and
evaluating REST requests and responses.

Some methods implement transformation between JSON strings and majps and lists or to
base64 strings.

Other methods check the HTTP status code with respect to the HTTP operations.

The remaining methods support logging requests and responses.

10.11. SPML and Framework Utilities

The connector framework provides some utilities that can help to manage SPML requests
and responses. You can find them in the Java package com.siemens.dxm.spml.util.

The ResponseCreator provides methods for creating a success or failure response that
accept the SPML request and an error message or an exception.

The Serializer serializes a SPML request and response to a string, which can be useful for
logging.

The SpmlUtils class provides methods for:

- Creating attributes from a name and value or list of values.

- Obtaining attributes as a map, get values as map or list.

46



- Obtaining the first value from an attribute map or list.
- Obtaining the identifier string or produce an identifier from a string value.

- Getting or setting some specific operational attributes, such as the scope or the object
type.

10.12. Examples

The sources for all the REST-related interfaces, implementing classes and utilities are
provided in the folder RestFramework on the product media.

47



11. Using the User LDAP Lock

The purpose of the User LDAP lock is to prevent two or more applications / programs /
threads from updating the same user in parallel.

The implementation has drastically changed in V8.10. In order to minimize locking times
and to relieve custom code from lock handling, the following major changes have been
made:

- Components, namely custom clients and Java Scripts do not have to set and release the
lock explicitly. Instead, it is done within the SvcUser method ‘storePrepared’ and only
when it is necessary. Locking is considered necessary, if a privilege assignment is
created, changed, or deleted or if a permission parameter attribute of the user is
changed.

- User resolution is not performed anymore in the client applications (such as Web
Center, REST and SOAP Services, consistency rules, etc), but in an extra component, the
new resolution adapter running in the Java server 1dS-J.

- Clients, including Java Scripts, should always use the method checkAndSave(true) for
storing their changes to a user. This method checks the changes for their relevance to
access rights, lock the user and send a resolution event if an access-right relevant
change has been detected.

To support upgrade, the old methods in class SvcSession (such as createlLdaplock) are
kept and do not perform any changes. They are marked deprecated, so please take care to
adapt your custom clients to not use them anymore. They likely might be dropped in a
subsequent version.

Your client code still must consider that the method checkAndSave - or storePrepared, if
you use it — might fail because it is not able to acquire the lock for changing the user. This
will be indicated by the result code 15 (SVC_ENTRY_LOCKED) in the returned SvcSummary
object.

48



DirX Product Suite

The DirX product suite provides the basis for fully integrated identity and access
management; it includes the following products, which can be ordered separately.

DirX Identity

DirX Identity provides a comprehensive,
process-driven, customizable, cloud-
enabled, scalable, and highly available
identity management solution for
businesses and organizations. It provides
overarching, risk-based identity and access
governance functionality seamlessly
integrated with automated provisioning.
Functionality includes lifecycle
management for users and roles, cross-
platform and rule-based real-time
provisioning, web-based self-service
functions for users, delegated
administration, request workflows, access
certification, password management,
metadirectory as well as auditing and
reporting functionality.

DirX Access

DirX Access is a comprehensive, cloud-ready,
scalable, and highly available access
management solution providing policy- and
risk-based authentication, authorization
based on XACML and federation for Web
applications and services. DirX Access
delivers single sign-on, versatile
authentication including FIDO, identity
federation based on SAML, OAuth and
OpenlD Connect, just-in-time provisioning,
entitlement management and policy
enforcement for applications and services in
the cloud or on-premises.

DirX Directory

DirX Directory provides a standards-
compliant, high-performance, highly
available, highly reliable, highly scalable, and
secure LDAP and X.500 Directory Server and
LDAP Proxy with very high linear scalability.
DirX Directory can serve as an identity store
for employees, customers, partners,
subscribers, and other 10T entities. It can also
serve as a provisioning, access management
and metadirectory repository, to provide a
single point of access to the information
within disparate and heterogeneous
directories available in an enterprise
network or cloud environment for user
management and provisioning.

o nva

DirX Audit provides auditors, security
compliance officers and audit
administrators with analytical insight and
transparency for identity and access. Based
on historical identity data and recorded
events from the identity and access
management processes, DirX Audit allows
answering the “what, when, where, who and
why" questions of user access and
entitlements. DirX Audit features historical
views and reports on identity data, a
graphical dashboard with drill-down into
individual events, an analysis view for
filtering, evaluating, correlating, and
reviewing of identity-related events and job
management for report generation.

For more information: support.dirx.solutions/about

49


https://support.dirx.solutions/about

=VIDEN

Eviden is a registered trademark © Copyright 2025, Eviden SAS - All rights reserved.

50

Legal remarks

On the account of certain regional limitations of sales rights and service availability,
we cannot guarantee that all products included in this document are available
through the Eviden sales organization worldwide. Availability and packaging may
vary by country and is subject to change without prior notice. Some/All of the features
and products described herein may not be available locally. The information in this
document contains general technical descriptions of specifications and options as
well as standard and optional features which do not always have to be present in
individual cases. Eviden reserves the right to modify the design, packaging,
specifications and options described herein without prior notice. Please contact your
local Eviden sales representative for the most current information. Note: Any
technical data contained in this document may vary within defined tolerances.
Original images always lose a certain amount of detail when reproduced.



	Java Programming in DirX Identity
	Copyright
	Table of Contents
	Preface
	DirX Identity Documentation Set
	Notation Conventions
	1. Overview
	2. Using the Programming Environment
	2.1. About the Development Environment
	2.2. Debugging
	2.2.1. Debugging in IdS-J
	2.2.2. Debugging in Tomcat


	3. Extending Provisioning Workflows
	3.1. Prerequisites
	3.2. Documentation
	3.2.1. DirX Identity Connectivity Administration Guide
	3.2.2. DirX Identity Application Development Guide
	3.2.3. DirX Identity Integration Framework Guide
	3.2.4. JavaDoc

	3.3. Training
	3.4. Writing a Custom Mapping
	3.5. Writing a User Hook
	3.6. Writing a Connector Filter
	3.7. Hints, Tips and Tricks

	4. Extending Password Synchronization Workflows
	4.1. Prerequisites
	4.2. Documentation
	4.2.1. DirX Identity Connectivity Administration Guide
	4.2.2. DirX Identity Application Development Guide
	4.2.3. JavaDoc

	4.3. Writing a User Hook

	5. Extending Event-based Processing Workflows
	5.1. Prerequisites
	5.2. Documentation
	5.2.1. DirX Identity Application Development Guide
	5.2.2. Java Documentation

	5.3. Training
	5.4. Examples
	5.5. Hints, Tips and Tricks
	5.5.1. Job Configuration
	5.5.2. Input Events


	6. Extending Request Workflows
	6.1. Prerequisites
	6.2. Documentation
	6.2.1. DirX Identity Application Development Guide

	6.3. Interfaces
	6.4. Training
	6.5. Examples
	6.6. Hints, Tips and Tricks

	7. Extending Web Services
	7.1. Prerequisites
	7.2. Documentation
	7.2.1. DirX Identity Integration Framework Guide

	7.3. Interfaces
	7.4. Training
	7.5. Examples

	8. Implementing Consistency Rules
	8.1. Prerequisites
	8.2. Documentation
	8.2.1. DirX Identity Provisioning Administration Guide
	8.2.2. DirX Identity Customization Guide

	8.3. Training
	8.4. Examples
	8.5. Hints, Tips and Tricks
	8.5.1. Using Consistency Rules in Event-based Operation
	8.5.2. Testing a Consistency Rule


	9. Implementing a Custom Connector (General)
	9.1. Prerequisites
	9.2. Documentation
	9.2.1. DirX Identity Integration Framework Guide
	9.2.2. JavaDoc

	9.3. Training
	9.4. Examples
	9.5. Hints, Tips and Tricks
	9.5.1. Test
	9.5.2. Timeout


	10. Implementing a RESTful Connector
	10.1. Documentation
	10.2. Workflow Configuration and Connector Attribute Handling
	10.2.1. Configuring All Entry Types
	10.2.1.1. Handling the Entry Identifier
	10.2.1.2. Distinguishing Users and Groups
	10.2.1.3. Searching All Entries of a Type
	10.2.1.4. Searching an Entry with ID
	10.2.1.5. Handling Deleted Entries

	10.2.2. Configuring Accounts
	10.2.2.1. Handling the Logon Name
	10.2.2.2. Handling Enable / Disable

	10.2.3. Configuring Account – Group Memberships
	10.2.4. Configuring the Connector

	10.3. Connector Structure
	10.3.1. REST-Specific Interfaces
	10.3.2. Add User
	10.3.3. Search
	10.3.3.1. First Search
	10.3.3.2. Retrieving Subsequent Pages

	10.3.4. Read an Entry

	10.4. Sample Connector
	10.5. Authentication
	10.6. ISpmlRequestTransformer Interface
	10.7. ICmdProducer Interface
	10.8. IRESTSender Interface
	10.8.1. Interface Methods
	10.8.2. CXFRSSender Implementation

	10.9. IResponseEvaluator Interface
	10.10. REST Utilities
	10.11. SPML and Framework Utilities
	10.12. Examples

	11. Using the User LDAP Lock
	Legal Remarks

